| //===- LinkerScript.cpp ---------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the parser/evaluator of the linker script. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LinkerScript.h" |
| #include "Config.h" |
| #include "InputSection.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Threads.h" |
| #include "Writer.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| LinkerScript *elf::Script; |
| |
| uint64_t ExprValue::getValue() const { |
| if (Sec) { |
| if (OutputSection *OS = Sec->getOutputSection()) |
| return alignTo(Sec->getOffset(Val) + OS->Addr, Alignment); |
| error(Loc + ": unable to evaluate expression: input section " + Sec->Name + |
| " has no output section assigned"); |
| } |
| return alignTo(Val, Alignment); |
| } |
| |
| uint64_t ExprValue::getSecAddr() const { |
| if (Sec) |
| return Sec->getOffset(0) + Sec->getOutputSection()->Addr; |
| return 0; |
| } |
| |
| template <class ELFT> static SymbolBody *addRegular(SymbolAssignment *Cmd) { |
| Symbol *Sym; |
| uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; |
| std::tie(Sym, std::ignore) = Symtab<ELFT>::X->insert( |
| Cmd->Name, /*Type*/ 0, Visibility, /*CanOmitFromDynSym*/ false, |
| /*File*/ nullptr); |
| Sym->Binding = STB_GLOBAL; |
| ExprValue Value = Cmd->Expression(); |
| SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; |
| |
| // We want to set symbol values early if we can. This allows us to use symbols |
| // as variables in linker scripts. Doing so allows us to write expressions |
| // like this: `alignment = 16; . = ALIGN(., alignment)` |
| uint64_t SymValue = Value.isAbsolute() ? Value.getValue() : 0; |
| replaceBody<DefinedRegular>(Sym, Cmd->Name, /*IsLocal=*/false, Visibility, |
| STT_NOTYPE, SymValue, 0, Sec, nullptr); |
| return Sym->body(); |
| } |
| |
| OutputSectionCommand * |
| LinkerScript::createOutputSectionCommand(StringRef Name, StringRef Location) { |
| OutputSectionCommand *&CmdRef = NameToOutputSectionCommand[Name]; |
| OutputSectionCommand *Cmd; |
| if (CmdRef && CmdRef->Location.empty()) { |
| // There was a forward reference. |
| Cmd = CmdRef; |
| } else { |
| Cmd = make<OutputSectionCommand>(Name); |
| if (!CmdRef) |
| CmdRef = Cmd; |
| } |
| Cmd->Location = Location; |
| return Cmd; |
| } |
| |
| OutputSectionCommand * |
| LinkerScript::getOrCreateOutputSectionCommand(StringRef Name) { |
| OutputSectionCommand *&CmdRef = NameToOutputSectionCommand[Name]; |
| if (!CmdRef) |
| CmdRef = make<OutputSectionCommand>(Name); |
| return CmdRef; |
| } |
| |
| void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { |
| uint64_t Val = E().getValue(); |
| if (Val < Dot && InSec) |
| error(Loc + ": unable to move location counter backward for: " + |
| CurAddressState->OutSec->Name); |
| Dot = Val; |
| // Update to location counter means update to section size. |
| if (InSec) |
| CurAddressState->OutSec->Size = Dot - CurAddressState->OutSec->Addr; |
| } |
| |
| // Sets value of a symbol. Two kinds of symbols are processed: synthetic |
| // symbols, whose value is an offset from beginning of section and regular |
| // symbols whose value is absolute. |
| void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { |
| if (Cmd->Name == ".") { |
| setDot(Cmd->Expression, Cmd->Location, InSec); |
| return; |
| } |
| |
| if (!Cmd->Sym) |
| return; |
| |
| auto *Sym = cast<DefinedRegular>(Cmd->Sym); |
| ExprValue V = Cmd->Expression(); |
| if (V.isAbsolute()) { |
| Sym->Value = V.getValue(); |
| } else { |
| Sym->Section = V.Sec; |
| Sym->Value = alignTo(V.Val, V.Alignment); |
| } |
| } |
| |
| static SymbolBody *findSymbol(StringRef S) { |
| switch (Config->EKind) { |
| case ELF32LEKind: |
| return Symtab<ELF32LE>::X->find(S); |
| case ELF32BEKind: |
| return Symtab<ELF32BE>::X->find(S); |
| case ELF64LEKind: |
| return Symtab<ELF64LE>::X->find(S); |
| case ELF64BEKind: |
| return Symtab<ELF64BE>::X->find(S); |
| default: |
| llvm_unreachable("unknown Config->EKind"); |
| } |
| } |
| |
| static SymbolBody *addRegularSymbol(SymbolAssignment *Cmd) { |
| switch (Config->EKind) { |
| case ELF32LEKind: |
| return addRegular<ELF32LE>(Cmd); |
| case ELF32BEKind: |
| return addRegular<ELF32BE>(Cmd); |
| case ELF64LEKind: |
| return addRegular<ELF64LE>(Cmd); |
| case ELF64BEKind: |
| return addRegular<ELF64BE>(Cmd); |
| default: |
| llvm_unreachable("unknown Config->EKind"); |
| } |
| } |
| |
| void LinkerScript::addSymbol(SymbolAssignment *Cmd) { |
| if (Cmd->Name == ".") |
| return; |
| |
| // If a symbol was in PROVIDE(), we need to define it only when |
| // it is a referenced undefined symbol. |
| SymbolBody *B = findSymbol(Cmd->Name); |
| if (Cmd->Provide && (!B || B->isDefined())) |
| return; |
| |
| Cmd->Sym = addRegularSymbol(Cmd); |
| } |
| |
| bool SymbolAssignment::classof(const BaseCommand *C) { |
| return C->Kind == AssignmentKind; |
| } |
| |
| bool OutputSectionCommand::classof(const BaseCommand *C) { |
| return C->Kind == OutputSectionKind; |
| } |
| |
| // Fill [Buf, Buf + Size) with Filler. |
| // This is used for linker script "=fillexp" command. |
| static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) { |
| size_t I = 0; |
| for (; I + 4 < Size; I += 4) |
| memcpy(Buf + I, &Filler, 4); |
| memcpy(Buf + I, &Filler, Size - I); |
| } |
| |
| bool InputSectionDescription::classof(const BaseCommand *C) { |
| return C->Kind == InputSectionKind; |
| } |
| |
| bool AssertCommand::classof(const BaseCommand *C) { |
| return C->Kind == AssertKind; |
| } |
| |
| bool BytesDataCommand::classof(const BaseCommand *C) { |
| return C->Kind == BytesDataKind; |
| } |
| |
| static StringRef basename(InputSectionBase *S) { |
| if (S->File) |
| return sys::path::filename(S->File->getName()); |
| return ""; |
| } |
| |
| bool LinkerScript::shouldKeep(InputSectionBase *S) { |
| for (InputSectionDescription *ID : Opt.KeptSections) |
| if (ID->FilePat.match(basename(S))) |
| for (SectionPattern &P : ID->SectionPatterns) |
| if (P.SectionPat.match(S->Name)) |
| return true; |
| return false; |
| } |
| |
| // If an input string is in the form of "foo.N" where N is a number, |
| // return N. Otherwise, returns 65536, which is one greater than the |
| // lowest priority. |
| static int getPriority(StringRef S) { |
| size_t Pos = S.rfind('.'); |
| if (Pos == StringRef::npos) |
| return 65536; |
| int V; |
| if (!to_integer(S.substr(Pos + 1), V, 10)) |
| return 65536; |
| return V; |
| } |
| |
| // A helper function for the SORT() command. |
| static std::function<bool(InputSectionBase *, InputSectionBase *)> |
| getComparator(SortSectionPolicy K) { |
| switch (K) { |
| case SortSectionPolicy::Alignment: |
| return [](InputSectionBase *A, InputSectionBase *B) { |
| // ">" is not a mistake. Sections with larger alignments are placed |
| // before sections with smaller alignments in order to reduce the |
| // amount of padding necessary. This is compatible with GNU. |
| return A->Alignment > B->Alignment; |
| }; |
| case SortSectionPolicy::Name: |
| return [](InputSectionBase *A, InputSectionBase *B) { |
| return A->Name < B->Name; |
| }; |
| case SortSectionPolicy::Priority: |
| return [](InputSectionBase *A, InputSectionBase *B) { |
| return getPriority(A->Name) < getPriority(B->Name); |
| }; |
| default: |
| llvm_unreachable("unknown sort policy"); |
| } |
| } |
| |
| // A helper function for the SORT() command. |
| static bool matchConstraints(ArrayRef<InputSectionBase *> Sections, |
| ConstraintKind Kind) { |
| if (Kind == ConstraintKind::NoConstraint) |
| return true; |
| |
| bool IsRW = llvm::any_of(Sections, [](InputSectionBase *Sec) { |
| return static_cast<InputSectionBase *>(Sec)->Flags & SHF_WRITE; |
| }); |
| |
| return (IsRW && Kind == ConstraintKind::ReadWrite) || |
| (!IsRW && Kind == ConstraintKind::ReadOnly); |
| } |
| |
| static void sortSections(InputSection **Begin, InputSection **End, |
| SortSectionPolicy K) { |
| if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) |
| std::stable_sort(Begin, End, getComparator(K)); |
| } |
| |
| // Compute and remember which sections the InputSectionDescription matches. |
| std::vector<InputSection *> |
| LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { |
| std::vector<InputSection *> Ret; |
| |
| // Collects all sections that satisfy constraints of Cmd. |
| for (const SectionPattern &Pat : Cmd->SectionPatterns) { |
| size_t SizeBefore = Ret.size(); |
| |
| for (InputSectionBase *Sec : InputSections) { |
| if (Sec->Assigned) |
| continue; |
| |
| if (!Sec->Live) { |
| reportDiscarded(Sec); |
| continue; |
| } |
| |
| // For -emit-relocs we have to ignore entries like |
| // .rela.dyn : { *(.rela.data) } |
| // which are common because they are in the default bfd script. |
| if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) |
| continue; |
| |
| StringRef Filename = basename(Sec); |
| if (!Cmd->FilePat.match(Filename) || |
| Pat.ExcludedFilePat.match(Filename) || |
| !Pat.SectionPat.match(Sec->Name)) |
| continue; |
| |
| Ret.push_back(cast<InputSection>(Sec)); |
| Sec->Assigned = true; |
| } |
| |
| // Sort sections as instructed by SORT-family commands and --sort-section |
| // option. Because SORT-family commands can be nested at most two depth |
| // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command |
| // line option is respected even if a SORT command is given, the exact |
| // behavior we have here is a bit complicated. Here are the rules. |
| // |
| // 1. If two SORT commands are given, --sort-section is ignored. |
| // 2. If one SORT command is given, and if it is not SORT_NONE, |
| // --sort-section is handled as an inner SORT command. |
| // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. |
| // 4. If no SORT command is given, sort according to --sort-section. |
| InputSection **Begin = Ret.data() + SizeBefore; |
| InputSection **End = Ret.data() + Ret.size(); |
| if (Pat.SortOuter != SortSectionPolicy::None) { |
| if (Pat.SortInner == SortSectionPolicy::Default) |
| sortSections(Begin, End, Config->SortSection); |
| else |
| sortSections(Begin, End, Pat.SortInner); |
| sortSections(Begin, End, Pat.SortOuter); |
| } |
| } |
| return Ret; |
| } |
| |
| void LinkerScript::discard(ArrayRef<InputSectionBase *> V) { |
| for (InputSectionBase *S : V) { |
| S->Live = false; |
| if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || |
| S == InX::DynStrTab) |
| error("discarding " + S->Name + " section is not allowed"); |
| discard(S->DependentSections); |
| } |
| } |
| |
| std::vector<InputSectionBase *> |
| LinkerScript::createInputSectionList(OutputSectionCommand &OutCmd) { |
| std::vector<InputSectionBase *> Ret; |
| |
| for (BaseCommand *Base : OutCmd.Commands) { |
| auto *Cmd = dyn_cast<InputSectionDescription>(Base); |
| if (!Cmd) |
| continue; |
| |
| Cmd->Sections = computeInputSections(Cmd); |
| Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); |
| } |
| |
| return Ret; |
| } |
| |
| void LinkerScript::processCommands(OutputSectionFactory &Factory) { |
| // A symbol can be assigned before any section is mentioned in the linker |
| // script. In an DSO, the symbol values are addresses, so the only important |
| // section values are: |
| // * SHN_UNDEF |
| // * SHN_ABS |
| // * Any value meaning a regular section. |
| // To handle that, create a dummy aether section that fills the void before |
| // the linker scripts switches to another section. It has an index of one |
| // which will map to whatever the first actual section is. |
| Aether = make<OutputSection>("", 0, SHF_ALLOC); |
| Aether->SectionIndex = 1; |
| auto State = make_unique<AddressState>(Opt); |
| // CurAddressState captures the local AddressState and makes it accessible |
| // deliberately. This is needed as there are some cases where we cannot just |
| // thread the current state through to a lambda function created by the |
| // script parser. |
| CurAddressState = State.get(); |
| CurAddressState->OutSec = Aether; |
| Dot = 0; |
| |
| for (size_t I = 0; I < Opt.Commands.size(); ++I) { |
| // Handle symbol assignments outside of any output section. |
| if (auto *Cmd = dyn_cast<SymbolAssignment>(Opt.Commands[I])) { |
| addSymbol(Cmd); |
| continue; |
| } |
| |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I])) { |
| std::vector<InputSectionBase *> V = createInputSectionList(*Cmd); |
| |
| // The output section name `/DISCARD/' is special. |
| // Any input section assigned to it is discarded. |
| if (Cmd->Name == "/DISCARD/") { |
| discard(V); |
| continue; |
| } |
| |
| // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive |
| // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input |
| // sections satisfy a given constraint. If not, a directive is handled |
| // as if it wasn't present from the beginning. |
| // |
| // Because we'll iterate over Commands many more times, the easiest |
| // way to "make it as if it wasn't present" is to just remove it. |
| if (!matchConstraints(V, Cmd->Constraint)) { |
| for (InputSectionBase *S : V) |
| S->Assigned = false; |
| Opt.Commands.erase(Opt.Commands.begin() + I); |
| --I; |
| continue; |
| } |
| |
| // A directive may contain symbol definitions like this: |
| // ".foo : { ...; bar = .; }". Handle them. |
| for (BaseCommand *Base : Cmd->Commands) |
| if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) |
| addSymbol(OutCmd); |
| |
| // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign |
| // is given, input sections are aligned to that value, whether the |
| // given value is larger or smaller than the original section alignment. |
| if (Cmd->SubalignExpr) { |
| uint32_t Subalign = Cmd->SubalignExpr().getValue(); |
| for (InputSectionBase *S : V) |
| S->Alignment = Subalign; |
| } |
| |
| // Add input sections to an output section. |
| for (InputSectionBase *S : V) |
| Factory.addInputSec(S, Cmd->Name, Cmd->Sec); |
| if (OutputSection *Sec = Cmd->Sec) { |
| assert(Sec->SectionIndex == INT_MAX); |
| Sec->SectionIndex = I; |
| if (Cmd->Noload) |
| Sec->Type = SHT_NOBITS; |
| SecToCommand[Sec] = Cmd; |
| } |
| } |
| } |
| CurAddressState = nullptr; |
| } |
| |
| void LinkerScript::fabricateDefaultCommands() { |
| std::vector<BaseCommand *> Commands; |
| |
| // Define start address |
| uint64_t StartAddr = -1; |
| |
| // The Sections with -T<section> have been sorted in order of ascending |
| // address. We must lower StartAddr if the lowest -T<section address> as |
| // calls to setDot() must be monotonically increasing. |
| for (auto &KV : Config->SectionStartMap) |
| StartAddr = std::min(StartAddr, KV.second); |
| |
| Commands.push_back(make<SymbolAssignment>( |
| ".", |
| [=] { |
| return std::min(StartAddr, Config->ImageBase + elf::getHeaderSize()); |
| }, |
| "")); |
| |
| // For each OutputSection that needs a VA fabricate an OutputSectionCommand |
| // with an InputSectionDescription describing the InputSections |
| for (OutputSection *Sec : OutputSections) { |
| auto *OSCmd = createOutputSectionCommand(Sec->Name, "<internal>"); |
| OSCmd->Sec = Sec; |
| SecToCommand[Sec] = OSCmd; |
| |
| Commands.push_back(OSCmd); |
| if (Sec->Sections.size()) { |
| auto *ISD = make<InputSectionDescription>(""); |
| OSCmd->Commands.push_back(ISD); |
| for (InputSection *ISec : Sec->Sections) { |
| ISD->Sections.push_back(ISec); |
| ISec->Assigned = true; |
| } |
| } |
| } |
| // SECTIONS commands run before other non SECTIONS commands |
| Commands.insert(Commands.end(), Opt.Commands.begin(), Opt.Commands.end()); |
| Opt.Commands = std::move(Commands); |
| } |
| |
| // Add sections that didn't match any sections command. |
| void LinkerScript::addOrphanSections(OutputSectionFactory &Factory) { |
| unsigned NumCommands = Opt.Commands.size(); |
| for (InputSectionBase *S : InputSections) { |
| if (!S->Live || S->Parent) |
| continue; |
| StringRef Name = getOutputSectionName(S->Name); |
| auto End = Opt.Commands.begin() + NumCommands; |
| auto I = std::find_if(Opt.Commands.begin(), End, [&](BaseCommand *Base) { |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| return Cmd->Name == Name; |
| return false; |
| }); |
| OutputSectionCommand *Cmd; |
| if (I == End) { |
| Factory.addInputSec(S, Name); |
| OutputSection *Sec = S->getOutputSection(); |
| assert(Sec->SectionIndex == INT_MAX); |
| OutputSectionCommand *&CmdRef = SecToCommand[Sec]; |
| if (!CmdRef) { |
| CmdRef = createOutputSectionCommand(Sec->Name, "<internal>"); |
| CmdRef->Sec = Sec; |
| Opt.Commands.push_back(CmdRef); |
| } |
| Cmd = CmdRef; |
| } else { |
| Cmd = cast<OutputSectionCommand>(*I); |
| Factory.addInputSec(S, Name, Cmd->Sec); |
| if (OutputSection *Sec = Cmd->Sec) { |
| SecToCommand[Sec] = Cmd; |
| unsigned Index = std::distance(Opt.Commands.begin(), I); |
| assert(Sec->SectionIndex == INT_MAX || Sec->SectionIndex == Index); |
| Sec->SectionIndex = Index; |
| } |
| } |
| auto *ISD = make<InputSectionDescription>(""); |
| ISD->Sections.push_back(cast<InputSection>(S)); |
| Cmd->Commands.push_back(ISD); |
| } |
| } |
| |
| uint64_t LinkerScript::advance(uint64_t Size, unsigned Align) { |
| bool IsTbss = (CurAddressState->OutSec->Flags & SHF_TLS) && |
| CurAddressState->OutSec->Type == SHT_NOBITS; |
| uint64_t Start = IsTbss ? Dot + CurAddressState->ThreadBssOffset : Dot; |
| Start = alignTo(Start, Align); |
| uint64_t End = Start + Size; |
| |
| if (IsTbss) |
| CurAddressState->ThreadBssOffset = End - Dot; |
| else |
| Dot = End; |
| return End; |
| } |
| |
| void LinkerScript::output(InputSection *S) { |
| uint64_t Pos = advance(S->getSize(), S->Alignment); |
| S->OutSecOff = Pos - S->getSize() - CurAddressState->OutSec->Addr; |
| |
| // Update output section size after adding each section. This is so that |
| // SIZEOF works correctly in the case below: |
| // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } |
| CurAddressState->OutSec->Size = Pos - CurAddressState->OutSec->Addr; |
| |
| // If there is a memory region associated with this input section, then |
| // place the section in that region and update the region index. |
| if (CurAddressState->MemRegion) { |
| uint64_t &CurOffset = |
| CurAddressState->MemRegionOffset[CurAddressState->MemRegion]; |
| CurOffset += CurAddressState->OutSec->Size; |
| uint64_t CurSize = CurOffset - CurAddressState->MemRegion->Origin; |
| if (CurSize > CurAddressState->MemRegion->Length) { |
| uint64_t OverflowAmt = CurSize - CurAddressState->MemRegion->Length; |
| error("section '" + CurAddressState->OutSec->Name + |
| "' will not fit in region '" + CurAddressState->MemRegion->Name + |
| "': overflowed by " + Twine(OverflowAmt) + " bytes"); |
| } |
| } |
| } |
| |
| void LinkerScript::switchTo(OutputSection *Sec) { |
| if (CurAddressState->OutSec == Sec) |
| return; |
| |
| CurAddressState->OutSec = Sec; |
| CurAddressState->OutSec->Addr = |
| advance(0, CurAddressState->OutSec->Alignment); |
| |
| // If neither AT nor AT> is specified for an allocatable section, the linker |
| // will set the LMA such that the difference between VMA and LMA for the |
| // section is the same as the preceding output section in the same region |
| // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html |
| if (CurAddressState->LMAOffset) |
| CurAddressState->OutSec->LMAOffset = CurAddressState->LMAOffset(); |
| } |
| |
| void LinkerScript::process(BaseCommand &Base) { |
| // This handles the assignments to symbol or to the dot. |
| if (auto *Cmd = dyn_cast<SymbolAssignment>(&Base)) { |
| assignSymbol(Cmd, true); |
| return; |
| } |
| |
| // Handle BYTE(), SHORT(), LONG(), or QUAD(). |
| if (auto *Cmd = dyn_cast<BytesDataCommand>(&Base)) { |
| Cmd->Offset = Dot - CurAddressState->OutSec->Addr; |
| Dot += Cmd->Size; |
| CurAddressState->OutSec->Size = Dot - CurAddressState->OutSec->Addr; |
| return; |
| } |
| |
| // Handle ASSERT(). |
| if (auto *Cmd = dyn_cast<AssertCommand>(&Base)) { |
| Cmd->Expression(); |
| return; |
| } |
| |
| // Handle a single input section description command. |
| // It calculates and assigns the offsets for each section and also |
| // updates the output section size. |
| auto &Cmd = cast<InputSectionDescription>(Base); |
| for (InputSection *Sec : Cmd.Sections) { |
| // We tentatively added all synthetic sections at the beginning and removed |
| // empty ones afterwards (because there is no way to know whether they were |
| // going be empty or not other than actually running linker scripts.) |
| // We need to ignore remains of empty sections. |
| if (auto *S = dyn_cast<SyntheticSection>(Sec)) |
| if (S->empty()) |
| continue; |
| |
| if (!Sec->Live) |
| continue; |
| assert(CurAddressState->OutSec == Sec->getParent()); |
| output(Sec); |
| } |
| } |
| |
| // This function searches for a memory region to place the given output |
| // section in. If found, a pointer to the appropriate memory region is |
| // returned. Otherwise, a nullptr is returned. |
| MemoryRegion *LinkerScript::findMemoryRegion(OutputSectionCommand *Cmd) { |
| // If a memory region name was specified in the output section command, |
| // then try to find that region first. |
| if (!Cmd->MemoryRegionName.empty()) { |
| auto It = Opt.MemoryRegions.find(Cmd->MemoryRegionName); |
| if (It != Opt.MemoryRegions.end()) |
| return &It->second; |
| error("memory region '" + Cmd->MemoryRegionName + "' not declared"); |
| return nullptr; |
| } |
| |
| // If at least one memory region is defined, all sections must |
| // belong to some memory region. Otherwise, we don't need to do |
| // anything for memory regions. |
| if (Opt.MemoryRegions.empty()) |
| return nullptr; |
| |
| OutputSection *Sec = Cmd->Sec; |
| // See if a region can be found by matching section flags. |
| for (auto &Pair : Opt.MemoryRegions) { |
| MemoryRegion &M = Pair.second; |
| if ((M.Flags & Sec->Flags) && (M.NegFlags & Sec->Flags) == 0) |
| return &M; |
| } |
| |
| // Otherwise, no suitable region was found. |
| if (Sec->Flags & SHF_ALLOC) |
| error("no memory region specified for section '" + Sec->Name + "'"); |
| return nullptr; |
| } |
| |
| // This function assigns offsets to input sections and an output section |
| // for a single sections command (e.g. ".text { *(.text); }"). |
| void LinkerScript::assignOffsets(OutputSectionCommand *Cmd) { |
| OutputSection *Sec = Cmd->Sec; |
| if (!Sec) |
| return; |
| |
| if (!(Sec->Flags & SHF_ALLOC)) |
| Dot = 0; |
| else if (Cmd->AddrExpr) |
| setDot(Cmd->AddrExpr, Cmd->Location, false); |
| |
| if (Cmd->LMAExpr) { |
| uint64_t D = Dot; |
| CurAddressState->LMAOffset = [=] { return Cmd->LMAExpr().getValue() - D; }; |
| } |
| |
| CurAddressState->MemRegion = Cmd->MemRegion; |
| if (CurAddressState->MemRegion) |
| Dot = CurAddressState->MemRegionOffset[CurAddressState->MemRegion]; |
| switchTo(Sec); |
| |
| // We do not support custom layout for compressed debug sectons. |
| // At this point we already know their size and have compressed content. |
| if (CurAddressState->OutSec->Flags & SHF_COMPRESSED) |
| return; |
| |
| for (BaseCommand *C : Cmd->Commands) |
| process(*C); |
| } |
| |
| void LinkerScript::removeEmptyCommands() { |
| // It is common practice to use very generic linker scripts. So for any |
| // given run some of the output sections in the script will be empty. |
| // We could create corresponding empty output sections, but that would |
| // clutter the output. |
| // We instead remove trivially empty sections. The bfd linker seems even |
| // more aggressive at removing them. |
| auto Pos = std::remove_if( |
| Opt.Commands.begin(), Opt.Commands.end(), [&](BaseCommand *Base) { |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| return Cmd->Sec == nullptr; |
| return false; |
| }); |
| Opt.Commands.erase(Pos, Opt.Commands.end()); |
| } |
| |
| static bool isAllSectionDescription(const OutputSectionCommand &Cmd) { |
| for (BaseCommand *Base : Cmd.Commands) |
| if (!isa<InputSectionDescription>(*Base)) |
| return false; |
| return true; |
| } |
| |
| void LinkerScript::adjustSectionsBeforeSorting() { |
| // If the output section contains only symbol assignments, create a |
| // corresponding output section. The bfd linker seems to only create them if |
| // '.' is assigned to, but creating these section should not have any bad |
| // consequeces and gives us a section to put the symbol in. |
| uint64_t Flags = SHF_ALLOC; |
| |
| for (int I = 0, E = Opt.Commands.size(); I != E; ++I) { |
| auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I]); |
| if (!Cmd) |
| continue; |
| if (OutputSection *Sec = Cmd->Sec) { |
| Flags = Sec->Flags; |
| continue; |
| } |
| |
| if (isAllSectionDescription(*Cmd)) |
| continue; |
| |
| auto *OutSec = make<OutputSection>(Cmd->Name, SHT_PROGBITS, Flags); |
| OutSec->SectionIndex = I; |
| Cmd->Sec = OutSec; |
| SecToCommand[OutSec] = Cmd; |
| } |
| } |
| |
| void LinkerScript::adjustSectionsAfterSorting() { |
| // Try and find an appropriate memory region to assign offsets in. |
| for (BaseCommand *Base : Opt.Commands) { |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) { |
| Cmd->MemRegion = findMemoryRegion(Cmd); |
| // Handle align (e.g. ".foo : ALIGN(16) { ... }"). |
| if (Cmd->AlignExpr) |
| Cmd->Sec->updateAlignment(Cmd->AlignExpr().getValue()); |
| } |
| } |
| |
| // If output section command doesn't specify any segments, |
| // and we haven't previously assigned any section to segment, |
| // then we simply assign section to the very first load segment. |
| // Below is an example of such linker script: |
| // PHDRS { seg PT_LOAD; } |
| // SECTIONS { .aaa : { *(.aaa) } } |
| std::vector<StringRef> DefPhdrs; |
| auto FirstPtLoad = |
| std::find_if(Opt.PhdrsCommands.begin(), Opt.PhdrsCommands.end(), |
| [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; }); |
| if (FirstPtLoad != Opt.PhdrsCommands.end()) |
| DefPhdrs.push_back(FirstPtLoad->Name); |
| |
| // Walk the commands and propagate the program headers to commands that don't |
| // explicitly specify them. |
| for (BaseCommand *Base : Opt.Commands) { |
| auto *Cmd = dyn_cast<OutputSectionCommand>(Base); |
| if (!Cmd) |
| continue; |
| |
| if (Cmd->Phdrs.empty()) { |
| OutputSection *Sec = Cmd->Sec; |
| // To match the bfd linker script behaviour, only propagate program |
| // headers to sections that are allocated. |
| if (Sec && (Sec->Flags & SHF_ALLOC)) |
| Cmd->Phdrs = DefPhdrs; |
| } else { |
| DefPhdrs = Cmd->Phdrs; |
| } |
| } |
| |
| removeEmptyCommands(); |
| } |
| |
| void LinkerScript::processNonSectionCommands() { |
| for (BaseCommand *Base : Opt.Commands) { |
| if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) |
| assignSymbol(Cmd, false); |
| else if (auto *Cmd = dyn_cast<AssertCommand>(Base)) |
| Cmd->Expression(); |
| } |
| } |
| |
| void LinkerScript::allocateHeaders(std::vector<PhdrEntry> &Phdrs) { |
| uint64_t Min = std::numeric_limits<uint64_t>::max(); |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Flags & SHF_ALLOC) |
| Min = std::min<uint64_t>(Min, Sec->Addr); |
| } |
| |
| auto FirstPTLoad = llvm::find_if( |
| Phdrs, [](const PhdrEntry &E) { return E.p_type == PT_LOAD; }); |
| if (FirstPTLoad == Phdrs.end()) |
| return; |
| |
| uint64_t HeaderSize = getHeaderSize(); |
| if (HeaderSize <= Min || Script->hasPhdrsCommands()) { |
| Min = alignDown(Min - HeaderSize, Config->MaxPageSize); |
| Out::ElfHeader->Addr = Min; |
| Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; |
| return; |
| } |
| |
| assert(FirstPTLoad->First == Out::ElfHeader); |
| OutputSection *ActualFirst = nullptr; |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->FirstInPtLoad == Out::ElfHeader) { |
| ActualFirst = Sec; |
| break; |
| } |
| } |
| if (ActualFirst) { |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->FirstInPtLoad == Out::ElfHeader) |
| Sec->FirstInPtLoad = ActualFirst; |
| } |
| FirstPTLoad->First = ActualFirst; |
| } else { |
| Phdrs.erase(FirstPTLoad); |
| } |
| |
| auto PhdrI = llvm::find_if( |
| Phdrs, [](const PhdrEntry &E) { return E.p_type == PT_PHDR; }); |
| if (PhdrI != Phdrs.end()) |
| Phdrs.erase(PhdrI); |
| } |
| |
| LinkerScript::AddressState::AddressState(const ScriptConfiguration &Opt) { |
| for (auto &MRI : Opt.MemoryRegions) { |
| const MemoryRegion *MR = &MRI.second; |
| MemRegionOffset[MR] = MR->Origin; |
| } |
| } |
| |
| void LinkerScript::assignAddresses() { |
| // Assign addresses as instructed by linker script SECTIONS sub-commands. |
| Dot = 0; |
| auto State = make_unique<AddressState>(Opt); |
| // CurAddressState captures the local AddressState and makes it accessible |
| // deliberately. This is needed as there are some cases where we cannot just |
| // thread the current state through to a lambda function created by the |
| // script parser. |
| CurAddressState = State.get(); |
| ErrorOnMissingSection = true; |
| switchTo(Aether); |
| |
| for (BaseCommand *Base : Opt.Commands) { |
| if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { |
| assignSymbol(Cmd, false); |
| continue; |
| } |
| |
| if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { |
| Cmd->Expression(); |
| continue; |
| } |
| |
| auto *Cmd = cast<OutputSectionCommand>(Base); |
| assignOffsets(Cmd); |
| } |
| CurAddressState = nullptr; |
| } |
| |
| // Creates program headers as instructed by PHDRS linker script command. |
| std::vector<PhdrEntry> LinkerScript::createPhdrs() { |
| std::vector<PhdrEntry> Ret; |
| |
| // Process PHDRS and FILEHDR keywords because they are not |
| // real output sections and cannot be added in the following loop. |
| for (const PhdrsCommand &Cmd : Opt.PhdrsCommands) { |
| Ret.emplace_back(Cmd.Type, Cmd.Flags == UINT_MAX ? PF_R : Cmd.Flags); |
| PhdrEntry &Phdr = Ret.back(); |
| |
| if (Cmd.HasFilehdr) |
| Phdr.add(Out::ElfHeader); |
| if (Cmd.HasPhdrs) |
| Phdr.add(Out::ProgramHeaders); |
| |
| if (Cmd.LMAExpr) { |
| Phdr.p_paddr = Cmd.LMAExpr().getValue(); |
| Phdr.HasLMA = true; |
| } |
| } |
| |
| // Add output sections to program headers. |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| // Assign headers specified by linker script |
| for (size_t Id : getPhdrIndices(Cmd)) { |
| OutputSection *Sec = Cmd->Sec; |
| Ret[Id].add(Sec); |
| if (Opt.PhdrsCommands[Id].Flags == UINT_MAX) |
| Ret[Id].p_flags |= Sec->getPhdrFlags(); |
| } |
| } |
| return Ret; |
| } |
| |
| bool LinkerScript::ignoreInterpSection() { |
| // Ignore .interp section in case we have PHDRS specification |
| // and PT_INTERP isn't listed. |
| if (Opt.PhdrsCommands.empty()) |
| return false; |
| for (PhdrsCommand &Cmd : Opt.PhdrsCommands) |
| if (Cmd.Type == PT_INTERP) |
| return false; |
| return true; |
| } |
| |
| OutputSectionCommand *LinkerScript::getCmd(OutputSection *Sec) const { |
| auto I = SecToCommand.find(Sec); |
| if (I == SecToCommand.end()) |
| return nullptr; |
| return I->second; |
| } |
| |
| void OutputSectionCommand::sort(std::function<int(InputSectionBase *S)> Order) { |
| typedef std::pair<unsigned, InputSection *> Pair; |
| auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; |
| |
| std::vector<Pair> V; |
| assert(Commands.size() == 1); |
| auto *ISD = cast<InputSectionDescription>(Commands[0]); |
| for (InputSection *S : ISD->Sections) |
| V.push_back({Order(S), S}); |
| std::stable_sort(V.begin(), V.end(), Comp); |
| ISD->Sections.clear(); |
| for (Pair &P : V) |
| ISD->Sections.push_back(P.second); |
| } |
| |
| // Returns true if S matches /Filename.?\.o$/. |
| static bool isCrtBeginEnd(StringRef S, StringRef Filename) { |
| if (!S.endswith(".o")) |
| return false; |
| S = S.drop_back(2); |
| if (S.endswith(Filename)) |
| return true; |
| return !S.empty() && S.drop_back().endswith(Filename); |
| } |
| |
| static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } |
| static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } |
| |
| // .ctors and .dtors are sorted by this priority from highest to lowest. |
| // |
| // 1. The section was contained in crtbegin (crtbegin contains |
| // some sentinel value in its .ctors and .dtors so that the runtime |
| // can find the beginning of the sections.) |
| // |
| // 2. The section has an optional priority value in the form of ".ctors.N" |
| // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, |
| // they are compared as string rather than number. |
| // |
| // 3. The section is just ".ctors" or ".dtors". |
| // |
| // 4. The section was contained in crtend, which contains an end marker. |
| // |
| // In an ideal world, we don't need this function because .init_array and |
| // .ctors are duplicate features (and .init_array is newer.) However, there |
| // are too many real-world use cases of .ctors, so we had no choice to |
| // support that with this rather ad-hoc semantics. |
| static bool compCtors(const InputSection *A, const InputSection *B) { |
| bool BeginA = isCrtbegin(A->File->getName()); |
| bool BeginB = isCrtbegin(B->File->getName()); |
| if (BeginA != BeginB) |
| return BeginA; |
| bool EndA = isCrtend(A->File->getName()); |
| bool EndB = isCrtend(B->File->getName()); |
| if (EndA != EndB) |
| return EndB; |
| StringRef X = A->Name; |
| StringRef Y = B->Name; |
| assert(X.startswith(".ctors") || X.startswith(".dtors")); |
| assert(Y.startswith(".ctors") || Y.startswith(".dtors")); |
| X = X.substr(6); |
| Y = Y.substr(6); |
| if (X.empty() && Y.empty()) |
| return false; |
| return X < Y; |
| } |
| |
| // Sorts input sections by the special rules for .ctors and .dtors. |
| // Unfortunately, the rules are different from the one for .{init,fini}_array. |
| // Read the comment above. |
| void OutputSectionCommand::sortCtorsDtors() { |
| assert(Commands.size() == 1); |
| auto *ISD = cast<InputSectionDescription>(Commands[0]); |
| std::stable_sort(ISD->Sections.begin(), ISD->Sections.end(), compCtors); |
| } |
| |
| // Sorts input sections by section name suffixes, so that .foo.N comes |
| // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. |
| // We want to keep the original order if the priorities are the same |
| // because the compiler keeps the original initialization order in a |
| // translation unit and we need to respect that. |
| // For more detail, read the section of the GCC's manual about init_priority. |
| void OutputSectionCommand::sortInitFini() { |
| // Sort sections by priority. |
| sort([](InputSectionBase *S) { return getPriority(S->Name); }); |
| } |
| |
| uint32_t OutputSectionCommand::getFiller() { |
| if (Filler) |
| return *Filler; |
| if (Sec->Flags & SHF_EXECINSTR) |
| return Target->TrapInstr; |
| return 0; |
| } |
| |
| static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) { |
| if (Size == 1) |
| *Buf = Data; |
| else if (Size == 2) |
| write16(Buf, Data, Config->Endianness); |
| else if (Size == 4) |
| write32(Buf, Data, Config->Endianness); |
| else if (Size == 8) |
| write64(Buf, Data, Config->Endianness); |
| else |
| llvm_unreachable("unsupported Size argument"); |
| } |
| |
| static bool compareByFilePosition(InputSection *A, InputSection *B) { |
| // Synthetic doesn't have link order dependecy, stable_sort will keep it last |
| if (A->kind() == InputSectionBase::Synthetic || |
| B->kind() == InputSectionBase::Synthetic) |
| return false; |
| InputSection *LA = A->getLinkOrderDep(); |
| InputSection *LB = B->getLinkOrderDep(); |
| OutputSection *AOut = LA->getParent(); |
| OutputSection *BOut = LB->getParent(); |
| if (AOut != BOut) |
| return AOut->SectionIndex < BOut->SectionIndex; |
| return LA->OutSecOff < LB->OutSecOff; |
| } |
| |
| template <class ELFT> |
| static void finalizeShtGroup(OutputSection *OS, |
| ArrayRef<InputSection *> Sections) { |
| assert(Config->Relocatable && Sections.size() == 1); |
| |
| // sh_link field for SHT_GROUP sections should contain the section index of |
| // the symbol table. |
| OS->Link = InX::SymTab->getParent()->SectionIndex; |
| |
| // sh_info then contain index of an entry in symbol table section which |
| // provides signature of the section group. |
| elf::ObjectFile<ELFT> *Obj = Sections[0]->getFile<ELFT>(); |
| ArrayRef<SymbolBody *> Symbols = Obj->getSymbols(); |
| OS->Info = InX::SymTab->getSymbolIndex(Symbols[Sections[0]->Info - 1]); |
| } |
| |
| template <class ELFT> void OutputSectionCommand::finalize() { |
| // Link order may be distributed across several InputSectionDescriptions |
| // but sort must consider them all at once. |
| std::vector<InputSection **> ScriptSections; |
| std::vector<InputSection *> Sections; |
| for (BaseCommand *Base : Commands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) |
| for (InputSection *&IS : ISD->Sections) { |
| ScriptSections.push_back(&IS); |
| Sections.push_back(IS); |
| } |
| |
| if ((Sec->Flags & SHF_LINK_ORDER)) { |
| std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); |
| for (int I = 0, N = Sections.size(); I < N; ++I) |
| *ScriptSections[I] = Sections[I]; |
| |
| // We must preserve the link order dependency of sections with the |
| // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We |
| // need to translate the InputSection sh_link to the OutputSection sh_link, |
| // all InputSections in the OutputSection have the same dependency. |
| if (auto *D = Sections.front()->getLinkOrderDep()) |
| Sec->Link = D->getParent()->SectionIndex; |
| } |
| |
| uint32_t Type = Sec->Type; |
| if (Type == SHT_GROUP) { |
| finalizeShtGroup<ELFT>(Sec, Sections); |
| return; |
| } |
| |
| if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL)) |
| return; |
| |
| InputSection *First = Sections[0]; |
| if (isa<SyntheticSection>(First)) |
| return; |
| |
| Sec->Link = InX::SymTab->getParent()->SectionIndex; |
| // sh_info for SHT_REL[A] sections should contain the section header index of |
| // the section to which the relocation applies. |
| InputSectionBase *S = First->getRelocatedSection(); |
| Sec->Info = S->getOutputSection()->SectionIndex; |
| Sec->Flags |= SHF_INFO_LINK; |
| } |
| |
| // Compress section contents if this section contains debug info. |
| template <class ELFT> void OutputSectionCommand::maybeCompress() { |
| typedef typename ELFT::Chdr Elf_Chdr; |
| |
| // Compress only DWARF debug sections. |
| if (!Config->CompressDebugSections || (Sec->Flags & SHF_ALLOC) || |
| !Name.startswith(".debug_")) |
| return; |
| |
| // Create a section header. |
| Sec->ZDebugHeader.resize(sizeof(Elf_Chdr)); |
| auto *Hdr = reinterpret_cast<Elf_Chdr *>(Sec->ZDebugHeader.data()); |
| Hdr->ch_type = ELFCOMPRESS_ZLIB; |
| Hdr->ch_size = Sec->Size; |
| Hdr->ch_addralign = Sec->Alignment; |
| |
| // Write section contents to a temporary buffer and compress it. |
| std::vector<uint8_t> Buf(Sec->Size); |
| writeTo<ELFT>(Buf.data()); |
| if (Error E = zlib::compress(toStringRef(Buf), Sec->CompressedData)) |
| fatal("compress failed: " + llvm::toString(std::move(E))); |
| |
| // Update section headers. |
| Sec->Size = sizeof(Elf_Chdr) + Sec->CompressedData.size(); |
| Sec->Flags |= SHF_COMPRESSED; |
| } |
| |
| template <class ELFT> void OutputSectionCommand::writeTo(uint8_t *Buf) { |
| if (Sec->Type == SHT_NOBITS) |
| return; |
| |
| Sec->Loc = Buf; |
| |
| // If -compress-debug-section is specified and if this is a debug seciton, |
| // we've already compressed section contents. If that's the case, |
| // just write it down. |
| if (!Sec->CompressedData.empty()) { |
| memcpy(Buf, Sec->ZDebugHeader.data(), Sec->ZDebugHeader.size()); |
| memcpy(Buf + Sec->ZDebugHeader.size(), Sec->CompressedData.data(), |
| Sec->CompressedData.size()); |
| return; |
| } |
| |
| // Write leading padding. |
| std::vector<InputSection *> Sections; |
| for (BaseCommand *Cmd : Commands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Cmd)) |
| for (InputSection *IS : ISD->Sections) |
| if (IS->Live) |
| Sections.push_back(IS); |
| uint32_t Filler = getFiller(); |
| if (Filler) |
| fill(Buf, Sections.empty() ? Sec->Size : Sections[0]->OutSecOff, Filler); |
| |
| parallelForEachN(0, Sections.size(), [=](size_t I) { |
| InputSection *IS = Sections[I]; |
| IS->writeTo<ELFT>(Buf); |
| |
| // Fill gaps between sections. |
| if (Filler) { |
| uint8_t *Start = Buf + IS->OutSecOff + IS->getSize(); |
| uint8_t *End; |
| if (I + 1 == Sections.size()) |
| End = Buf + Sec->Size; |
| else |
| End = Buf + Sections[I + 1]->OutSecOff; |
| fill(Start, End - Start, Filler); |
| } |
| }); |
| |
| // Linker scripts may have BYTE()-family commands with which you |
| // can write arbitrary bytes to the output. Process them if any. |
| for (BaseCommand *Base : Commands) |
| if (auto *Data = dyn_cast<BytesDataCommand>(Base)) |
| writeInt(Buf + Data->Offset, Data->Expression().getValue(), Data->Size); |
| } |
| |
| ExprValue LinkerScript::getSymbolValue(const Twine &Loc, StringRef S) { |
| if (S == ".") |
| return {CurAddressState->OutSec, Dot - CurAddressState->OutSec->Addr, Loc}; |
| if (SymbolBody *B = findSymbol(S)) { |
| if (auto *D = dyn_cast<DefinedRegular>(B)) |
| return {D->Section, D->Value, Loc}; |
| if (auto *C = dyn_cast<DefinedCommon>(B)) |
| return {InX::Common, C->Offset, Loc}; |
| } |
| error(Loc + ": symbol not found: " + S); |
| return 0; |
| } |
| |
| bool LinkerScript::isDefined(StringRef S) { return findSymbol(S) != nullptr; } |
| |
| static const size_t NoPhdr = -1; |
| |
| // Returns indices of ELF headers containing specific section. Each index is a |
| // zero based number of ELF header listed within PHDRS {} script block. |
| std::vector<size_t> LinkerScript::getPhdrIndices(OutputSectionCommand *Cmd) { |
| std::vector<size_t> Ret; |
| for (StringRef PhdrName : Cmd->Phdrs) { |
| size_t Index = getPhdrIndex(Cmd->Location, PhdrName); |
| if (Index != NoPhdr) |
| Ret.push_back(Index); |
| } |
| return Ret; |
| } |
| |
| // Returns the index of the segment named PhdrName if found otherwise |
| // NoPhdr. When not found, if PhdrName is not the special case value 'NONE' |
| // (which can be used to explicitly specify that a section isn't assigned to a |
| // segment) then error. |
| size_t LinkerScript::getPhdrIndex(const Twine &Loc, StringRef PhdrName) { |
| size_t I = 0; |
| for (PhdrsCommand &Cmd : Opt.PhdrsCommands) { |
| if (Cmd.Name == PhdrName) |
| return I; |
| ++I; |
| } |
| if (PhdrName != "NONE") |
| error(Loc + ": section header '" + PhdrName + "' is not listed in PHDRS"); |
| return NoPhdr; |
| } |
| |
| template void OutputSectionCommand::writeTo<ELF32LE>(uint8_t *Buf); |
| template void OutputSectionCommand::writeTo<ELF32BE>(uint8_t *Buf); |
| template void OutputSectionCommand::writeTo<ELF64LE>(uint8_t *Buf); |
| template void OutputSectionCommand::writeTo<ELF64BE>(uint8_t *Buf); |
| |
| template void OutputSectionCommand::maybeCompress<ELF32LE>(); |
| template void OutputSectionCommand::maybeCompress<ELF32BE>(); |
| template void OutputSectionCommand::maybeCompress<ELF64LE>(); |
| template void OutputSectionCommand::maybeCompress<ELF64BE>(); |
| |
| template void OutputSectionCommand::finalize<ELF32LE>(); |
| template void OutputSectionCommand::finalize<ELF32BE>(); |
| template void OutputSectionCommand::finalize<ELF64LE>(); |
| template void OutputSectionCommand::finalize<ELF64BE>(); |