| //===- Target.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Machine-specific things, such as applying relocations, creation of |
| // GOT or PLT entries, etc., are handled in this file. |
| // |
| // Refer the ELF spec for the single letter varaibles, S, A or P, used |
| // in this file. |
| // |
| // Some functions defined in this file has "relaxTls" as part of their names. |
| // They do peephole optimization for TLS variables by rewriting instructions. |
| // They are not part of the ABI but optional optimization, so you can skip |
| // them if you are not interested in how TLS variables are optimized. |
| // See the following paper for the details. |
| // |
| // Ulrich Drepper, ELF Handling For Thread-Local Storage |
| // http://www.akkadia.org/drepper/tls.pdf |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Target.h" |
| #include "Error.h" |
| #include "InputFiles.h" |
| #include "OutputSections.h" |
| #include "Symbols.h" |
| #include "Thunks.h" |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Object/ELF.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/ELF.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| |
| namespace lld { |
| namespace elf { |
| |
| TargetInfo *Target; |
| |
| static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } |
| |
| StringRef getRelName(uint32_t Type) { |
| return getELFRelocationTypeName(Config->EMachine, Type); |
| } |
| |
| template <unsigned N> static void checkInt(int64_t V, uint32_t Type) { |
| if (!isInt<N>(V)) |
| error("relocation " + getRelName(Type) + " out of range"); |
| } |
| |
| template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) { |
| if (!isUInt<N>(V)) |
| error("relocation " + getRelName(Type) + " out of range"); |
| } |
| |
| template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) { |
| if (!isInt<N>(V) && !isUInt<N>(V)) |
| error("relocation " + getRelName(Type) + " out of range"); |
| } |
| |
| template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) { |
| if ((V & (N - 1)) != 0) |
| error("improper alignment for relocation " + getRelName(Type)); |
| } |
| |
| static void errorDynRel(uint32_t Type) { |
| error("relocation " + getRelName(Type) + |
| " cannot be used against shared object; recompile with -fPIC."); |
| } |
| |
| namespace { |
| class X86TargetInfo final : public TargetInfo { |
| public: |
| X86TargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; |
| void writeGotPltHeader(uint8_t *Buf) const override; |
| uint32_t getDynRel(uint32_t Type) const override; |
| bool isTlsLocalDynamicRel(uint32_t Type) const override; |
| bool isTlsGlobalDynamicRel(uint32_t Type) const override; |
| bool isTlsInitialExecRel(uint32_t Type) const override; |
| void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; |
| void writePltHeader(uint8_t *Buf) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| |
| RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const override; |
| void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| }; |
| |
| template <class ELFT> class X86_64TargetInfo final : public TargetInfo { |
| public: |
| X86_64TargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| uint32_t getDynRel(uint32_t Type) const override; |
| bool isTlsLocalDynamicRel(uint32_t Type) const override; |
| bool isTlsGlobalDynamicRel(uint32_t Type) const override; |
| bool isTlsInitialExecRel(uint32_t Type) const override; |
| void writeGotPltHeader(uint8_t *Buf) const override; |
| void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; |
| void writePltHeader(uint8_t *Buf) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| |
| RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const override; |
| void relaxGot(uint8_t *Loc, uint64_t Val) const override; |
| void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| |
| private: |
| void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, |
| uint8_t ModRm) const; |
| }; |
| |
| class PPCTargetInfo final : public TargetInfo { |
| public: |
| PPCTargetInfo(); |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| }; |
| |
| class PPC64TargetInfo final : public TargetInfo { |
| public: |
| PPC64TargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| }; |
| |
| class AArch64TargetInfo final : public TargetInfo { |
| public: |
| AArch64TargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| uint32_t getDynRel(uint32_t Type) const override; |
| bool isTlsInitialExecRel(uint32_t Type) const override; |
| void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; |
| void writePltHeader(uint8_t *Buf) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| bool usesOnlyLowPageBits(uint32_t Type) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const override; |
| void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| }; |
| |
| class AMDGPUTargetInfo final : public TargetInfo { |
| public: |
| AMDGPUTargetInfo(); |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| }; |
| |
| class ARMTargetInfo final : public TargetInfo { |
| public: |
| ARMTargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| uint32_t getDynRel(uint32_t Type) const override; |
| uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; |
| void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; |
| void writePltHeader(uint8_t *Buf) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, |
| const InputFile &File, |
| const SymbolBody &S) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| }; |
| |
| template <class ELFT> class MipsTargetInfo final : public TargetInfo { |
| public: |
| MipsTargetInfo(); |
| RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; |
| uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; |
| uint32_t getDynRel(uint32_t Type) const override; |
| bool isTlsLocalDynamicRel(uint32_t Type) const override; |
| bool isTlsGlobalDynamicRel(uint32_t Type) const override; |
| void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; |
| void writePltHeader(uint8_t *Buf) const override; |
| void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, |
| int32_t Index, unsigned RelOff) const override; |
| RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, |
| const InputFile &File, |
| const SymbolBody &S) const override; |
| void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; |
| bool usesOnlyLowPageBits(uint32_t Type) const override; |
| }; |
| } // anonymous namespace |
| |
| TargetInfo *createTarget() { |
| switch (Config->EMachine) { |
| case EM_386: |
| return new X86TargetInfo(); |
| case EM_AARCH64: |
| return new AArch64TargetInfo(); |
| case EM_AMDGPU: |
| return new AMDGPUTargetInfo(); |
| case EM_ARM: |
| return new ARMTargetInfo(); |
| case EM_MIPS: |
| switch (Config->EKind) { |
| case ELF32LEKind: |
| return new MipsTargetInfo<ELF32LE>(); |
| case ELF32BEKind: |
| return new MipsTargetInfo<ELF32BE>(); |
| case ELF64LEKind: |
| return new MipsTargetInfo<ELF64LE>(); |
| case ELF64BEKind: |
| return new MipsTargetInfo<ELF64BE>(); |
| default: |
| fatal("unsupported MIPS target"); |
| } |
| case EM_PPC: |
| return new PPCTargetInfo(); |
| case EM_PPC64: |
| return new PPC64TargetInfo(); |
| case EM_X86_64: |
| if (Config->EKind == ELF32LEKind) |
| return new X86_64TargetInfo<ELF32LE>(); |
| return new X86_64TargetInfo<ELF64LE>(); |
| } |
| fatal("unknown target machine"); |
| } |
| |
| TargetInfo::~TargetInfo() {} |
| |
| uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, |
| uint32_t Type) const { |
| return 0; |
| } |
| |
| bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } |
| |
| RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, |
| const InputFile &File, |
| const SymbolBody &S) const { |
| return Expr; |
| } |
| |
| bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } |
| |
| bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } |
| |
| bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { |
| return false; |
| } |
| |
| RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const { |
| return Expr; |
| } |
| |
| void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { |
| llvm_unreachable("Should not have claimed to be relaxable"); |
| } |
| |
| void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| llvm_unreachable("Should not have claimed to be relaxable"); |
| } |
| |
| void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| llvm_unreachable("Should not have claimed to be relaxable"); |
| } |
| |
| void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| llvm_unreachable("Should not have claimed to be relaxable"); |
| } |
| |
| void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| llvm_unreachable("Should not have claimed to be relaxable"); |
| } |
| |
| X86TargetInfo::X86TargetInfo() { |
| CopyRel = R_386_COPY; |
| GotRel = R_386_GLOB_DAT; |
| PltRel = R_386_JUMP_SLOT; |
| IRelativeRel = R_386_IRELATIVE; |
| RelativeRel = R_386_RELATIVE; |
| TlsGotRel = R_386_TLS_TPOFF; |
| TlsModuleIndexRel = R_386_TLS_DTPMOD32; |
| TlsOffsetRel = R_386_TLS_DTPOFF32; |
| GotEntrySize = 4; |
| GotPltEntrySize = 4; |
| PltEntrySize = 16; |
| PltHeaderSize = 16; |
| TlsGdRelaxSkip = 2; |
| } |
| |
| RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_386_TLS_GD: |
| return R_TLSGD; |
| case R_386_TLS_LDM: |
| return R_TLSLD; |
| case R_386_PLT32: |
| return R_PLT_PC; |
| case R_386_PC32: |
| return R_PC; |
| case R_386_GOTPC: |
| return R_GOTONLY_PC; |
| case R_386_TLS_IE: |
| return R_GOT; |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| case R_386_TLS_GOTIE: |
| return R_GOT_FROM_END; |
| case R_386_GOTOFF: |
| return R_GOTREL; |
| case R_386_TLS_LE: |
| return R_TLS; |
| case R_386_TLS_LE_32: |
| return R_NEG_TLS; |
| } |
| } |
| |
| RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const { |
| switch (Expr) { |
| default: |
| return Expr; |
| case R_RELAX_TLS_GD_TO_IE: |
| return R_RELAX_TLS_GD_TO_IE_END; |
| case R_RELAX_TLS_GD_TO_LE: |
| return R_RELAX_TLS_GD_TO_LE_NEG; |
| } |
| } |
| |
| void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { |
| write32le(Buf, Out<ELF32LE>::Dynamic->getVA()); |
| } |
| |
| void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { |
| // Entries in .got.plt initially points back to the corresponding |
| // PLT entries with a fixed offset to skip the first instruction. |
| write32le(Buf, S.getPltVA<ELF32LE>() + 6); |
| } |
| |
| uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { |
| if (Type == R_386_TLS_LE) |
| return R_386_TLS_TPOFF; |
| if (Type == R_386_TLS_LE_32) |
| return R_386_TLS_TPOFF32; |
| return Type; |
| } |
| |
| bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { |
| return Type == R_386_TLS_GD; |
| } |
| |
| bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { |
| return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; |
| } |
| |
| bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { |
| return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; |
| } |
| |
| void X86TargetInfo::writePltHeader(uint8_t *Buf) const { |
| // Executable files and shared object files have |
| // separate procedure linkage tables. |
| if (Config->Pic) { |
| const uint8_t V[] = { |
| 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) |
| 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) |
| 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop |
| }; |
| memcpy(Buf, V, sizeof(V)); |
| return; |
| } |
| |
| const uint8_t PltData[] = { |
| 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) |
| 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8) |
| 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop |
| }; |
| memcpy(Buf, PltData, sizeof(PltData)); |
| uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); |
| write32le(Buf + 2, Got + 4); |
| write32le(Buf + 8, Got + 8); |
| } |
| |
| void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| const uint8_t Inst[] = { |
| 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) |
| 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset |
| 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC |
| }; |
| memcpy(Buf, Inst, sizeof(Inst)); |
| |
| // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT |
| Buf[1] = Config->Pic ? 0xa3 : 0x25; |
| uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); |
| write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); |
| write32le(Buf + 7, RelOff); |
| write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); |
| } |
| |
| uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, |
| uint32_t Type) const { |
| switch (Type) { |
| default: |
| return 0; |
| case R_386_32: |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| case R_386_GOTOFF: |
| case R_386_GOTPC: |
| case R_386_PC32: |
| case R_386_PLT32: |
| case R_386_TLS_LE: |
| return read32le(Buf); |
| } |
| } |
| |
| void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| checkInt<32>(Val, Type); |
| write32le(Loc, Val); |
| } |
| |
| void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Convert |
| // leal x@tlsgd(, %ebx, 1), |
| // call __tls_get_addr@plt |
| // to |
| // movl %gs:0,%eax |
| // subl $x@ntpoff,%eax |
| const uint8_t Inst[] = { |
| 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax |
| 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax |
| }; |
| memcpy(Loc - 3, Inst, sizeof(Inst)); |
| relocateOne(Loc + 5, R_386_32, Val); |
| } |
| |
| void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Convert |
| // leal x@tlsgd(, %ebx, 1), |
| // call __tls_get_addr@plt |
| // to |
| // movl %gs:0, %eax |
| // addl x@gotntpoff(%ebx), %eax |
| const uint8_t Inst[] = { |
| 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax |
| 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax |
| }; |
| memcpy(Loc - 3, Inst, sizeof(Inst)); |
| relocateOne(Loc + 5, R_386_32, Val); |
| } |
| |
| // In some conditions, relocations can be optimized to avoid using GOT. |
| // This function does that for Initial Exec to Local Exec case. |
| void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Ulrich's document section 6.2 says that @gotntpoff can |
| // be used with MOVL or ADDL instructions. |
| // @indntpoff is similar to @gotntpoff, but for use in |
| // position dependent code. |
| uint8_t Reg = (Loc[-1] >> 3) & 7; |
| |
| if (Type == R_386_TLS_IE) { |
| if (Loc[-1] == 0xa1) { |
| // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" |
| // This case is different from the generic case below because |
| // this is a 5 byte instruction while below is 6 bytes. |
| Loc[-1] = 0xb8; |
| } else if (Loc[-2] == 0x8b) { |
| // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" |
| Loc[-2] = 0xc7; |
| Loc[-1] = 0xc0 | Reg; |
| } else { |
| // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" |
| Loc[-2] = 0x81; |
| Loc[-1] = 0xc0 | Reg; |
| } |
| } else { |
| assert(Type == R_386_TLS_GOTIE); |
| if (Loc[-2] == 0x8b) { |
| // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" |
| Loc[-2] = 0xc7; |
| Loc[-1] = 0xc0 | Reg; |
| } else { |
| // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" |
| Loc[-2] = 0x8d; |
| Loc[-1] = 0x80 | (Reg << 3) | Reg; |
| } |
| } |
| relocateOne(Loc, R_386_TLS_LE, Val); |
| } |
| |
| void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| if (Type == R_386_TLS_LDO_32) { |
| relocateOne(Loc, R_386_TLS_LE, Val); |
| return; |
| } |
| |
| // Convert |
| // leal foo(%reg),%eax |
| // call ___tls_get_addr |
| // to |
| // movl %gs:0,%eax |
| // nop |
| // leal 0(%esi,1),%esi |
| const uint8_t Inst[] = { |
| 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax |
| 0x90, // nop |
| 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi |
| }; |
| memcpy(Loc - 2, Inst, sizeof(Inst)); |
| } |
| |
| template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { |
| CopyRel = R_X86_64_COPY; |
| GotRel = R_X86_64_GLOB_DAT; |
| PltRel = R_X86_64_JUMP_SLOT; |
| RelativeRel = R_X86_64_RELATIVE; |
| IRelativeRel = R_X86_64_IRELATIVE; |
| TlsGotRel = R_X86_64_TPOFF64; |
| TlsModuleIndexRel = R_X86_64_DTPMOD64; |
| TlsOffsetRel = R_X86_64_DTPOFF64; |
| GotEntrySize = 8; |
| GotPltEntrySize = 8; |
| PltEntrySize = 16; |
| PltHeaderSize = 16; |
| TlsGdRelaxSkip = 2; |
| } |
| |
| template <class ELFT> |
| RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, |
| const SymbolBody &S) const { |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_X86_64_TPOFF32: |
| return R_TLS; |
| case R_X86_64_TLSLD: |
| return R_TLSLD_PC; |
| case R_X86_64_TLSGD: |
| return R_TLSGD_PC; |
| case R_X86_64_SIZE32: |
| case R_X86_64_SIZE64: |
| return R_SIZE; |
| case R_X86_64_PLT32: |
| return R_PLT_PC; |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| return R_PC; |
| case R_X86_64_GOT32: |
| return R_GOT_FROM_END; |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOTTPOFF: |
| return R_GOT_PC; |
| } |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { |
| // The first entry holds the value of _DYNAMIC. It is not clear why that is |
| // required, but it is documented in the psabi and the glibc dynamic linker |
| // seems to use it (note that this is relevant for linking ld.so, not any |
| // other program). |
| write64le(Buf, Out<ELFT>::Dynamic->getVA()); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, |
| const SymbolBody &S) const { |
| // See comments in X86TargetInfo::writeGotPlt. |
| write32le(Buf, S.getPltVA<ELFT>() + 6); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { |
| const uint8_t PltData[] = { |
| 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) |
| 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) |
| 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax) |
| }; |
| memcpy(Buf, PltData, sizeof(PltData)); |
| uint64_t Got = Out<ELFT>::GotPlt->getVA(); |
| uint64_t Plt = Out<ELFT>::Plt->getVA(); |
| write32le(Buf + 2, Got - Plt + 2); // GOT+8 |
| write32le(Buf + 8, Got - Plt + 4); // GOT+16 |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| const uint8_t Inst[] = { |
| 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) |
| 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index> |
| 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] |
| }; |
| memcpy(Buf, Inst, sizeof(Inst)); |
| |
| write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); |
| write32le(Buf + 7, Index); |
| write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); |
| } |
| |
| template <class ELFT> |
| uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const { |
| if (Type == R_X86_64_PC32 || Type == R_X86_64_32) |
| errorDynRel(Type); |
| return Type; |
| } |
| |
| template <class ELFT> |
| bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { |
| return Type == R_X86_64_GOTTPOFF; |
| } |
| |
| template <class ELFT> |
| bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { |
| return Type == R_X86_64_TLSGD; |
| } |
| |
| template <class ELFT> |
| bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { |
| return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || |
| Type == R_X86_64_TLSLD; |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Convert |
| // .byte 0x66 |
| // leaq x@tlsgd(%rip), %rdi |
| // .word 0x6666 |
| // rex64 |
| // call __tls_get_addr@plt |
| // to |
| // mov %fs:0x0,%rax |
| // lea x@tpoff,%rax |
| const uint8_t Inst[] = { |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax |
| 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax |
| }; |
| memcpy(Loc - 4, Inst, sizeof(Inst)); |
| // The original code used a pc relative relocation and so we have to |
| // compensate for the -4 in had in the addend. |
| relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Convert |
| // .byte 0x66 |
| // leaq x@tlsgd(%rip), %rdi |
| // .word 0x6666 |
| // rex64 |
| // call __tls_get_addr@plt |
| // to |
| // mov %fs:0x0,%rax |
| // addq x@tpoff,%rax |
| const uint8_t Inst[] = { |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax |
| 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax |
| }; |
| memcpy(Loc - 4, Inst, sizeof(Inst)); |
| // Both code sequences are PC relatives, but since we are moving the constant |
| // forward by 8 bytes we have to subtract the value by 8. |
| relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); |
| } |
| |
| // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to |
| // R_X86_64_TPOFF32 so that it does not use GOT. |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| uint8_t *Inst = Loc - 3; |
| uint8_t Reg = Loc[-1] >> 3; |
| uint8_t *RegSlot = Loc - 1; |
| |
| // Note that ADD with RSP or R12 is converted to ADD instead of LEA |
| // because LEA with these registers needs 4 bytes to encode and thus |
| // wouldn't fit the space. |
| |
| if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { |
| // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" |
| memcpy(Inst, "\x48\x81\xc4", 3); |
| } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { |
| // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" |
| memcpy(Inst, "\x49\x81\xc4", 3); |
| } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { |
| // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" |
| memcpy(Inst, "\x4d\x8d", 2); |
| *RegSlot = 0x80 | (Reg << 3) | Reg; |
| } else if (memcmp(Inst, "\x48\x03", 2) == 0) { |
| // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" |
| memcpy(Inst, "\x48\x8d", 2); |
| *RegSlot = 0x80 | (Reg << 3) | Reg; |
| } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { |
| // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" |
| memcpy(Inst, "\x49\xc7", 2); |
| *RegSlot = 0xc0 | Reg; |
| } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { |
| // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" |
| memcpy(Inst, "\x48\xc7", 2); |
| *RegSlot = 0xc0 | Reg; |
| } else { |
| fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); |
| } |
| |
| // The original code used a PC relative relocation. |
| // Need to compensate for the -4 it had in the addend. |
| relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // Convert |
| // leaq bar@tlsld(%rip), %rdi |
| // callq __tls_get_addr@PLT |
| // leaq bar@dtpoff(%rax), %rcx |
| // to |
| // .word 0x6666 |
| // .byte 0x66 |
| // mov %fs:0,%rax |
| // leaq bar@tpoff(%rax), %rcx |
| if (Type == R_X86_64_DTPOFF64) { |
| write64le(Loc, Val); |
| return; |
| } |
| if (Type == R_X86_64_DTPOFF32) { |
| relocateOne(Loc, R_X86_64_TPOFF32, Val); |
| return; |
| } |
| |
| const uint8_t Inst[] = { |
| 0x66, 0x66, // .word 0x6666 |
| 0x66, // .byte 0x66 |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax |
| }; |
| memcpy(Loc - 3, Inst, sizeof(Inst)); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| switch (Type) { |
| case R_X86_64_32: |
| checkUInt<32>(Val, Type); |
| write32le(Loc, Val); |
| break; |
| case R_X86_64_32S: |
| case R_X86_64_TPOFF32: |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_PC32: |
| case R_X86_64_GOTTPOFF: |
| case R_X86_64_PLT32: |
| case R_X86_64_TLSGD: |
| case R_X86_64_TLSLD: |
| case R_X86_64_DTPOFF32: |
| case R_X86_64_SIZE32: |
| checkInt<32>(Val, Type); |
| write32le(Loc, Val); |
| break; |
| case R_X86_64_64: |
| case R_X86_64_DTPOFF64: |
| case R_X86_64_SIZE64: |
| case R_X86_64_PC64: |
| write64le(Loc, Val); |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| template <class ELFT> |
| RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, |
| const uint8_t *Data, |
| RelExpr RelExpr) const { |
| if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) |
| return RelExpr; |
| const uint8_t Op = Data[-2]; |
| const uint8_t ModRm = Data[-1]; |
| // FIXME: When PIC is disabled and foo is defined locally in the |
| // lower 32 bit address space, memory operand in mov can be converted into |
| // immediate operand. Otherwise, mov must be changed to lea. We support only |
| // latter relaxation at this moment. |
| if (Op == 0x8b) |
| return R_RELAX_GOT_PC; |
| // Relax call and jmp. |
| if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) |
| return R_RELAX_GOT_PC; |
| |
| // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. |
| // If PIC then no relaxation is available. |
| // We also don't relax test/binop instructions without REX byte, |
| // they are 32bit operations and not common to have. |
| assert(Type == R_X86_64_REX_GOTPCRELX); |
| return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; |
| } |
| |
| // A subset of relaxations can only be applied for no-PIC. This method |
| // handles such relaxations. Instructions encoding information was taken from: |
| // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" |
| // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ |
| // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, |
| uint8_t Op, uint8_t ModRm) const { |
| const uint8_t Rex = Loc[-3]; |
| // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". |
| if (Op == 0x85) { |
| // See "TEST-Logical Compare" (4-428 Vol. 2B), |
| // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). |
| |
| // ModR/M byte has form XX YYY ZZZ, where |
| // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). |
| // XX has different meanings: |
| // 00: The operand's memory address is in reg1. |
| // 01: The operand's memory address is reg1 + a byte-sized displacement. |
| // 10: The operand's memory address is reg1 + a word-sized displacement. |
| // 11: The operand is reg1 itself. |
| // If an instruction requires only one operand, the unused reg2 field |
| // holds extra opcode bits rather than a register code |
| // 0xC0 == 11 000 000 binary. |
| // 0x38 == 00 111 000 binary. |
| // We transfer reg2 to reg1 here as operand. |
| // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). |
| Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. |
| |
| // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 |
| // See "TEST-Logical Compare" (4-428 Vol. 2B). |
| Loc[-2] = 0xf7; |
| |
| // Move R bit to the B bit in REX byte. |
| // REX byte is encoded as 0100WRXB, where |
| // 0100 is 4bit fixed pattern. |
| // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the |
| // default operand size is used (which is 32-bit for most but not all |
| // instructions). |
| // REX.R This 1-bit value is an extension to the MODRM.reg field. |
| // REX.X This 1-bit value is an extension to the SIB.index field. |
| // REX.B This 1-bit value is an extension to the MODRM.rm field or the |
| // SIB.base field. |
| // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). |
| Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; |
| relocateOne(Loc, R_X86_64_PC32, Val); |
| return; |
| } |
| |
| // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub |
| // or xor operations. |
| |
| // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". |
| // Logic is close to one for test instruction above, but we also |
| // write opcode extension here, see below for details. |
| Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. |
| |
| // Primary opcode is 0x81, opcode extension is one of: |
| // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, |
| // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. |
| // This value was wrote to MODRM.reg in a line above. |
| // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), |
| // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for |
| // descriptions about each operation. |
| Loc[-2] = 0x81; |
| Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; |
| relocateOne(Loc, R_X86_64_PC32, Val); |
| } |
| |
| template <class ELFT> |
| void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { |
| const uint8_t Op = Loc[-2]; |
| const uint8_t ModRm = Loc[-1]; |
| |
| // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". |
| if (Op == 0x8b) { |
| Loc[-2] = 0x8d; |
| relocateOne(Loc, R_X86_64_PC32, Val); |
| return; |
| } |
| |
| if (Op != 0xff) { |
| // We are relaxing a rip relative to an absolute, so compensate |
| // for the old -4 addend. |
| assert(!Config->Pic); |
| relaxGotNoPic(Loc, Val + 4, Op, ModRm); |
| return; |
| } |
| |
| // Convert call/jmp instructions. |
| if (ModRm == 0x15) { |
| // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". |
| // Instead we convert to "addr32 call foo" where addr32 is an instruction |
| // prefix. That makes result expression to be a single instruction. |
| Loc[-2] = 0x67; // addr32 prefix |
| Loc[-1] = 0xe8; // call |
| relocateOne(Loc, R_X86_64_PC32, Val); |
| return; |
| } |
| |
| // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". |
| // jmp doesn't return, so it is fine to use nop here, it is just a stub. |
| assert(ModRm == 0x25); |
| Loc[-2] = 0xe9; // jmp |
| Loc[3] = 0x90; // nop |
| relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); |
| } |
| |
| // Relocation masks following the #lo(value), #hi(value), #ha(value), |
| // #higher(value), #highera(value), #highest(value), and #highesta(value) |
| // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi |
| // document. |
| static uint16_t applyPPCLo(uint64_t V) { return V; } |
| static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } |
| static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } |
| static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } |
| static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } |
| static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } |
| static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } |
| |
| PPCTargetInfo::PPCTargetInfo() {} |
| |
| void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| switch (Type) { |
| case R_PPC_ADDR16_HA: |
| write16be(Loc, applyPPCHa(Val)); |
| break; |
| case R_PPC_ADDR16_LO: |
| write16be(Loc, applyPPCLo(Val)); |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { |
| return R_ABS; |
| } |
| |
| PPC64TargetInfo::PPC64TargetInfo() { |
| PltRel = GotRel = R_PPC64_GLOB_DAT; |
| RelativeRel = R_PPC64_RELATIVE; |
| GotEntrySize = 8; |
| GotPltEntrySize = 8; |
| PltEntrySize = 32; |
| PltHeaderSize = 0; |
| |
| // We need 64K pages (at least under glibc/Linux, the loader won't |
| // set different permissions on a finer granularity than that). |
| PageSize = 65536; |
| |
| // The PPC64 ELF ABI v1 spec, says: |
| // |
| // It is normally desirable to put segments with different characteristics |
| // in separate 256 Mbyte portions of the address space, to give the |
| // operating system full paging flexibility in the 64-bit address space. |
| // |
| // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers |
| // use 0x10000000 as the starting address. |
| DefaultImageBase = 0x10000000; |
| } |
| |
| static uint64_t PPC64TocOffset = 0x8000; |
| |
| uint64_t getPPC64TocBase() { |
| // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The |
| // TOC starts where the first of these sections starts. We always create a |
| // .got when we see a relocation that uses it, so for us the start is always |
| // the .got. |
| uint64_t TocVA = Out<ELF64BE>::Got->getVA(); |
| |
| // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 |
| // thus permitting a full 64 Kbytes segment. Note that the glibc startup |
| // code (crt1.o) assumes that you can get from the TOC base to the |
| // start of the .toc section with only a single (signed) 16-bit relocation. |
| return TocVA + PPC64TocOffset; |
| } |
| |
| RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_PPC64_TOC16: |
| case R_PPC64_TOC16_DS: |
| case R_PPC64_TOC16_HA: |
| case R_PPC64_TOC16_HI: |
| case R_PPC64_TOC16_LO: |
| case R_PPC64_TOC16_LO_DS: |
| return R_GOTREL; |
| case R_PPC64_TOC: |
| return R_PPC_TOC; |
| case R_PPC64_REL24: |
| return R_PPC_PLT_OPD; |
| } |
| } |
| |
| void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| uint64_t Off = GotEntryAddr - getPPC64TocBase(); |
| |
| // FIXME: What we should do, in theory, is get the offset of the function |
| // descriptor in the .opd section, and use that as the offset from %r2 (the |
| // TOC-base pointer). Instead, we have the GOT-entry offset, and that will |
| // be a pointer to the function descriptor in the .opd section. Using |
| // this scheme is simpler, but requires an extra indirection per PLT dispatch. |
| |
| write32be(Buf, 0xf8410028); // std %r2, 40(%r1) |
| write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha |
| write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) |
| write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) |
| write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 |
| write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) |
| write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) |
| write32be(Buf + 28, 0x4e800420); // bctr |
| } |
| |
| static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { |
| uint64_t V = Val - PPC64TocOffset; |
| switch (Type) { |
| case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; |
| case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; |
| case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; |
| case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; |
| case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; |
| case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; |
| default: return {Type, Val}; |
| } |
| } |
| |
| void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // For a TOC-relative relocation, proceed in terms of the corresponding |
| // ADDR16 relocation type. |
| std::tie(Type, Val) = toAddr16Rel(Type, Val); |
| |
| switch (Type) { |
| case R_PPC64_ADDR14: { |
| checkAlignment<4>(Val, Type); |
| // Preserve the AA/LK bits in the branch instruction |
| uint8_t AALK = Loc[3]; |
| write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); |
| break; |
| } |
| case R_PPC64_ADDR16: |
| checkInt<16>(Val, Type); |
| write16be(Loc, Val); |
| break; |
| case R_PPC64_ADDR16_DS: |
| checkInt<16>(Val, Type); |
| write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); |
| break; |
| case R_PPC64_ADDR16_HA: |
| case R_PPC64_REL16_HA: |
| write16be(Loc, applyPPCHa(Val)); |
| break; |
| case R_PPC64_ADDR16_HI: |
| case R_PPC64_REL16_HI: |
| write16be(Loc, applyPPCHi(Val)); |
| break; |
| case R_PPC64_ADDR16_HIGHER: |
| write16be(Loc, applyPPCHigher(Val)); |
| break; |
| case R_PPC64_ADDR16_HIGHERA: |
| write16be(Loc, applyPPCHighera(Val)); |
| break; |
| case R_PPC64_ADDR16_HIGHEST: |
| write16be(Loc, applyPPCHighest(Val)); |
| break; |
| case R_PPC64_ADDR16_HIGHESTA: |
| write16be(Loc, applyPPCHighesta(Val)); |
| break; |
| case R_PPC64_ADDR16_LO: |
| write16be(Loc, applyPPCLo(Val)); |
| break; |
| case R_PPC64_ADDR16_LO_DS: |
| case R_PPC64_REL16_LO: |
| write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); |
| break; |
| case R_PPC64_ADDR32: |
| case R_PPC64_REL32: |
| checkInt<32>(Val, Type); |
| write32be(Loc, Val); |
| break; |
| case R_PPC64_ADDR64: |
| case R_PPC64_REL64: |
| case R_PPC64_TOC: |
| write64be(Loc, Val); |
| break; |
| case R_PPC64_REL24: { |
| uint32_t Mask = 0x03FFFFFC; |
| checkInt<24>(Val, Type); |
| write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); |
| break; |
| } |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| AArch64TargetInfo::AArch64TargetInfo() { |
| CopyRel = R_AARCH64_COPY; |
| RelativeRel = R_AARCH64_RELATIVE; |
| IRelativeRel = R_AARCH64_IRELATIVE; |
| GotRel = R_AARCH64_GLOB_DAT; |
| PltRel = R_AARCH64_JUMP_SLOT; |
| TlsDescRel = R_AARCH64_TLSDESC; |
| TlsGotRel = R_AARCH64_TLS_TPREL64; |
| GotEntrySize = 8; |
| GotPltEntrySize = 8; |
| PltEntrySize = 16; |
| PltHeaderSize = 32; |
| |
| // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant |
| // 1 of the tls structures and the tcb size is 16. |
| TcbSize = 16; |
| } |
| |
| RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, |
| const SymbolBody &S) const { |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| return R_TLSDESC_PAGE; |
| case R_AARCH64_TLSDESC_LD64_LO12_NC: |
| case R_AARCH64_TLSDESC_ADD_LO12_NC: |
| return R_TLSDESC; |
| case R_AARCH64_TLSDESC_CALL: |
| return R_HINT; |
| case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| return R_TLS; |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return R_PLT_PC; |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| return R_PC; |
| case R_AARCH64_ADR_PREL_PG_HI21: |
| return R_PAGE_PC; |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| return R_GOT; |
| case R_AARCH64_ADR_GOT_PAGE: |
| case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| return R_GOT_PAGE_PC; |
| } |
| } |
| |
| RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, |
| RelExpr Expr) const { |
| if (Expr == R_RELAX_TLS_GD_TO_IE) { |
| if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) |
| return R_RELAX_TLS_GD_TO_IE_PAGE_PC; |
| return R_RELAX_TLS_GD_TO_IE_ABS; |
| } |
| return Expr; |
| } |
| |
| bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { |
| switch (Type) { |
| default: |
| return false; |
| case R_AARCH64_ADD_ABS_LO12_NC: |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_LDST128_ABS_LO12_NC: |
| case R_AARCH64_LDST16_ABS_LO12_NC: |
| case R_AARCH64_LDST32_ABS_LO12_NC: |
| case R_AARCH64_LDST64_ABS_LO12_NC: |
| case R_AARCH64_LDST8_ABS_LO12_NC: |
| case R_AARCH64_TLSDESC_ADD_LO12_NC: |
| case R_AARCH64_TLSDESC_LD64_LO12_NC: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| return true; |
| } |
| } |
| |
| bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { |
| return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || |
| Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; |
| } |
| |
| uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const { |
| if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64) |
| return Type; |
| // Keep it going with a dummy value so that we can find more reloc errors. |
| errorDynRel(Type); |
| return R_AARCH64_ABS32; |
| } |
| |
| void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { |
| write64le(Buf, Out<ELF64LE>::Plt->getVA()); |
| } |
| |
| static uint64_t getAArch64Page(uint64_t Expr) { |
| return Expr & (~static_cast<uint64_t>(0xFFF)); |
| } |
| |
| void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { |
| const uint8_t PltData[] = { |
| 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) |
| 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 0x1f, 0x20, 0x03, 0xd5, // nop |
| 0x1f, 0x20, 0x03, 0xd5, // nop |
| 0x1f, 0x20, 0x03, 0xd5 // nop |
| }; |
| memcpy(Buf, PltData, sizeof(PltData)); |
| |
| uint64_t Got = Out<ELF64LE>::GotPlt->getVA(); |
| uint64_t Plt = Out<ELF64LE>::Plt->getVA(); |
| relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); |
| relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); |
| relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); |
| } |
| |
| void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| const uint8_t Inst[] = { |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) |
| 0x20, 0x02, 0x1f, 0xd6 // br x17 |
| }; |
| memcpy(Buf, Inst, sizeof(Inst)); |
| |
| relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); |
| relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); |
| relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); |
| } |
| |
| static void updateAArch64Addr(uint8_t *L, uint64_t Imm) { |
| uint32_t ImmLo = (Imm & 0x3) << 29; |
| uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; |
| uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); |
| write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); |
| } |
| |
| static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) { |
| or32le(L, (Imm & 0xFFF) << 10); |
| } |
| |
| void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| switch (Type) { |
| case R_AARCH64_ABS16: |
| case R_AARCH64_PREL16: |
| checkIntUInt<16>(Val, Type); |
| write16le(Loc, Val); |
| break; |
| case R_AARCH64_ABS32: |
| case R_AARCH64_PREL32: |
| checkIntUInt<32>(Val, Type); |
| write32le(Loc, Val); |
| break; |
| case R_AARCH64_ABS64: |
| case R_AARCH64_PREL64: |
| write64le(Loc, Val); |
| break; |
| case R_AARCH64_ADD_ABS_LO12_NC: |
| // This relocation stores 12 bits and there's no instruction |
| // to do it. Instead, we do a 32 bits store of the value |
| // of r_addend bitwise-or'ed Loc. This assumes that the addend |
| // bits in Loc are zero. |
| or32le(Loc, (Val & 0xFFF) << 10); |
| break; |
| case R_AARCH64_ADR_GOT_PAGE: |
| case R_AARCH64_ADR_PREL_PG_HI21: |
| case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| checkInt<33>(Val, Type); |
| updateAArch64Addr(Loc, Val >> 12); |
| break; |
| case R_AARCH64_ADR_PREL_LO21: |
| checkInt<21>(Val, Type); |
| updateAArch64Addr(Loc, Val); |
| break; |
| case R_AARCH64_CALL26: |
| case R_AARCH64_JUMP26: |
| checkInt<28>(Val, Type); |
| or32le(Loc, (Val & 0x0FFFFFFC) >> 2); |
| break; |
| case R_AARCH64_CONDBR19: |
| checkInt<21>(Val, Type); |
| or32le(Loc, (Val & 0x1FFFFC) << 3); |
| break; |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| case R_AARCH64_TLSDESC_LD64_LO12_NC: |
| checkAlignment<8>(Val, Type); |
| or32le(Loc, (Val & 0xFF8) << 7); |
| break; |
| case R_AARCH64_LDST128_ABS_LO12_NC: |
| or32le(Loc, (Val & 0x0FF8) << 6); |
| break; |
| case R_AARCH64_LDST16_ABS_LO12_NC: |
| or32le(Loc, (Val & 0x0FFC) << 9); |
| break; |
| case R_AARCH64_LDST8_ABS_LO12_NC: |
| or32le(Loc, (Val & 0xFFF) << 10); |
| break; |
| case R_AARCH64_LDST32_ABS_LO12_NC: |
| or32le(Loc, (Val & 0xFFC) << 8); |
| break; |
| case R_AARCH64_LDST64_ABS_LO12_NC: |
| or32le(Loc, (Val & 0xFF8) << 7); |
| break; |
| case R_AARCH64_TSTBR14: |
| checkInt<16>(Val, Type); |
| or32le(Loc, (Val & 0xFFFC) << 3); |
| break; |
| case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| checkInt<24>(Val, Type); |
| updateAArch64Add(Loc, Val >> 12); |
| break; |
| case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| case R_AARCH64_TLSDESC_ADD_LO12_NC: |
| updateAArch64Add(Loc, Val); |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // TLSDESC Global-Dynamic relocation are in the form: |
| // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] |
| // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] |
| // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| // blr x1 |
| // And it can optimized to: |
| // movz x0, #0x0, lsl #16 |
| // movk x0, #0x10 |
| // nop |
| // nop |
| checkUInt<32>(Val, Type); |
| |
| switch (Type) { |
| case R_AARCH64_TLSDESC_ADD_LO12_NC: |
| case R_AARCH64_TLSDESC_CALL: |
| write32le(Loc, 0xd503201f); // nop |
| return; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz |
| return; |
| case R_AARCH64_TLSDESC_LD64_LO12_NC: |
| write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk |
| return; |
| default: |
| llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); |
| } |
| } |
| |
| void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| // TLSDESC Global-Dynamic relocation are in the form: |
| // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] |
| // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] |
| // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| // blr x1 |
| // And it can optimized to: |
| // adrp x0, :gottprel:v |
| // ldr x0, [x0, :gottprel_lo12:v] |
| // nop |
| // nop |
| |
| switch (Type) { |
| case R_AARCH64_TLSDESC_ADD_LO12_NC: |
| case R_AARCH64_TLSDESC_CALL: |
| write32le(Loc, 0xd503201f); // nop |
| break; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| write32le(Loc, 0x90000000); // adrp |
| relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); |
| break; |
| case R_AARCH64_TLSDESC_LD64_LO12_NC: |
| write32le(Loc, 0xf9400000); // ldr |
| relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); |
| break; |
| default: |
| llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); |
| } |
| } |
| |
| void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| checkUInt<32>(Val, Type); |
| |
| if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { |
| // Generate MOVZ. |
| uint32_t RegNo = read32le(Loc) & 0x1f; |
| write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); |
| return; |
| } |
| if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { |
| // Generate MOVK. |
| uint32_t RegNo = read32le(Loc) & 0x1f; |
| write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); |
| return; |
| } |
| llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); |
| } |
| |
| AMDGPUTargetInfo::AMDGPUTargetInfo() { |
| GotRel = R_AMDGPU_ABS64; |
| GotEntrySize = 8; |
| } |
| |
| void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| switch (Type) { |
| case R_AMDGPU_GOTPCREL: |
| case R_AMDGPU_REL32: |
| write32le(Loc, Val); |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { |
| switch (Type) { |
| case R_AMDGPU_REL32: |
| return R_PC; |
| case R_AMDGPU_GOTPCREL: |
| return R_GOT_PC; |
| default: |
| fatal("do not know how to handle relocation " + Twine(Type)); |
| } |
| } |
| |
| ARMTargetInfo::ARMTargetInfo() { |
| CopyRel = R_ARM_COPY; |
| RelativeRel = R_ARM_RELATIVE; |
| IRelativeRel = R_ARM_IRELATIVE; |
| GotRel = R_ARM_GLOB_DAT; |
| PltRel = R_ARM_JUMP_SLOT; |
| TlsGotRel = R_ARM_TLS_TPOFF32; |
| TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; |
| TlsOffsetRel = R_ARM_TLS_DTPOFF32; |
| GotEntrySize = 4; |
| GotPltEntrySize = 4; |
| PltEntrySize = 16; |
| PltHeaderSize = 20; |
| } |
| |
| RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_ARM_THM_JUMP11: |
| return R_PC; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| case R_ARM_THM_CALL: |
| return R_PLT_PC; |
| case R_ARM_GOTOFF32: |
| // (S + A) - GOT_ORG |
| return R_GOTREL; |
| case R_ARM_GOT_BREL: |
| // GOT(S) + A - GOT_ORG |
| return R_GOT_OFF; |
| case R_ARM_GOT_PREL: |
| // GOT(S) + - GOT_ORG |
| return R_GOT_PC; |
| case R_ARM_BASE_PREL: |
| // B(S) + A - P |
| // FIXME: currently B(S) assumed to be .got, this may not hold for all |
| // platforms. |
| return R_GOTONLY_PC; |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_PREL31: |
| case R_ARM_REL32: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| return R_PC; |
| } |
| } |
| |
| uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { |
| if (Type == R_ARM_ABS32) |
| return Type; |
| // Keep it going with a dummy value so that we can find more reloc errors. |
| errorDynRel(Type); |
| return R_ARM_ABS32; |
| } |
| |
| void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { |
| write32le(Buf, Out<ELF32LE>::Plt->getVA()); |
| } |
| |
| void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { |
| const uint8_t PltData[] = { |
| 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! |
| 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 |
| 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr |
| 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] |
| 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 |
| }; |
| memcpy(Buf, PltData, sizeof(PltData)); |
| uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA(); |
| uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8; |
| write32le(Buf + 16, GotPlt - L1 - 8); |
| } |
| |
| void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| // FIXME: Using simple code sequence with simple relocations. |
| // There is a more optimal sequence but it requires support for the group |
| // relocations. See ELF for the ARM Architecture Appendix A.3 |
| const uint8_t PltData[] = { |
| 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 |
| 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc |
| 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] |
| 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 |
| }; |
| memcpy(Buf, PltData, sizeof(PltData)); |
| uint64_t L1 = PltEntryAddr + 4; |
| write32le(Buf + 12, GotEntryAddr - L1 - 8); |
| } |
| |
| RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, |
| const InputFile &File, |
| const SymbolBody &S) const { |
| // A state change from ARM to Thumb and vice versa must go through an |
| // interworking thunk if the relocation type is not R_ARM_CALL or |
| // R_ARM_THM_CALL. |
| switch (RelocType) { |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_JUMP24: |
| // Source is ARM, all PLT entries are ARM so no interworking required. |
| // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). |
| if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) |
| return R_THUNK_PC; |
| break; |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| // Source is Thumb, all PLT entries are ARM so interworking is required. |
| // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). |
| if (Expr == R_PLT_PC) |
| return R_THUNK_PLT_PC; |
| if ((S.getVA<ELF32LE>() & 1) == 0) |
| return R_THUNK_PC; |
| break; |
| } |
| return Expr; |
| } |
| |
| void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| switch (Type) { |
| case R_ARM_NONE: |
| break; |
| case R_ARM_ABS32: |
| case R_ARM_BASE_PREL: |
| case R_ARM_GOTOFF32: |
| case R_ARM_GOT_BREL: |
| case R_ARM_GOT_PREL: |
| case R_ARM_REL32: |
| write32le(Loc, Val); |
| break; |
| case R_ARM_PREL31: |
| checkInt<31>(Val, Type); |
| write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); |
| break; |
| case R_ARM_CALL: |
| // R_ARM_CALL is used for BL and BLX instructions, depending on the |
| // value of bit 0 of Val, we must select a BL or BLX instruction |
| if (Val & 1) { |
| // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. |
| // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' |
| checkInt<26>(Val, Type); |
| write32le(Loc, 0xfa000000 | // opcode |
| ((Val & 2) << 23) | // H |
| ((Val >> 2) & 0x00ffffff)); // imm24 |
| break; |
| } |
| if ((read32le(Loc) & 0xfe000000) == 0xfa000000) |
| // BLX (always unconditional) instruction to an ARM Target, select an |
| // unconditional BL. |
| write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); |
| // fall through as BL encoding is shared with B |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| checkInt<26>(Val, Type); |
| write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); |
| break; |
| case R_ARM_THM_JUMP11: |
| checkInt<12>(Val, Type); |
| write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); |
| break; |
| case R_ARM_THM_JUMP19: |
| // Encoding T3: Val = S:J2:J1:imm6:imm11:0 |
| checkInt<21>(Val, Type); |
| write16le(Loc, |
| (read16le(Loc) & 0xfbc0) | // opcode cond |
| ((Val >> 10) & 0x0400) | // S |
| ((Val >> 12) & 0x003f)); // imm6 |
| write16le(Loc + 2, |
| 0x8000 | // opcode |
| ((Val >> 8) & 0x0800) | // J2 |
| ((Val >> 5) & 0x2000) | // J1 |
| ((Val >> 1) & 0x07ff)); // imm11 |
| break; |
| case R_ARM_THM_CALL: |
| // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the |
| // value of bit 0 of Val, we must select a BL or BLX instruction |
| if ((Val & 1) == 0) { |
| // Ensure BLX destination is 4-byte aligned. As BLX instruction may |
| // only be two byte aligned. This must be done before overflow check |
| Val = alignTo(Val, 4); |
| } |
| // Bit 12 is 0 for BLX, 1 for BL |
| write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); |
| // Fall through as rest of encoding is the same as B.W |
| case R_ARM_THM_JUMP24: |
| // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 |
| // FIXME: Use of I1 and I2 require v6T2ops |
| checkInt<25>(Val, Type); |
| write16le(Loc, |
| 0xf000 | // opcode |
| ((Val >> 14) & 0x0400) | // S |
| ((Val >> 12) & 0x03ff)); // imm10 |
| write16le(Loc + 2, |
| (read16le(Loc + 2) & 0xd000) | // opcode |
| (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 |
| (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 |
| ((Val >> 1) & 0x07ff)); // imm11 |
| break; |
| case R_ARM_MOVW_ABS_NC: |
| case R_ARM_MOVW_PREL_NC: |
| write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | |
| (Val & 0x0fff)); |
| break; |
| case R_ARM_MOVT_ABS: |
| case R_ARM_MOVT_PREL: |
| checkInt<32>(Val, Type); |
| write32le(Loc, (read32le(Loc) & ~0x000f0fff) | |
| (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); |
| break; |
| case R_ARM_THM_MOVT_ABS: |
| case R_ARM_THM_MOVT_PREL: |
| // Encoding T1: A = imm4:i:imm3:imm8 |
| checkInt<32>(Val, Type); |
| write16le(Loc, |
| 0xf2c0 | // opcode |
| ((Val >> 17) & 0x0400) | // i |
| ((Val >> 28) & 0x000f)); // imm4 |
| write16le(Loc + 2, |
| (read16le(Loc + 2) & 0x8f00) | // opcode |
| ((Val >> 12) & 0x7000) | // imm3 |
| ((Val >> 16) & 0x00ff)); // imm8 |
| break; |
| case R_ARM_THM_MOVW_ABS_NC: |
| case R_ARM_THM_MOVW_PREL_NC: |
| // Encoding T3: A = imm4:i:imm3:imm8 |
| write16le(Loc, |
| 0xf240 | // opcode |
| ((Val >> 1) & 0x0400) | // i |
| ((Val >> 12) & 0x000f)); // imm4 |
| write16le(Loc + 2, |
| (read16le(Loc + 2) & 0x8f00) | // opcode |
| ((Val << 4) & 0x7000) | // imm3 |
| (Val & 0x00ff)); // imm8 |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, |
| uint32_t Type) const { |
| switch (Type) { |
| default: |
| return 0; |
| case R_ARM_ABS32: |
| case R_ARM_BASE_PREL: |
| case R_ARM_GOTOFF32: |
| case R_ARM_GOT_BREL: |
| case R_ARM_GOT_PREL: |
| case R_ARM_REL32: |
| return SignExtend64<32>(read32le(Buf)); |
| case R_ARM_PREL31: |
| return SignExtend64<31>(read32le(Buf)); |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| return SignExtend64<26>(read32le(Buf) << 2); |
| case R_ARM_THM_JUMP11: |
| return SignExtend64<12>(read16le(Buf) << 1); |
| case R_ARM_THM_JUMP19: { |
| // Encoding T3: A = S:J2:J1:imm10:imm6:0 |
| uint16_t Hi = read16le(Buf); |
| uint16_t Lo = read16le(Buf + 2); |
| return SignExtend64<20>(((Hi & 0x0400) << 10) | // S |
| ((Lo & 0x0800) << 8) | // J2 |
| ((Lo & 0x2000) << 5) | // J1 |
| ((Hi & 0x003f) << 12) | // imm6 |
| ((Lo & 0x07ff) << 1)); // imm11:0 |
| } |
| case R_ARM_THM_CALL: |
| case R_ARM_THM_JUMP24: { |
| // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 |
| // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) |
| // FIXME: I1 and I2 require v6T2ops |
| uint16_t Hi = read16le(Buf); |
| uint16_t Lo = read16le(Buf + 2); |
| return SignExtend64<24>(((Hi & 0x0400) << 14) | // S |
| (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 |
| (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 |
| ((Hi & 0x003ff) << 12) | // imm0 |
| ((Lo & 0x007ff) << 1)); // imm11:0 |
| } |
| // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and |
| // MOVT is in the range -32768 <= A < 32768 |
| case R_ARM_MOVW_ABS_NC: |
| case R_ARM_MOVT_ABS: |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: { |
| uint64_t Val = read32le(Buf) & 0x000f0fff; |
| return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); |
| } |
| case R_ARM_THM_MOVW_ABS_NC: |
| case R_ARM_THM_MOVT_ABS: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: { |
| // Encoding T3: A = imm4:i:imm3:imm8 |
| uint16_t Hi = read16le(Buf); |
| uint16_t Lo = read16le(Buf + 2); |
| return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 |
| ((Hi & 0x0400) << 1) | // i |
| ((Lo & 0x7000) >> 4) | // imm3 |
| (Lo & 0x00ff)); // imm8 |
| } |
| } |
| } |
| |
| template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { |
| GotPltHeaderEntriesNum = 2; |
| PageSize = 65536; |
| GotEntrySize = sizeof(typename ELFT::uint); |
| GotPltEntrySize = sizeof(typename ELFT::uint); |
| PltEntrySize = 16; |
| PltHeaderSize = 32; |
| CopyRel = R_MIPS_COPY; |
| PltRel = R_MIPS_JUMP_SLOT; |
| if (ELFT::Is64Bits) { |
| RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; |
| TlsGotRel = R_MIPS_TLS_TPREL64; |
| TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; |
| TlsOffsetRel = R_MIPS_TLS_DTPREL64; |
| } else { |
| RelativeRel = R_MIPS_REL32; |
| TlsGotRel = R_MIPS_TLS_TPREL32; |
| TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; |
| TlsOffsetRel = R_MIPS_TLS_DTPREL32; |
| } |
| } |
| |
| template <class ELFT> |
| RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, |
| const SymbolBody &S) const { |
| if (ELFT::Is64Bits) |
| // See comment in the calculateMips64RelChain. |
| Type &= 0xff; |
| switch (Type) { |
| default: |
| return R_ABS; |
| case R_MIPS_JALR: |
| return R_HINT; |
| case R_MIPS_GPREL16: |
| case R_MIPS_GPREL32: |
| return R_GOTREL; |
| case R_MIPS_26: |
| return R_PLT; |
| case R_MIPS_HI16: |
| case R_MIPS_LO16: |
| case R_MIPS_GOT_OFST: |
| // MIPS _gp_disp designates offset between start of function and 'gp' |
| // pointer into GOT. __gnu_local_gp is equal to the current value of |
| // the 'gp'. Therefore any relocations against them do not require |
| // dynamic relocation. |
| if (&S == ElfSym<ELFT>::MipsGpDisp) |
| return R_PC; |
| return R_ABS; |
| case R_MIPS_PC32: |
| case R_MIPS_PC16: |
| case R_MIPS_PC19_S2: |
| case R_MIPS_PC21_S2: |
| case R_MIPS_PC26_S2: |
| case R_MIPS_PCHI16: |
| case R_MIPS_PCLO16: |
| return R_PC; |
| case R_MIPS_GOT16: |
| if (S.isLocal()) |
| return R_MIPS_GOT_LOCAL_PAGE; |
| // fallthrough |
| case R_MIPS_CALL16: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_TLS_GOTTPREL: |
| return R_MIPS_GOT_OFF; |
| case R_MIPS_GOT_PAGE: |
| return R_MIPS_GOT_LOCAL_PAGE; |
| case R_MIPS_TLS_GD: |
| return R_MIPS_TLSGD; |
| case R_MIPS_TLS_LDM: |
| return R_MIPS_TLSLD; |
| } |
| } |
| |
| template <class ELFT> |
| uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { |
| if (Type == R_MIPS_32 || Type == R_MIPS_64) |
| return RelativeRel; |
| // Keep it going with a dummy value so that we can find more reloc errors. |
| errorDynRel(Type); |
| return R_MIPS_32; |
| } |
| |
| template <class ELFT> |
| bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { |
| return Type == R_MIPS_TLS_LDM; |
| } |
| |
| template <class ELFT> |
| bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { |
| return Type == R_MIPS_TLS_GD; |
| } |
| |
| template <class ELFT> |
| void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { |
| write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA()); |
| } |
| |
| static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; } |
| |
| template <endianness E, uint8_t BSIZE, uint8_t SHIFT> |
| static int64_t getPcRelocAddend(const uint8_t *Loc) { |
| uint32_t Instr = read32<E>(Loc); |
| uint32_t Mask = 0xffffffff >> (32 - BSIZE); |
| return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); |
| } |
| |
| template <endianness E, uint8_t BSIZE, uint8_t SHIFT> |
| static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { |
| uint32_t Mask = 0xffffffff >> (32 - BSIZE); |
| uint32_t Instr = read32<E>(Loc); |
| if (SHIFT > 0) |
| checkAlignment<(1 << SHIFT)>(V, Type); |
| checkInt<BSIZE + SHIFT>(V, Type); |
| write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); |
| } |
| |
| template <endianness E> |
| static void writeMipsHi16(uint8_t *Loc, uint64_t V) { |
| uint32_t Instr = read32<E>(Loc); |
| write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V)); |
| } |
| |
| template <endianness E> |
| static void writeMipsLo16(uint8_t *Loc, uint64_t V) { |
| uint32_t Instr = read32<E>(Loc); |
| write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); |
| } |
| |
| template <class ELFT> |
| void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { |
| const endianness E = ELFT::TargetEndianness; |
| write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) |
| write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) |
| write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) |
| write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28 |
| write32<E>(Buf + 16, 0x03e07825); // move $15, $31 |
| write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2 |
| write32<E>(Buf + 24, 0x0320f809); // jalr $25 |
| write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2 |
| uint64_t Got = Out<ELFT>::GotPlt->getVA(); |
| writeMipsHi16<E>(Buf, Got); |
| writeMipsLo16<E>(Buf + 4, Got); |
| writeMipsLo16<E>(Buf + 8, Got); |
| } |
| |
| template <class ELFT> |
| void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, |
| uint64_t PltEntryAddr, int32_t Index, |
| unsigned RelOff) const { |
| const endianness E = ELFT::TargetEndianness; |
| write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) |
| write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) |
| write32<E>(Buf + 8, 0x03200008); // jr $25 |
| write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) |
| writeMipsHi16<E>(Buf, GotEntryAddr); |
| writeMipsLo16<E>(Buf + 4, GotEntryAddr); |
| writeMipsLo16<E>(Buf + 12, GotEntryAddr); |
| } |
| |
| template <class ELFT> |
| RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, |
| const InputFile &File, |
| const SymbolBody &S) const { |
| // Any MIPS PIC code function is invoked with its address in register $t9. |
| // So if we have a branch instruction from non-PIC code to the PIC one |
| // we cannot make the jump directly and need to create a small stubs |
| // to save the target function address. |
| // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Type != R_MIPS_26) |
| return Expr; |
| auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); |
| if (!F) |
| return Expr; |
| // If current file has PIC code, LA25 stub is not required. |
| if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) |
| return Expr; |
| auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); |
| if (!D || !D->Section) |
| return Expr; |
| // LA25 is required if target file has PIC code |
| // or target symbol is a PIC symbol. |
| const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj(); |
| bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC; |
| bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC; |
| return (PicFile || PicSym) ? R_THUNK_ABS : Expr; |
| } |
| |
| template <class ELFT> |
| uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, |
| uint32_t Type) const { |
| const endianness E = ELFT::TargetEndianness; |
| switch (Type) { |
| default: |
| return 0; |
| case R_MIPS_32: |
| case R_MIPS_GPREL32: |
| return read32<E>(Buf); |
| case R_MIPS_26: |
| // FIXME (simon): If the relocation target symbol is not a PLT entry |
| // we should use another expression for calculation: |
| // ((A << 2) | (P & 0xf0000000)) >> 2 |
| return SignExtend64<28>(read32<E>(Buf) << 2); |
| case R_MIPS_GPREL16: |
| case R_MIPS_LO16: |
| case R_MIPS_PCLO16: |
| case R_MIPS_TLS_DTPREL_HI16: |
| case R_MIPS_TLS_DTPREL_LO16: |
| case R_MIPS_TLS_TPREL_HI16: |
| case R_MIPS_TLS_TPREL_LO16: |
| return SignExtend64<16>(read32<E>(Buf)); |
| case R_MIPS_PC16: |
| return getPcRelocAddend<E, 16, 2>(Buf); |
| case R_MIPS_PC19_S2: |
| return getPcRelocAddend<E, 19, 2>(Buf); |
| case R_MIPS_PC21_S2: |
| return getPcRelocAddend<E, 21, 2>(Buf); |
| case R_MIPS_PC26_S2: |
| return getPcRelocAddend<E, 26, 2>(Buf); |
| case R_MIPS_PC32: |
| return getPcRelocAddend<E, 32, 0>(Buf); |
| } |
| } |
| |
| static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type, |
| uint64_t Val) { |
| // MIPS N64 ABI packs multiple relocations into the single relocation |
| // record. In general, all up to three relocations can have arbitrary |
| // types. In fact, Clang and GCC uses only a few combinations. For now, |
| // we support two of them. That is allow to pass at least all LLVM |
| // test suite cases. |
| // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 |
| // <any relocation> / R_MIPS_64 / R_MIPS_NONE |
| // The first relocation is a 'real' relocation which is calculated |
| // using the corresponding symbol's value. The second and the third |
| // relocations used to modify result of the first one: extend it to |
| // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation |
| // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf |
| uint32_t Type2 = (Type >> 8) & 0xff; |
| uint32_t Type3 = (Type >> 16) & 0xff; |
| if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) |
| return std::make_pair(Type, Val); |
| if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) |
| return std::make_pair(Type2, Val); |
| if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) |
| return std::make_pair(Type3, -Val); |
| error("unsupported relocations combination " + Twine(Type)); |
| return std::make_pair(Type & 0xff, Val); |
| } |
| |
| template <class ELFT> |
| void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, |
| uint64_t Val) const { |
| const endianness E = ELFT::TargetEndianness; |
| // Thread pointer and DRP offsets from the start of TLS data area. |
| // https://www.linux-mips.org/wiki/NPTL |
| if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16) |
| Val -= 0x8000; |
| else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16) |
| Val -= 0x7000; |
| if (ELFT::Is64Bits) |
| std::tie(Type, Val) = calculateMips64RelChain(Type, Val); |
| switch (Type) { |
| case R_MIPS_32: |
| case R_MIPS_GPREL32: |
| write32<E>(Loc, Val); |
| break; |
| case R_MIPS_64: |
| write64<E>(Loc, Val); |
| break; |
| case R_MIPS_26: |
| write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | (Val >> 2)); |
| break; |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT16: |
| case R_MIPS_GPREL16: |
| case R_MIPS_TLS_GD: |
| case R_MIPS_TLS_LDM: |
| checkInt<16>(Val, Type); |
| // fallthrough |
| case R_MIPS_CALL16: |
| case R_MIPS_GOT_OFST: |
| case R_MIPS_LO16: |
| case R_MIPS_PCLO16: |
| case R_MIPS_TLS_DTPREL_LO16: |
| case R_MIPS_TLS_GOTTPREL: |
| case R_MIPS_TLS_TPREL_LO16: |
| writeMipsLo16<E>(Loc, Val); |
| break; |
| case R_MIPS_HI16: |
| case R_MIPS_PCHI16: |
| case R_MIPS_TLS_DTPREL_HI16: |
| case R_MIPS_TLS_TPREL_HI16: |
| writeMipsHi16<E>(Loc, Val); |
| break; |
| case R_MIPS_JALR: |
| // Ignore this optimization relocation for now |
| break; |
| case R_MIPS_PC16: |
| applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); |
| break; |
| case R_MIPS_PC19_S2: |
| applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); |
| break; |
| case R_MIPS_PC21_S2: |
| applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); |
| break; |
| case R_MIPS_PC26_S2: |
| applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); |
| break; |
| case R_MIPS_PC32: |
| applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); |
| break; |
| default: |
| fatal("unrecognized reloc " + Twine(Type)); |
| } |
| } |
| |
| template <class ELFT> |
| bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { |
| return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; |
| } |
| } |
| } |