| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Error.h" |
| #include "InputSection.h" |
| #include "LinkerScript.h" |
| #include "Memory.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TarWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::sys::fs; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| TarWriter *elf::Tar; |
| |
| InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} |
| |
| namespace { |
| // In ELF object file all section addresses are zero. If we have multiple |
| // .text sections (when using -ffunction-section or comdat group) then |
| // LLVM DWARF parser will not be able to parse .debug_line correctly, unless |
| // we assign each section some unique address. This callback method assigns |
| // each section an address equal to its offset in ELF object file. |
| class ObjectInfo : public LoadedObjectInfoHelper<ObjectInfo> { |
| public: |
| uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { |
| return static_cast<const ELFSectionRef &>(Sec).getOffset(); |
| } |
| }; |
| } |
| |
| Optional<MemoryBufferRef> elf::readFile(StringRef Path) { |
| log(Path); |
| auto MBOrErr = MemoryBuffer::getFile(Path); |
| if (auto EC = MBOrErr.getError()) { |
| error("cannot open " + Path + ": " + EC.message()); |
| return None; |
| } |
| |
| std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; |
| MemoryBufferRef MBRef = MB->getMemBufferRef(); |
| make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership |
| |
| if (Tar) |
| Tar->append(relativeToRoot(Path), MBRef.getBuffer()); |
| return MBRef; |
| } |
| |
| template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { |
| std::unique_ptr<object::ObjectFile> Obj = |
| check(object::ObjectFile::createObjectFile(this->MB), toString(this)); |
| |
| ObjectInfo ObjInfo; |
| DWARFContextInMemory Dwarf(*Obj, &ObjInfo); |
| DwarfLine.reset(new DWARFDebugLine); |
| DWARFDataExtractor LineData(Dwarf.getLineSection(), Config->IsLE, |
| Config->Wordsize); |
| |
| // The second parameter is offset in .debug_line section |
| // for compilation unit (CU) of interest. We have only one |
| // CU (object file), so offset is always 0. |
| DwarfLine->getOrParseLineTable(LineData, 0); |
| } |
| |
| // Returns source line information for a given offset |
| // using DWARF debug info. |
| template <class ELFT> |
| Optional<DILineInfo> elf::ObjectFile<ELFT>::getDILineInfo(InputSectionBase *S, |
| uint64_t Offset) { |
| llvm::call_once(InitDwarfLine, [this]() { initializeDwarfLine(); }); |
| |
| // The offset to CU is 0. |
| const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); |
| if (!Tbl) |
| return None; |
| |
| // Use fake address calcuated by adding section file offset and offset in |
| // section. See comments for ObjectInfo class. |
| DILineInfo Info; |
| Tbl->getFileLineInfoForAddress( |
| S->getOffsetInFile() + Offset, nullptr, |
| DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); |
| if (Info.Line == 0) |
| return None; |
| return Info; |
| } |
| |
| // Returns source line information for a given offset |
| // using DWARF debug info. |
| template <class ELFT> |
| std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S, |
| uint64_t Offset) { |
| if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) |
| return Info->FileName + ":" + std::to_string(Info->Line); |
| return ""; |
| } |
| |
| // Returns "<internal>", "foo.a(bar.o)" or "baz.o". |
| std::string lld::toString(const InputFile *F) { |
| if (!F) |
| return "<internal>"; |
| |
| if (F->ToStringCache.empty()) { |
| if (F->ArchiveName.empty()) |
| F->ToStringCache = F->getName(); |
| else |
| F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); |
| } |
| return F->ToStringCache; |
| } |
| |
| template <class ELFT> |
| ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { |
| if (ELFT::TargetEndianness == support::little) |
| EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; |
| else |
| EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; |
| |
| EMachine = getObj().getHeader()->e_machine; |
| OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; |
| } |
| |
| template <class ELFT> |
| typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { |
| return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); |
| } |
| |
| template <class ELFT> |
| uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { |
| return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX), |
| toString(this)); |
| } |
| |
| template <class ELFT> |
| void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, |
| const Elf_Shdr *Symtab) { |
| FirstNonLocal = Symtab->sh_info; |
| Symbols = check(getObj().symbols(Symtab), toString(this)); |
| if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) |
| fatal(toString(this) + ": invalid sh_info in symbol table"); |
| |
| StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), |
| toString(this)); |
| } |
| |
| template <class ELFT> |
| elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M, StringRef ArchiveName) |
| : ELFFileBase<ELFT>(Base::ObjectKind, M) { |
| this->ArchiveName = ArchiveName; |
| } |
| |
| template <class ELFT> |
| ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { |
| if (this->SymbolBodies.empty()) |
| return this->SymbolBodies; |
| return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); |
| } |
| |
| template <class ELFT> |
| ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { |
| if (this->SymbolBodies.empty()) |
| return this->SymbolBodies; |
| return makeArrayRef(this->SymbolBodies).slice(1); |
| } |
| |
| template <class ELFT> |
| void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { |
| // Read section and symbol tables. |
| initializeSections(ComdatGroups); |
| initializeSymbols(); |
| } |
| |
| // Sections with SHT_GROUP and comdat bits define comdat section groups. |
| // They are identified and deduplicated by group name. This function |
| // returns a group name. |
| template <class ELFT> |
| StringRef |
| elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, |
| const Elf_Shdr &Sec) { |
| // Group signatures are stored as symbol names in object files. |
| // sh_info contains a symbol index, so we fetch a symbol and read its name. |
| if (this->Symbols.empty()) |
| this->initSymtab( |
| Sections, |
| check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); |
| |
| const Elf_Sym *Sym = check( |
| object::getSymbol<ELFT>(this->Symbols, Sec.sh_info), toString(this)); |
| StringRef Signature = check(Sym->getName(this->StringTable), toString(this)); |
| |
| // As a special case, if a symbol is a section symbol and has no name, |
| // we use a section name as a signature. |
| // |
| // Such SHT_GROUP sections are invalid from the perspective of the ELF |
| // standard, but GNU gold 1.14 (the neweset version as of July 2017) or |
| // older produce such sections as outputs for the -r option, so we need |
| // a bug-compatibility. |
| if (Signature.empty() && Sym->getType() == STT_SECTION) |
| return getSectionName(Sec); |
| return Signature; |
| } |
| |
| template <class ELFT> |
| ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> |
| elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { |
| const ELFFile<ELFT> &Obj = this->getObj(); |
| ArrayRef<Elf_Word> Entries = check( |
| Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); |
| if (Entries.empty() || Entries[0] != GRP_COMDAT) |
| fatal(toString(this) + ": unsupported SHT_GROUP format"); |
| return Entries.slice(1); |
| } |
| |
| template <class ELFT> |
| bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { |
| // We don't merge sections if -O0 (default is -O1). This makes sometimes |
| // the linker significantly faster, although the output will be bigger. |
| if (Config->Optimize == 0) |
| return false; |
| |
| // Do not merge sections if generating a relocatable object. It makes |
| // the code simpler because we do not need to update relocation addends |
| // to reflect changes introduced by merging. Instead of that we write |
| // such "merge" sections into separate OutputSections and keep SHF_MERGE |
| // / SHF_STRINGS flags and sh_entsize value to be able to perform merging |
| // later during a final linking. |
| if (Config->Relocatable) |
| return false; |
| |
| // A mergeable section with size 0 is useless because they don't have |
| // any data to merge. A mergeable string section with size 0 can be |
| // argued as invalid because it doesn't end with a null character. |
| // We'll avoid a mess by handling them as if they were non-mergeable. |
| if (Sec.sh_size == 0) |
| return false; |
| |
| // Check for sh_entsize. The ELF spec is not clear about the zero |
| // sh_entsize. It says that "the member [sh_entsize] contains 0 if |
| // the section does not hold a table of fixed-size entries". We know |
| // that Rust 1.13 produces a string mergeable section with a zero |
| // sh_entsize. Here we just accept it rather than being picky about it. |
| uint64_t EntSize = Sec.sh_entsize; |
| if (EntSize == 0) |
| return false; |
| if (Sec.sh_size % EntSize) |
| fatal(toString(this) + |
| ": SHF_MERGE section size must be a multiple of sh_entsize"); |
| |
| uint64_t Flags = Sec.sh_flags; |
| if (!(Flags & SHF_MERGE)) |
| return false; |
| if (Flags & SHF_WRITE) |
| fatal(toString(this) + ": writable SHF_MERGE section is not supported"); |
| |
| // Don't try to merge if the alignment is larger than the sh_entsize and this |
| // is not SHF_STRINGS. |
| // |
| // Since this is not a SHF_STRINGS, we would need to pad after every entity. |
| // It would be equivalent for the producer of the .o to just set a larger |
| // sh_entsize. |
| if (Flags & SHF_STRINGS) |
| return true; |
| |
| return Sec.sh_addralign <= EntSize; |
| } |
| |
| template <class ELFT> |
| void elf::ObjectFile<ELFT>::initializeSections( |
| DenseSet<CachedHashStringRef> &ComdatGroups) { |
| const ELFFile<ELFT> &Obj = this->getObj(); |
| |
| ArrayRef<Elf_Shdr> ObjSections = |
| check(this->getObj().sections(), toString(this)); |
| uint64_t Size = ObjSections.size(); |
| this->Sections.resize(Size); |
| this->SectionStringTable = |
| check(Obj.getSectionStringTable(ObjSections), toString(this)); |
| |
| for (size_t I = 0, E = ObjSections.size(); I < E; I++) { |
| if (this->Sections[I] == &InputSection::Discarded) |
| continue; |
| const Elf_Shdr &Sec = ObjSections[I]; |
| |
| // SHF_EXCLUDE'ed sections are discarded by the linker. However, |
| // if -r is given, we'll let the final link discard such sections. |
| // This is compatible with GNU. |
| if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { |
| this->Sections[I] = &InputSection::Discarded; |
| continue; |
| } |
| |
| switch (Sec.sh_type) { |
| case SHT_GROUP: { |
| // De-duplicate section groups by their signatures. |
| StringRef Signature = getShtGroupSignature(ObjSections, Sec); |
| bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; |
| this->Sections[I] = &InputSection::Discarded; |
| |
| // If it is a new section group, we want to keep group members. |
| // Group leader sections, which contain indices of group members, are |
| // discarded because they are useless beyond this point. The only |
| // exception is the -r option because in order to produce re-linkable |
| // object files, we want to pass through basically everything. |
| if (IsNew) { |
| if (Config->Relocatable) |
| this->Sections[I] = createInputSection(Sec); |
| continue; |
| } |
| |
| // Otherwise, discard group members. |
| for (uint32_t SecIndex : getShtGroupEntries(Sec)) { |
| if (SecIndex >= Size) |
| fatal(toString(this) + |
| ": invalid section index in group: " + Twine(SecIndex)); |
| this->Sections[SecIndex] = &InputSection::Discarded; |
| } |
| break; |
| } |
| case SHT_SYMTAB: |
| this->initSymtab(ObjSections, &Sec); |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = |
| check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); |
| break; |
| case SHT_STRTAB: |
| case SHT_NULL: |
| break; |
| default: |
| this->Sections[I] = createInputSection(Sec); |
| } |
| |
| // .ARM.exidx sections have a reverse dependency on the InputSection they |
| // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. |
| if (Sec.sh_flags & SHF_LINK_ORDER) { |
| if (Sec.sh_link >= this->Sections.size()) |
| fatal(toString(this) + ": invalid sh_link index: " + |
| Twine(Sec.sh_link)); |
| this->Sections[Sec.sh_link]->DependentSections.push_back( |
| this->Sections[I]); |
| } |
| } |
| } |
| |
| template <class ELFT> |
| InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { |
| uint32_t Idx = Sec.sh_info; |
| if (Idx >= this->Sections.size()) |
| fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); |
| InputSectionBase *Target = this->Sections[Idx]; |
| |
| // Strictly speaking, a relocation section must be included in the |
| // group of the section it relocates. However, LLVM 3.3 and earlier |
| // would fail to do so, so we gracefully handle that case. |
| if (Target == &InputSection::Discarded) |
| return nullptr; |
| |
| if (!Target) |
| fatal(toString(this) + ": unsupported relocation reference"); |
| return Target; |
| } |
| |
| // Create a regular InputSection class that has the same contents |
| // as a given section. |
| InputSectionBase *toRegularSection(MergeInputSection *Sec) { |
| auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, |
| Sec->Data, Sec->Name); |
| Ret->File = Sec->File; |
| return Ret; |
| } |
| |
| template <class ELFT> |
| InputSectionBase * |
| elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { |
| StringRef Name = getSectionName(Sec); |
| |
| switch (Sec.sh_type) { |
| case SHT_ARM_ATTRIBUTES: |
| // FIXME: ARM meta-data section. Retain the first attribute section |
| // we see. The eglibc ARM dynamic loaders require the presence of an |
| // attribute section for dlopen to work. |
| // In a full implementation we would merge all attribute sections. |
| if (InX::ARMAttributes == nullptr) { |
| InX::ARMAttributes = make<InputSection>(this, &Sec, Name); |
| return InX::ARMAttributes; |
| } |
| return &InputSection::Discarded; |
| case SHT_RELA: |
| case SHT_REL: { |
| // Find the relocation target section and associate this |
| // section with it. Target can be discarded, for example |
| // if it is a duplicated member of SHT_GROUP section, we |
| // do not create or proccess relocatable sections then. |
| InputSectionBase *Target = getRelocTarget(Sec); |
| if (!Target) |
| return nullptr; |
| |
| // This section contains relocation information. |
| // If -r is given, we do not interpret or apply relocation |
| // but just copy relocation sections to output. |
| if (Config->Relocatable) |
| return make<InputSection>(this, &Sec, Name); |
| |
| if (Target->FirstRelocation) |
| fatal(toString(this) + |
| ": multiple relocation sections to one section are not supported"); |
| |
| // Mergeable sections with relocations are tricky because relocations |
| // need to be taken into account when comparing section contents for |
| // merging. It's not worth supporting such mergeable sections because |
| // they are rare and it'd complicates the internal design (we usually |
| // have to determine if two sections are mergeable early in the link |
| // process much before applying relocations). We simply handle mergeable |
| // sections with relocations as non-mergeable. |
| if (auto *MS = dyn_cast<MergeInputSection>(Target)) { |
| Target = toRegularSection(MS); |
| this->Sections[Sec.sh_info] = Target; |
| } |
| |
| size_t NumRelocations; |
| if (Sec.sh_type == SHT_RELA) { |
| ArrayRef<Elf_Rela> Rels = |
| check(this->getObj().relas(&Sec), toString(this)); |
| Target->FirstRelocation = Rels.begin(); |
| NumRelocations = Rels.size(); |
| Target->AreRelocsRela = true; |
| } else { |
| ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); |
| Target->FirstRelocation = Rels.begin(); |
| NumRelocations = Rels.size(); |
| Target->AreRelocsRela = false; |
| } |
| assert(isUInt<31>(NumRelocations)); |
| Target->NumRelocations = NumRelocations; |
| |
| // Relocation sections processed by the linker are usually removed |
| // from the output, so returning `nullptr` for the normal case. |
| // However, if -emit-relocs is given, we need to leave them in the output. |
| // (Some post link analysis tools need this information.) |
| if (Config->EmitRelocs) { |
| InputSection *RelocSec = make<InputSection>(this, &Sec, Name); |
| // We will not emit relocation section if target was discarded. |
| Target->DependentSections.push_back(RelocSec); |
| return RelocSec; |
| } |
| return nullptr; |
| } |
| } |
| |
| // The GNU linker uses .note.GNU-stack section as a marker indicating |
| // that the code in the object file does not expect that the stack is |
| // executable (in terms of NX bit). If all input files have the marker, |
| // the GNU linker adds a PT_GNU_STACK segment to tells the loader to |
| // make the stack non-executable. Most object files have this section as |
| // of 2017. |
| // |
| // But making the stack non-executable is a norm today for security |
| // reasons. Failure to do so may result in a serious security issue. |
| // Therefore, we make LLD always add PT_GNU_STACK unless it is |
| // explicitly told to do otherwise (by -z execstack). Because the stack |
| // executable-ness is controlled solely by command line options, |
| // .note.GNU-stack sections are simply ignored. |
| if (Name == ".note.GNU-stack") |
| return &InputSection::Discarded; |
| |
| // Split stacks is a feature to support a discontiguous stack. At least |
| // as of 2017, it seems that the feature is not being used widely. |
| // Only GNU gold supports that. We don't. For the details about that, |
| // see https://gcc.gnu.org/wiki/SplitStacks |
| if (Name == ".note.GNU-split-stack") { |
| error(toString(this) + |
| ": object file compiled with -fsplit-stack is not supported"); |
| return &InputSection::Discarded; |
| } |
| |
| if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) |
| return &InputSection::Discarded; |
| |
| // If -gdb-index is given, LLD creates .gdb_index section, and that |
| // section serves the same purpose as .debug_gnu_pub{names,types} sections. |
| // If that's the case, we want to eliminate .debug_gnu_pub{names,types} |
| // because they are redundant and can waste large amount of disk space |
| // (for example, they are about 400 MiB in total for a clang debug build.) |
| if (Config->GdbIndex && |
| (Name == ".debug_gnu_pubnames" || Name == ".debug_gnu_pubtypes")) |
| return &InputSection::Discarded; |
| |
| // The linkonce feature is a sort of proto-comdat. Some glibc i386 object |
| // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce |
| // sections. Drop those sections to avoid duplicate symbol errors. |
| // FIXME: This is glibc PR20543, we should remove this hack once that has been |
| // fixed for a while. |
| if (Name.startswith(".gnu.linkonce.")) |
| return &InputSection::Discarded; |
| |
| // The linker merges EH (exception handling) frames and creates a |
| // .eh_frame_hdr section for runtime. So we handle them with a special |
| // class. For relocatable outputs, they are just passed through. |
| if (Name == ".eh_frame" && !Config->Relocatable) |
| return make<EhInputSection>(this, &Sec, Name); |
| |
| if (shouldMerge(Sec)) |
| return make<MergeInputSection>(this, &Sec, Name); |
| return make<InputSection>(this, &Sec, Name); |
| } |
| |
| template <class ELFT> |
| StringRef elf::ObjectFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { |
| return check(this->getObj().getSectionName(&Sec, SectionStringTable), |
| toString(this)); |
| } |
| |
| template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { |
| SymbolBodies.reserve(this->Symbols.size()); |
| for (const Elf_Sym &Sym : this->Symbols) |
| SymbolBodies.push_back(createSymbolBody(&Sym)); |
| } |
| |
| template <class ELFT> |
| InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { |
| uint32_t Index = this->getSectionIndex(Sym); |
| if (Index >= this->Sections.size()) |
| fatal(toString(this) + ": invalid section index: " + Twine(Index)); |
| InputSectionBase *S = this->Sections[Index]; |
| |
| // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could |
| // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be |
| // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. |
| // In this case it is fine for section to be null here as we do not |
| // allocate sections of these types. |
| if (!S) { |
| if (Index == 0 || Sym.getType() == STT_SECTION || |
| Sym.getType() == STT_NOTYPE) |
| return nullptr; |
| fatal(toString(this) + ": invalid section index: " + Twine(Index)); |
| } |
| |
| if (S == &InputSection::Discarded) |
| return S; |
| return S->Repl; |
| } |
| |
| template <class ELFT> |
| SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { |
| int Binding = Sym->getBinding(); |
| InputSectionBase *Sec = getSection(*Sym); |
| |
| uint8_t StOther = Sym->st_other; |
| uint8_t Type = Sym->getType(); |
| uint64_t Value = Sym->st_value; |
| uint64_t Size = Sym->st_size; |
| |
| if (Binding == STB_LOCAL) { |
| if (Sym->getType() == STT_FILE) |
| SourceFile = check(Sym->getName(this->StringTable), toString(this)); |
| |
| if (this->StringTable.size() <= Sym->st_name) |
| fatal(toString(this) + ": invalid symbol name offset"); |
| |
| StringRefZ Name = this->StringTable.data() + Sym->st_name; |
| if (Sym->st_shndx == SHN_UNDEF) |
| return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this); |
| |
| return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value, |
| Size, Sec, this); |
| } |
| |
| StringRef Name = check(Sym->getName(this->StringTable), toString(this)); |
| |
| switch (Sym->st_shndx) { |
| case SHN_UNDEF: |
| return elf::Symtab<ELFT>::X |
| ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, |
| /*CanOmitFromDynSym=*/false, this) |
| ->body(); |
| case SHN_COMMON: |
| if (Value == 0 || Value >= UINT32_MAX) |
| fatal(toString(this) + ": common symbol '" + Name + |
| "' has invalid alignment: " + Twine(Value)); |
| return elf::Symtab<ELFT>::X |
| ->addCommon(Name, Size, Value, Binding, StOther, Type, this) |
| ->body(); |
| } |
| |
| switch (Binding) { |
| default: |
| fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); |
| case STB_GLOBAL: |
| case STB_WEAK: |
| case STB_GNU_UNIQUE: |
| if (Sec == &InputSection::Discarded) |
| return elf::Symtab<ELFT>::X |
| ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, |
| /*CanOmitFromDynSym=*/false, this) |
| ->body(); |
| return elf::Symtab<ELFT>::X |
| ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) |
| ->body(); |
| } |
| } |
| |
| ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) |
| : InputFile(ArchiveKind, File->getMemoryBufferRef()), |
| File(std::move(File)) {} |
| |
| template <class ELFT> void ArchiveFile::parse() { |
| Symbols.reserve(File->getNumberOfSymbols()); |
| for (const Archive::Symbol &Sym : File->symbols()) |
| Symbols.push_back(Symtab<ELFT>::X->addLazyArchive(this, Sym)); |
| } |
| |
| // Returns a buffer pointing to a member file containing a given symbol. |
| std::pair<MemoryBufferRef, uint64_t> |
| ArchiveFile::getMember(const Archive::Symbol *Sym) { |
| Archive::Child C = |
| check(Sym->getMember(), toString(this) + |
| ": could not get the member for symbol " + |
| Sym->getName()); |
| |
| if (!Seen.insert(C.getChildOffset()).second) |
| return {MemoryBufferRef(), 0}; |
| |
| MemoryBufferRef Ret = |
| check(C.getMemoryBufferRef(), |
| toString(this) + |
| ": could not get the buffer for the member defining symbol " + |
| Sym->getName()); |
| |
| if (C.getParent()->isThin() && Tar) |
| Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), |
| Ret.getBuffer()); |
| if (C.getParent()->isThin()) |
| return {Ret, 0}; |
| return {Ret, C.getChildOffset()}; |
| } |
| |
| template <class ELFT> |
| SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) |
| : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), |
| AsNeeded(Config->AsNeeded) {} |
| |
| template <class ELFT> |
| const typename ELFT::Shdr * |
| SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { |
| return check( |
| this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX), |
| toString(this)); |
| } |
| |
| // Partially parse the shared object file so that we can call |
| // getSoName on this object. |
| template <class ELFT> void SharedFile<ELFT>::parseSoName() { |
| const Elf_Shdr *DynamicSec = nullptr; |
| const ELFFile<ELFT> Obj = this->getObj(); |
| ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); |
| |
| // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. |
| for (const Elf_Shdr &Sec : Sections) { |
| switch (Sec.sh_type) { |
| default: |
| continue; |
| case SHT_DYNSYM: |
| this->initSymtab(Sections, &Sec); |
| break; |
| case SHT_DYNAMIC: |
| DynamicSec = &Sec; |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = |
| check(Obj.getSHNDXTable(Sec, Sections), toString(this)); |
| break; |
| case SHT_GNU_versym: |
| this->VersymSec = &Sec; |
| break; |
| case SHT_GNU_verdef: |
| this->VerdefSec = &Sec; |
| break; |
| } |
| } |
| |
| if (this->VersymSec && this->Symbols.empty()) |
| error("SHT_GNU_versym should be associated with symbol table"); |
| |
| // Search for a DT_SONAME tag to initialize this->SoName. |
| if (!DynamicSec) |
| return; |
| ArrayRef<Elf_Dyn> Arr = |
| check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), |
| toString(this)); |
| for (const Elf_Dyn &Dyn : Arr) { |
| if (Dyn.d_tag == DT_SONAME) { |
| uint64_t Val = Dyn.getVal(); |
| if (Val >= this->StringTable.size()) |
| fatal(toString(this) + ": invalid DT_SONAME entry"); |
| SoName = this->StringTable.data() + Val; |
| return; |
| } |
| } |
| } |
| |
| // Parse the version definitions in the object file if present. Returns a vector |
| // whose nth element contains a pointer to the Elf_Verdef for version identifier |
| // n. Version identifiers that are not definitions map to nullptr. The array |
| // always has at least length 1. |
| template <class ELFT> |
| std::vector<const typename ELFT::Verdef *> |
| SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { |
| std::vector<const Elf_Verdef *> Verdefs(1); |
| // We only need to process symbol versions for this DSO if it has both a |
| // versym and a verdef section, which indicates that the DSO contains symbol |
| // version definitions. |
| if (!VersymSec || !VerdefSec) |
| return Verdefs; |
| |
| // The location of the first global versym entry. |
| const char *Base = this->MB.getBuffer().data(); |
| Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + |
| this->FirstNonLocal; |
| |
| // We cannot determine the largest verdef identifier without inspecting |
| // every Elf_Verdef, but both bfd and gold assign verdef identifiers |
| // sequentially starting from 1, so we predict that the largest identifier |
| // will be VerdefCount. |
| unsigned VerdefCount = VerdefSec->sh_info; |
| Verdefs.resize(VerdefCount + 1); |
| |
| // Build the Verdefs array by following the chain of Elf_Verdef objects |
| // from the start of the .gnu.version_d section. |
| const char *Verdef = Base + VerdefSec->sh_offset; |
| for (unsigned I = 0; I != VerdefCount; ++I) { |
| auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); |
| Verdef += CurVerdef->vd_next; |
| unsigned VerdefIndex = CurVerdef->vd_ndx; |
| if (Verdefs.size() <= VerdefIndex) |
| Verdefs.resize(VerdefIndex + 1); |
| Verdefs[VerdefIndex] = CurVerdef; |
| } |
| |
| return Verdefs; |
| } |
| |
| // Fully parse the shared object file. This must be called after parseSoName(). |
| template <class ELFT> void SharedFile<ELFT>::parseRest() { |
| // Create mapping from version identifiers to Elf_Verdef entries. |
| const Elf_Versym *Versym = nullptr; |
| std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); |
| |
| Elf_Sym_Range Syms = this->getGlobalSymbols(); |
| for (const Elf_Sym &Sym : Syms) { |
| unsigned VersymIndex = 0; |
| if (Versym) { |
| VersymIndex = Versym->vs_index; |
| ++Versym; |
| } |
| bool Hidden = VersymIndex & VERSYM_HIDDEN; |
| VersymIndex = VersymIndex & ~VERSYM_HIDDEN; |
| |
| StringRef Name = check(Sym.getName(this->StringTable), toString(this)); |
| if (Sym.isUndefined()) { |
| Undefs.push_back(Name); |
| continue; |
| } |
| |
| // Ignore local symbols. |
| if (Versym && VersymIndex == VER_NDX_LOCAL) |
| continue; |
| |
| const Elf_Verdef *V = |
| VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; |
| |
| if (!Hidden) |
| elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); |
| |
| // Also add the symbol with the versioned name to handle undefined symbols |
| // with explicit versions. |
| if (V) { |
| StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; |
| Name = Saver.save(Name + "@" + VerName); |
| elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); |
| } |
| } |
| } |
| |
| static ELFKind getBitcodeELFKind(const Triple &T) { |
| if (T.isLittleEndian()) |
| return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; |
| return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; |
| } |
| |
| static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { |
| switch (T.getArch()) { |
| case Triple::aarch64: |
| return EM_AARCH64; |
| case Triple::arm: |
| case Triple::thumb: |
| return EM_ARM; |
| case Triple::avr: |
| return EM_AVR; |
| case Triple::mips: |
| case Triple::mipsel: |
| case Triple::mips64: |
| case Triple::mips64el: |
| return EM_MIPS; |
| case Triple::ppc: |
| return EM_PPC; |
| case Triple::ppc64: |
| return EM_PPC64; |
| case Triple::x86: |
| return T.isOSIAMCU() ? EM_IAMCU : EM_386; |
| case Triple::x86_64: |
| return EM_X86_64; |
| default: |
| fatal(Path + ": could not infer e_machine from bitcode target triple " + |
| T.str()); |
| } |
| } |
| |
| BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, |
| uint64_t OffsetInArchive) |
| : InputFile(BitcodeKind, MB) { |
| this->ArchiveName = ArchiveName; |
| |
| // Here we pass a new MemoryBufferRef which is identified by ArchiveName |
| // (the fully resolved path of the archive) + member name + offset of the |
| // member in the archive. |
| // ThinLTO uses the MemoryBufferRef identifier to access its internal |
| // data structures and if two archives define two members with the same name, |
| // this causes a collision which result in only one of the objects being |
| // taken into consideration at LTO time (which very likely causes undefined |
| // symbols later in the link stage). |
| MemoryBufferRef MBRef(MB.getBuffer(), |
| Saver.save(ArchiveName + MB.getBufferIdentifier() + |
| utostr(OffsetInArchive))); |
| Obj = check(lto::InputFile::create(MBRef), toString(this)); |
| |
| Triple T(Obj->getTargetTriple()); |
| EKind = getBitcodeELFKind(T); |
| EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); |
| } |
| |
| static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { |
| switch (GvVisibility) { |
| case GlobalValue::DefaultVisibility: |
| return STV_DEFAULT; |
| case GlobalValue::HiddenVisibility: |
| return STV_HIDDEN; |
| case GlobalValue::ProtectedVisibility: |
| return STV_PROTECTED; |
| } |
| llvm_unreachable("unknown visibility"); |
| } |
| |
| template <class ELFT> |
| static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, |
| const lto::InputFile::Symbol &ObjSym, |
| BitcodeFile *F) { |
| StringRef NameRef = Saver.save(ObjSym.getName()); |
| uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; |
| |
| uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; |
| uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); |
| bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); |
| |
| int C = ObjSym.getComdatIndex(); |
| if (C != -1 && !KeptComdats[C]) |
| return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, |
| Visibility, Type, CanOmitFromDynSym, |
| F); |
| |
| if (ObjSym.isUndefined()) |
| return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, |
| Visibility, Type, CanOmitFromDynSym, |
| F); |
| |
| if (ObjSym.isCommon()) |
| return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), |
| ObjSym.getCommonAlignment(), Binding, |
| Visibility, STT_OBJECT, F); |
| |
| return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, |
| CanOmitFromDynSym, F); |
| } |
| |
| template <class ELFT> |
| void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { |
| std::vector<bool> KeptComdats; |
| for (StringRef S : Obj->getComdatTable()) |
| KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); |
| |
| for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) |
| Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); |
| } |
| |
| static ELFKind getELFKind(MemoryBufferRef MB) { |
| unsigned char Size; |
| unsigned char Endian; |
| std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); |
| |
| if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) |
| fatal(MB.getBufferIdentifier() + ": invalid data encoding"); |
| if (Size != ELFCLASS32 && Size != ELFCLASS64) |
| fatal(MB.getBufferIdentifier() + ": invalid file class"); |
| |
| size_t BufSize = MB.getBuffer().size(); |
| if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || |
| (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) |
| fatal(MB.getBufferIdentifier() + ": file is too short"); |
| |
| if (Size == ELFCLASS32) |
| return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; |
| return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; |
| } |
| |
| template <class ELFT> void BinaryFile::parse() { |
| ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); |
| auto *Section = |
| make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); |
| Sections.push_back(Section); |
| |
| // For each input file foo that is embedded to a result as a binary |
| // blob, we define _binary_foo_{start,end,size} symbols, so that |
| // user programs can access blobs by name. Non-alphanumeric |
| // characters in a filename are replaced with underscore. |
| std::string S = "_binary_" + MB.getBufferIdentifier().str(); |
| for (size_t I = 0; I < S.size(); ++I) |
| if (!isalnum(S[I])) |
| S[I] = '_'; |
| |
| elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_start"), STV_DEFAULT, |
| STT_OBJECT, 0, 0, STB_GLOBAL, Section, |
| nullptr); |
| elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_end"), STV_DEFAULT, |
| STT_OBJECT, Data.size(), 0, STB_GLOBAL, |
| Section, nullptr); |
| elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_size"), STV_DEFAULT, |
| STT_OBJECT, Data.size(), 0, STB_GLOBAL, |
| nullptr, nullptr); |
| } |
| |
| static bool isBitcode(MemoryBufferRef MB) { |
| using namespace sys::fs; |
| return identify_magic(MB.getBuffer()) == file_magic::bitcode; |
| } |
| |
| InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, |
| uint64_t OffsetInArchive) { |
| if (isBitcode(MB)) |
| return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); |
| |
| switch (getELFKind(MB)) { |
| case ELF32LEKind: |
| return make<ObjectFile<ELF32LE>>(MB, ArchiveName); |
| case ELF32BEKind: |
| return make<ObjectFile<ELF32BE>>(MB, ArchiveName); |
| case ELF64LEKind: |
| return make<ObjectFile<ELF64LE>>(MB, ArchiveName); |
| case ELF64BEKind: |
| return make<ObjectFile<ELF64BE>>(MB, ArchiveName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { |
| switch (getELFKind(MB)) { |
| case ELF32LEKind: |
| return make<SharedFile<ELF32LE>>(MB, DefaultSoName); |
| case ELF32BEKind: |
| return make<SharedFile<ELF32BE>>(MB, DefaultSoName); |
| case ELF64LEKind: |
| return make<SharedFile<ELF64LE>>(MB, DefaultSoName); |
| case ELF64BEKind: |
| return make<SharedFile<ELF64BE>>(MB, DefaultSoName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| MemoryBufferRef LazyObjectFile::getBuffer() { |
| if (Seen) |
| return MemoryBufferRef(); |
| Seen = true; |
| return MB; |
| } |
| |
| InputFile *LazyObjectFile::fetch() { |
| MemoryBufferRef MBRef = getBuffer(); |
| if (MBRef.getBuffer().empty()) |
| return nullptr; |
| return createObjectFile(MBRef, ArchiveName, OffsetInArchive); |
| } |
| |
| template <class ELFT> void LazyObjectFile::parse() { |
| for (StringRef Sym : getSymbols()) |
| Symtab<ELFT>::X->addLazyObject(Sym, *this); |
| } |
| |
| template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Sym Elf_Sym; |
| typedef typename ELFT::SymRange Elf_Sym_Range; |
| |
| const ELFFile<ELFT> Obj(this->MB.getBuffer()); |
| ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); |
| for (const Elf_Shdr &Sec : Sections) { |
| if (Sec.sh_type != SHT_SYMTAB) |
| continue; |
| |
| Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); |
| uint32_t FirstNonLocal = Sec.sh_info; |
| StringRef StringTable = |
| check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); |
| std::vector<StringRef> V; |
| |
| for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) |
| if (Sym.st_shndx != SHN_UNDEF) |
| V.push_back(check(Sym.getName(StringTable), toString(this))); |
| return V; |
| } |
| return {}; |
| } |
| |
| std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { |
| std::unique_ptr<lto::InputFile> Obj = |
| check(lto::InputFile::create(this->MB), toString(this)); |
| std::vector<StringRef> V; |
| for (const lto::InputFile::Symbol &Sym : Obj->symbols()) |
| if (!Sym.isUndefined()) |
| V.push_back(Saver.save(Sym.getName())); |
| return V; |
| } |
| |
| // Returns a vector of globally-visible defined symbol names. |
| std::vector<StringRef> LazyObjectFile::getSymbols() { |
| if (isBitcode(this->MB)) |
| return getBitcodeSymbols(); |
| |
| switch (getELFKind(this->MB)) { |
| case ELF32LEKind: |
| return getElfSymbols<ELF32LE>(); |
| case ELF32BEKind: |
| return getElfSymbols<ELF32BE>(); |
| case ELF64LEKind: |
| return getElfSymbols<ELF64LE>(); |
| case ELF64BEKind: |
| return getElfSymbols<ELF64BE>(); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| template void ArchiveFile::parse<ELF32LE>(); |
| template void ArchiveFile::parse<ELF32BE>(); |
| template void ArchiveFile::parse<ELF64LE>(); |
| template void ArchiveFile::parse<ELF64BE>(); |
| |
| template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); |
| |
| template void LazyObjectFile::parse<ELF32LE>(); |
| template void LazyObjectFile::parse<ELF32BE>(); |
| template void LazyObjectFile::parse<ELF64LE>(); |
| template void LazyObjectFile::parse<ELF64BE>(); |
| |
| template class elf::ELFFileBase<ELF32LE>; |
| template class elf::ELFFileBase<ELF32BE>; |
| template class elf::ELFFileBase<ELF64LE>; |
| template class elf::ELFFileBase<ELF64BE>; |
| |
| template class elf::ObjectFile<ELF32LE>; |
| template class elf::ObjectFile<ELF32BE>; |
| template class elf::ObjectFile<ELF64LE>; |
| template class elf::ObjectFile<ELF64BE>; |
| |
| template class elf::SharedFile<ELF32LE>; |
| template class elf::SharedFile<ELF32BE>; |
| template class elf::SharedFile<ELF64LE>; |
| template class elf::SharedFile<ELF64BE>; |
| |
| template void BinaryFile::parse<ELF32LE>(); |
| template void BinaryFile::parse<ELF32BE>(); |
| template void BinaryFile::parse<ELF64LE>(); |
| template void BinaryFile::parse<ELF64BE>(); |