blob: abe548165866c930ba1aaec3110bdc6fbe3475f9 [file] [log] [blame]
//===- OutputSections.cpp -------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "OutputSections.h"
#include "Config.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Threads.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"
using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
uint8_t Out::First;
OutputSection *Out::Opd;
uint8_t *Out::OpdBuf;
PhdrEntry *Out::TlsPhdr;
OutputSection *Out::DebugInfo;
OutputSection *Out::ElfHeader;
OutputSection *Out::ProgramHeaders;
OutputSection *Out::PreinitArray;
OutputSection *Out::InitArray;
OutputSection *Out::FiniArray;
std::vector<OutputSection *> elf::OutputSections;
std::vector<OutputSectionCommand *> elf::OutputSectionCommands;
uint32_t OutputSection::getPhdrFlags() const {
uint32_t Ret = PF_R;
if (Flags & SHF_WRITE)
Ret |= PF_W;
if (Flags & SHF_EXECINSTR)
Ret |= PF_X;
return Ret;
}
template <class ELFT>
void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) {
Shdr->sh_entsize = Entsize;
Shdr->sh_addralign = Alignment;
Shdr->sh_type = Type;
Shdr->sh_offset = Offset;
Shdr->sh_flags = Flags;
Shdr->sh_info = Info;
Shdr->sh_link = Link;
Shdr->sh_addr = Addr;
Shdr->sh_size = Size;
Shdr->sh_name = ShName;
}
OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags)
: SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type,
/*Info*/ 0,
/*Link*/ 0),
SectionIndex(INT_MAX) {}
static uint64_t updateOffset(uint64_t Off, InputSection *S) {
Off = alignTo(Off, S->Alignment);
S->OutSecOff = Off;
return Off + S->getSize();
}
void OutputSection::addSection(InputSection *S) {
assert(S->Live);
Sections.push_back(S);
S->Parent = this;
this->updateAlignment(S->Alignment);
// The actual offsets will be computed by assignAddresses. For now, use
// crude approximation so that it is at least easy for other code to know the
// section order. It is also used to calculate the output section size early
// for compressed debug sections.
this->Size = updateOffset(Size, S);
// If this section contains a table of fixed-size entries, sh_entsize
// holds the element size. Consequently, if this contains two or more
// input sections, all of them must have the same sh_entsize. However,
// you can put different types of input sections into one output
// sectin by using linker scripts. I don't know what to do here.
// Probably we sholuld handle that as an error. But for now we just
// pick the largest sh_entsize.
this->Entsize = std::max(this->Entsize, S->Entsize);
}
static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) {
// The ELF spec just says
// ----------------------------------------------------------------
// In the first phase, input sections that match in name, type and
// attribute flags should be concatenated into single sections.
// ----------------------------------------------------------------
//
// However, it is clear that at least some flags have to be ignored for
// section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
// ignored. We should not have two output .text sections just because one was
// in a group and another was not for example.
//
// It also seems that that wording was a late addition and didn't get the
// necessary scrutiny.
//
// Merging sections with different flags is expected by some users. One
// reason is that if one file has
//
// int *const bar __attribute__((section(".foo"))) = (int *)0;
//
// gcc with -fPIC will produce a read only .foo section. But if another
// file has
//
// int zed;
// int *const bar __attribute__((section(".foo"))) = (int *)&zed;
//
// gcc with -fPIC will produce a read write section.
//
// Last but not least, when using linker script the merge rules are forced by
// the script. Unfortunately, linker scripts are name based. This means that
// expressions like *(.foo*) can refer to multiple input sections with
// different flags. We cannot put them in different output sections or we
// would produce wrong results for
//
// start = .; *(.foo.*) end = .; *(.bar)
//
// and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
// another. The problem is that there is no way to layout those output
// sections such that the .foo sections are the only thing between the start
// and end symbols.
//
// Given the above issues, we instead merge sections by name and error on
// incompatible types and flags.
uint32_t Alignment = 0;
uint64_t Flags = 0;
if (Config->Relocatable && (C->Flags & SHF_MERGE)) {
Alignment = std::max<uint64_t>(C->Alignment, C->Entsize);
Flags = C->Flags & (SHF_MERGE | SHF_STRINGS);
}
return SectionKey{OutsecName, Flags, Alignment};
}
OutputSectionFactory::OutputSectionFactory() {}
static uint64_t getIncompatibleFlags(uint64_t Flags) {
return Flags & (SHF_ALLOC | SHF_TLS);
}
// We allow sections of types listed below to merged into a
// single progbits section. This is typically done by linker
// scripts. Merging nobits and progbits will force disk space
// to be allocated for nobits sections. Other ones don't require
// any special treatment on top of progbits, so there doesn't
// seem to be a harm in merging them.
static bool canMergeToProgbits(unsigned Type) {
return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY ||
Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY ||
Type == SHT_NOTE;
}
void elf::reportDiscarded(InputSectionBase *IS) {
if (!Config->PrintGcSections)
return;
message("removing unused section from '" + IS->Name + "' in file '" +
IS->File->getName() + "'");
}
void OutputSectionFactory::addInputSec(InputSectionBase *IS,
StringRef OutsecName) {
// Sections with the SHT_GROUP attribute reach here only when the - r option
// is given. Such sections define "section groups", and InputFiles.cpp has
// dedup'ed section groups by their signatures. For the -r, we want to pass
// through all SHT_GROUP sections without merging them because merging them
// creates broken section contents.
if (IS->Type == SHT_GROUP) {
OutputSection *Out = nullptr;
addInputSec(IS, OutsecName, Out);
return;
}
// Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
// relocation sections .rela.foo and .rela.bar for example. Most tools do
// not allow multiple REL[A] sections for output section. Hence we
// should combine these relocation sections into single output.
// We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
// other REL[A] sections created by linker itself.
if (!isa<SyntheticSection>(IS) &&
(IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
auto *Sec = cast<InputSection>(IS);
OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
addInputSec(IS, OutsecName, Out->RelocationSection);
return;
}
SectionKey Key = createKey(IS, OutsecName);
OutputSection *&Sec = Map[Key];
addInputSec(IS, OutsecName, Sec);
}
void OutputSectionFactory::addInputSec(InputSectionBase *IS,
StringRef OutsecName,
OutputSection *&Sec) {
if (!IS->Live) {
reportDiscarded(IS);
return;
}
if (Sec) {
if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags))
error("incompatible section flags for " + Sec->Name + "\n>>> " +
toString(IS) + ": 0x" + utohexstr(IS->Flags) +
"\n>>> output section " + Sec->Name + ": 0x" +
utohexstr(Sec->Flags));
if (Sec->Type != IS->Type) {
if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type))
Sec->Type = SHT_PROGBITS;
else
error("section type mismatch for " + IS->Name + "\n>>> " +
toString(IS) + ": " +
getELFSectionTypeName(Config->EMachine, IS->Type) +
"\n>>> output section " + Sec->Name + ": " +
getELFSectionTypeName(Config->EMachine, Sec->Type));
}
Sec->Flags |= IS->Flags;
} else {
Sec = make<OutputSection>(OutsecName, IS->Type, IS->Flags);
OutputSections.push_back(Sec);
}
Sec->addSection(cast<InputSection>(IS));
}
OutputSectionFactory::~OutputSectionFactory() {}
SectionKey DenseMapInfo<SectionKey>::getEmptyKey() {
return SectionKey{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0};
}
SectionKey DenseMapInfo<SectionKey>::getTombstoneKey() {
return SectionKey{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0};
}
unsigned DenseMapInfo<SectionKey>::getHashValue(const SectionKey &Val) {
return hash_combine(Val.Name, Val.Flags, Val.Alignment);
}
bool DenseMapInfo<SectionKey>::isEqual(const SectionKey &LHS,
const SectionKey &RHS) {
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment;
}
uint64_t elf::getHeaderSize() {
if (Config->OFormatBinary)
return 0;
return Out::ElfHeader->Size + Out::ProgramHeaders->Size;
}
template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);