| //===- OutputSections.cpp -------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "OutputSections.h" |
| #include "Config.h" |
| #include "EhFrame.h" |
| #include "LinkerScript.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| #include "lld/Core/Parallel.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/SHA1.h" |
| #include <map> |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| template <class ELFT> |
| OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : Name(Name) { |
| memset(&Header, 0, sizeof(Elf_Shdr)); |
| Header.sh_type = Type; |
| Header.sh_flags = Flags; |
| Header.sh_addralign = 1; |
| } |
| |
| template <class ELFT> |
| void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) { |
| *Shdr = Header; |
| } |
| |
| template <class ELFT> |
| GotPltSection<ELFT>::GotPltSection() |
| : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| this->Header.sh_addralign = Target->GotPltEntrySize; |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) { |
| Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); |
| Entries.push_back(&Sym); |
| } |
| |
| template <class ELFT> bool GotPltSection<ELFT>::empty() const { |
| return Entries.empty(); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::finalize() { |
| this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) * |
| Target->GotPltEntrySize; |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { |
| Target->writeGotPltHeader(Buf); |
| Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; |
| for (const SymbolBody *B : Entries) { |
| Target->writeGotPlt(Buf, *B); |
| Buf += sizeof(uintX_t); |
| } |
| } |
| |
| template <class ELFT> |
| GotSection<ELFT>::GotSection() |
| : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| if (Config->EMachine == EM_MIPS) |
| this->Header.sh_flags |= SHF_MIPS_GPREL; |
| this->Header.sh_addralign = Target->GotEntrySize; |
| } |
| |
| template <class ELFT> |
| void GotSection<ELFT>::addEntry(SymbolBody &Sym) { |
| Sym.GotIndex = Entries.size(); |
| Entries.push_back(&Sym); |
| } |
| |
| template <class ELFT> |
| void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend, |
| RelExpr Expr) { |
| // For "true" local symbols which can be referenced from the same module |
| // only compiler creates two instructions for address loading: |
| // |
| // lw $8, 0($gp) # R_MIPS_GOT16 |
| // addi $8, $8, 0 # R_MIPS_LO16 |
| // |
| // The first instruction loads high 16 bits of the symbol address while |
| // the second adds an offset. That allows to reduce number of required |
| // GOT entries because only one global offset table entry is necessary |
| // for every 64 KBytes of local data. So for local symbols we need to |
| // allocate number of GOT entries to hold all required "page" addresses. |
| // |
| // All global symbols (hidden and regular) considered by compiler uniformly. |
| // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation |
| // to load address of the symbol. So for each such symbol we need to |
| // allocate dedicated GOT entry to store its address. |
| // |
| // If a symbol is preemptible we need help of dynamic linker to get its |
| // final address. The corresponding GOT entries are allocated in the |
| // "global" part of GOT. Entries for non preemptible global symbol allocated |
| // in the "local" part of GOT. |
| // |
| // See "Global Offset Table" in Chapter 5: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Expr == R_MIPS_GOT_LOCAL_PAGE) { |
| // At this point we do not know final symbol value so to reduce number |
| // of allocated GOT entries do the following trick. Save all output |
| // sections referenced by GOT relocations. Then later in the `finalize` |
| // method calculate number of "pages" required to cover all saved output |
| // section and allocate appropriate number of GOT entries. |
| auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec; |
| MipsOutSections.insert(OutSec); |
| return; |
| } |
| if (Sym.isTls()) { |
| // GOT entries created for MIPS TLS relocations behave like |
| // almost GOT entries from other ABIs. They go to the end |
| // of the global offset table. |
| Sym.GotIndex = Entries.size(); |
| Entries.push_back(&Sym); |
| return; |
| } |
| auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) { |
| if (S.isInGot() && !A) |
| return; |
| size_t NewIndex = Items.size(); |
| if (!MipsGotMap.insert({{&S, A}, NewIndex}).second) |
| return; |
| Items.emplace_back(&S, A); |
| if (!A) |
| S.GotIndex = NewIndex; |
| }; |
| if (Sym.isPreemptible()) { |
| // Ignore addends for preemptible symbols. They got single GOT entry anyway. |
| AddEntry(Sym, 0, MipsGlobal); |
| Sym.IsInGlobalMipsGot = true; |
| } else |
| AddEntry(Sym, Addend, MipsLocal); |
| } |
| |
| template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) { |
| if (Sym.GlobalDynIndex != -1U) |
| return false; |
| Sym.GlobalDynIndex = Entries.size(); |
| // Global Dynamic TLS entries take two GOT slots. |
| Entries.push_back(nullptr); |
| Entries.push_back(&Sym); |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| template <class ELFT> bool GotSection<ELFT>::addTlsIndex() { |
| if (TlsIndexOff != uint32_t(-1)) |
| return false; |
| TlsIndexOff = Entries.size() * sizeof(uintX_t); |
| Entries.push_back(nullptr); |
| Entries.push_back(nullptr); |
| return true; |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) { |
| // Initialize the entry by the %hi(EntryValue) expression |
| // but without right-shifting. |
| EntryValue = (EntryValue + 0x8000) & ~0xffff; |
| // Take into account MIPS GOT header. |
| // See comment in the GotSection::writeTo. |
| size_t NewIndex = MipsLocalGotPos.size() + 2; |
| auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); |
| assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries); |
| return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const { |
| uintX_t Off = MipsPageEntries; |
| if (B.isTls()) |
| Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex; |
| else if (B.IsInGlobalMipsGot) |
| Off += MipsLocal.size() + B.GotIndex; |
| else if (B.isInGot()) |
| Off += B.GotIndex; |
| else { |
| auto It = MipsGotMap.find({&B, Addend}); |
| assert(It != MipsGotMap.end()); |
| Off += It->second; |
| } |
| return Off * sizeof(uintX_t) - MipsGPOffset; |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() { |
| return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) * |
| sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const { |
| return B.GlobalDynIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { |
| return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first; |
| } |
| |
| template <class ELFT> |
| unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { |
| return MipsPageEntries + MipsLocal.size(); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::finalize() { |
| size_t EntriesNum = Entries.size(); |
| if (Config->EMachine == EM_MIPS) { |
| // Take into account MIPS GOT header. |
| // See comment in the GotSection::writeTo. |
| MipsPageEntries += 2; |
| for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) { |
| // Calculate an upper bound of MIPS GOT entries required to store page |
| // addresses of local symbols. We assume the worst case - each 64kb |
| // page of the output section has at least one GOT relocation against it. |
| // Add 0x8000 to the section's size because the page address stored |
| // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. |
| MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; |
| } |
| EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size(); |
| } |
| this->Header.sh_size = EntriesNum * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *&Buf) { |
| // Set the MSB of the second GOT slot. This is not required by any |
| // MIPS ABI documentation, though. |
| // |
| // There is a comment in glibc saying that "The MSB of got[1] of a |
| // gnu object is set to identify gnu objects," and in GNU gold it |
| // says "the second entry will be used by some runtime loaders". |
| // But how this field is being used is unclear. |
| // |
| // We are not really willing to mimic other linkers behaviors |
| // without understanding why they do that, but because all files |
| // generated by GNU tools have this special GOT value, and because |
| // we've been doing this for years, it is probably a safe bet to |
| // keep doing this for now. We really need to revisit this to see |
| // if we had to do this. |
| auto *P = reinterpret_cast<typename ELFT::Off *>(Buf); |
| P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); |
| // Write 'page address' entries to the local part of the GOT. |
| for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) { |
| uint8_t *Entry = Buf + L.second * sizeof(uintX_t); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first); |
| } |
| Buf += MipsPageEntries * sizeof(uintX_t); |
| auto AddEntry = [&](const MipsGotEntry &SA) { |
| uint8_t *Entry = Buf; |
| Buf += sizeof(uintX_t); |
| const SymbolBody* Body = SA.first; |
| uintX_t VA = Body->template getVA<ELFT>(SA.second); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA); |
| }; |
| std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry); |
| std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { |
| if (Config->EMachine == EM_MIPS) |
| writeMipsGot(Buf); |
| for (const SymbolBody *B : Entries) { |
| uint8_t *Entry = Buf; |
| Buf += sizeof(uintX_t); |
| if (!B) |
| continue; |
| if (B->isPreemptible()) |
| continue; // The dynamic linker will take care of it. |
| uintX_t VA = B->getVA<ELFT>(); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA); |
| } |
| } |
| |
| template <class ELFT> |
| PltSection<ELFT>::PltSection() |
| : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { |
| this->Header.sh_addralign = 16; |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { |
| // At beginning of PLT, we have code to call the dynamic linker |
| // to resolve dynsyms at runtime. Write such code. |
| Target->writePltHeader(Buf); |
| size_t Off = Target->PltHeaderSize; |
| |
| for (auto &I : Entries) { |
| const SymbolBody *B = I.first; |
| unsigned RelOff = I.second; |
| uint64_t Got = B->getGotPltVA<ELFT>(); |
| uint64_t Plt = this->getVA() + Off; |
| Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); |
| Off += Target->PltEntrySize; |
| } |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) { |
| Sym.PltIndex = Entries.size(); |
| unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset(); |
| Entries.push_back(std::make_pair(&Sym, RelOff)); |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) |
| : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL, |
| SHF_ALLOC), |
| Sort(Sort) { |
| this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) { |
| Relocs.push_back(Reloc); |
| } |
| |
| template <class ELFT, class RelTy> |
| static bool compRelocations(const RelTy &A, const RelTy &B) { |
| return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { |
| uint8_t *BufBegin = Buf; |
| for (const DynamicReloc<ELFT> &Rel : Relocs) { |
| auto *P = reinterpret_cast<Elf_Rela *>(Buf); |
| Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| |
| if (Config->Rela) |
| P->r_addend = Rel.getAddend(); |
| P->r_offset = Rel.getOffset(); |
| if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got) |
| // Dynamic relocation against MIPS GOT section make deal TLS entries |
| // allocated in the end of the GOT. We need to adjust the offset to take |
| // in account 'local' and 'global' GOT entries. |
| P->r_offset += Out<ELFT>::Got->getMipsTlsOffset(); |
| P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); |
| } |
| |
| if (Sort) { |
| if (Config->Rela) |
| std::stable_sort((Elf_Rela *)BufBegin, |
| (Elf_Rela *)BufBegin + Relocs.size(), |
| compRelocations<ELFT, Elf_Rela>); |
| else |
| std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), |
| compRelocations<ELFT, Elf_Rel>); |
| } |
| } |
| |
| template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { |
| return this->Header.sh_entsize * Relocs.size(); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::finalize() { |
| this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex |
| : Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; |
| } |
| |
| template <class ELFT> |
| InterpSection<ELFT>::InterpSection() |
| : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { |
| this->Header.sh_size = Config->DynamicLinker.size() + 1; |
| } |
| |
| template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { |
| StringRef S = Config->DynamicLinker; |
| memcpy(Buf, S.data(), S.size()); |
| } |
| |
| template <class ELFT> |
| HashTableSection<ELFT>::HashTableSection() |
| : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = sizeof(Elf_Word); |
| this->Header.sh_addralign = sizeof(Elf_Word); |
| } |
| |
| static uint32_t hashSysv(StringRef Name) { |
| uint32_t H = 0; |
| for (char C : Name) { |
| H = (H << 4) + C; |
| uint32_t G = H & 0xf0000000; |
| if (G) |
| H ^= G >> 24; |
| H &= ~G; |
| } |
| return H; |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::finalize() { |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| |
| unsigned NumEntries = 2; // nbucket and nchain. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| // FIXME: This is simplistic. We can try to optimize it, but implementing |
| // support for SHT_GNU_HASH is probably even more profitable. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); |
| this->Header.sh_size = NumEntries * sizeof(Elf_Word); |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NumSymbols; // nbucket |
| *P++ = NumSymbols; // nchain |
| |
| Elf_Word *Buckets = P; |
| Elf_Word *Chains = P + NumSymbols; |
| |
| for (const std::pair<SymbolBody *, unsigned> &P : |
| Out<ELFT>::DynSymTab->getSymbols()) { |
| SymbolBody *Body = P.first; |
| StringRef Name = Body->getName(); |
| unsigned I = Body->DynsymIndex; |
| uint32_t Hash = hashSysv(Name) % NumSymbols; |
| Chains[I] = Buckets[Hash]; |
| Buckets[Hash] = I; |
| } |
| } |
| |
| static uint32_t hashGnu(StringRef Name) { |
| uint32_t H = 5381; |
| for (uint8_t C : Name) |
| H = (H << 5) + H + C; |
| return H; |
| } |
| |
| template <class ELFT> |
| GnuHashTableSection<ELFT>::GnuHashTableSection() |
| : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { |
| if (!NumHashed) |
| return 0; |
| |
| // These values are prime numbers which are not greater than 2^(N-1) + 1. |
| // In result, for any particular NumHashed we return a prime number |
| // which is not greater than NumHashed. |
| static const unsigned Primes[] = { |
| 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, |
| 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; |
| |
| return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), |
| array_lengthof(Primes) - 1)]; |
| } |
| |
| // Bloom filter estimation: at least 8 bits for each hashed symbol. |
| // GNU Hash table requirement: it should be a power of 2, |
| // the minimum value is 1, even for an empty table. |
| // Expected results for a 32-bit target: |
| // calcMaskWords(0..4) = 1 |
| // calcMaskWords(5..8) = 2 |
| // calcMaskWords(9..16) = 4 |
| // For a 64-bit target: |
| // calcMaskWords(0..8) = 1 |
| // calcMaskWords(9..16) = 2 |
| // calcMaskWords(17..32) = 4 |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { |
| if (!NumHashed) |
| return 1; |
| return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { |
| unsigned NumHashed = Symbols.size(); |
| NBuckets = calcNBuckets(NumHashed); |
| MaskWords = calcMaskWords(NumHashed); |
| // Second hash shift estimation: just predefined values. |
| Shift2 = ELFT::Is64Bits ? 6 : 5; |
| |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = sizeof(Elf_Word) * 4 // Header |
| + sizeof(Elf_Off) * MaskWords // Bloom Filter |
| + sizeof(Elf_Word) * NBuckets // Hash Buckets |
| + sizeof(Elf_Word) * NumHashed; // Hash Values |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| writeHeader(Buf); |
| if (Symbols.empty()) |
| return; |
| writeBloomFilter(Buf); |
| writeHashTable(Buf); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NBuckets; |
| *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size(); |
| *P++ = MaskWords; |
| *P++ = Shift2; |
| Buf = reinterpret_cast<uint8_t *>(P); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { |
| unsigned C = sizeof(Elf_Off) * 8; |
| |
| auto *Masks = reinterpret_cast<Elf_Off *>(Buf); |
| for (const SymbolData &Sym : Symbols) { |
| size_t Pos = (Sym.Hash / C) & (MaskWords - 1); |
| uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | |
| (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); |
| Masks[Pos] |= V; |
| } |
| Buf += sizeof(Elf_Off) * MaskWords; |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { |
| Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); |
| Elf_Word *Values = Buckets + NBuckets; |
| |
| int PrevBucket = -1; |
| int I = 0; |
| for (const SymbolData &Sym : Symbols) { |
| int Bucket = Sym.Hash % NBuckets; |
| assert(PrevBucket <= Bucket); |
| if (Bucket != PrevBucket) { |
| Buckets[Bucket] = Sym.Body->DynsymIndex; |
| PrevBucket = Bucket; |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| Values[I] = Sym.Hash & ~1; |
| ++I; |
| } |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| |
| // Add symbols to this symbol hash table. Note that this function |
| // destructively sort a given vector -- which is needed because |
| // GNU-style hash table places some sorting requirements. |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::addSymbols( |
| std::vector<std::pair<SymbolBody *, size_t>> &V) { |
| // Ideally this will just be 'auto' but GCC 6.1 is not able |
| // to deduce it correctly. |
| std::vector<std::pair<SymbolBody *, size_t>>::iterator Mid = |
| std::stable_partition(V.begin(), V.end(), |
| [](std::pair<SymbolBody *, size_t> &P) { |
| return P.first->isUndefined(); |
| }); |
| if (Mid == V.end()) |
| return; |
| for (auto I = Mid, E = V.end(); I != E; ++I) { |
| SymbolBody *B = I->first; |
| size_t StrOff = I->second; |
| Symbols.push_back({B, StrOff, hashGnu(B->getName())}); |
| } |
| |
| unsigned NBuckets = calcNBuckets(Symbols.size()); |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [&](const SymbolData &L, const SymbolData &R) { |
| return L.Hash % NBuckets < R.Hash % NBuckets; |
| }); |
| |
| V.erase(Mid, V.end()); |
| for (const SymbolData &Sym : Symbols) |
| V.push_back({Sym.Body, Sym.STName}); |
| } |
| |
| // Returns the number of version definition entries. Because the first entry |
| // is for the version definition itself, it is the number of versioned symbols |
| // plus one. Note that we don't support multiple versions yet. |
| static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection() |
| : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { |
| Elf_Shdr &Header = this->Header; |
| Header.sh_addralign = sizeof(uintX_t); |
| Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Config->EMachine == EM_MIPS) |
| Header.sh_flags = SHF_ALLOC; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| Elf_Shdr &Header = this->Header; |
| Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; |
| |
| auto Add = [=](Entry E) { Entries.push_back(E); }; |
| |
| // Add strings. We know that these are the last strings to be added to |
| // DynStrTab and doing this here allows this function to set DT_STRSZ. |
| if (!Config->RPath.empty()) |
| Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, |
| Out<ELFT>::DynStrTab->addString(Config->RPath)}); |
| for (const std::unique_ptr<SharedFile<ELFT>> &F : |
| Symtab<ELFT>::X->getSharedFiles()) |
| if (F->isNeeded()) |
| Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())}); |
| if (!Config->SoName.empty()) |
| Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)}); |
| |
| Out<ELFT>::DynStrTab->finalize(); |
| |
| if (Out<ELFT>::RelaDyn->hasRelocs()) { |
| bool IsRela = Config->Rela; |
| Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn}); |
| Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()}); |
| Add({IsRela ? DT_RELAENT : DT_RELENT, |
| uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); |
| } |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { |
| Add({DT_JMPREL, Out<ELFT>::RelaPlt}); |
| Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()}); |
| Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, |
| Out<ELFT>::GotPlt}); |
| Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); |
| } |
| |
| Add({DT_SYMTAB, Out<ELFT>::DynSymTab}); |
| Add({DT_SYMENT, sizeof(Elf_Sym)}); |
| Add({DT_STRTAB, Out<ELFT>::DynStrTab}); |
| Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()}); |
| if (Out<ELFT>::GnuHashTab) |
| Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab}); |
| if (Out<ELFT>::HashTab) |
| Add({DT_HASH, Out<ELFT>::HashTab}); |
| |
| if (PreInitArraySec) { |
| Add({DT_PREINIT_ARRAY, PreInitArraySec}); |
| Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()}); |
| } |
| if (InitArraySec) { |
| Add({DT_INIT_ARRAY, InitArraySec}); |
| Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()}); |
| } |
| if (FiniArraySec) { |
| Add({DT_FINI_ARRAY, FiniArraySec}); |
| Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()}); |
| } |
| |
| if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init)) |
| Add({DT_INIT, B}); |
| if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini)) |
| Add({DT_FINI, B}); |
| |
| uint32_t DtFlags = 0; |
| uint32_t DtFlags1 = 0; |
| if (Config->Bsymbolic) |
| DtFlags |= DF_SYMBOLIC; |
| if (Config->ZNodelete) |
| DtFlags1 |= DF_1_NODELETE; |
| if (Config->ZNow) { |
| DtFlags |= DF_BIND_NOW; |
| DtFlags1 |= DF_1_NOW; |
| } |
| if (Config->ZOrigin) { |
| DtFlags |= DF_ORIGIN; |
| DtFlags1 |= DF_1_ORIGIN; |
| } |
| |
| if (DtFlags) |
| Add({DT_FLAGS, DtFlags}); |
| if (DtFlags1) |
| Add({DT_FLAGS_1, DtFlags1}); |
| |
| if (!Config->Entry.empty()) |
| Add({DT_DEBUG, (uint64_t)0}); |
| |
| bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; |
| if (HasVerNeed || Out<ELFT>::VerDef) |
| Add({DT_VERSYM, Out<ELFT>::VerSym}); |
| if (Out<ELFT>::VerDef) { |
| Add({DT_VERDEF, Out<ELFT>::VerDef}); |
| Add({DT_VERDEFNUM, getVerDefNum()}); |
| } |
| if (HasVerNeed) { |
| Add({DT_VERNEED, Out<ELFT>::VerNeed}); |
| Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()}); |
| } |
| |
| if (Config->EMachine == EM_MIPS) { |
| Add({DT_MIPS_RLD_VERSION, 1}); |
| Add({DT_MIPS_FLAGS, RHF_NOTPOT}); |
| Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); |
| Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()}); |
| Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()}); |
| if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) |
| Add({DT_MIPS_GOTSYM, B->DynsymIndex}); |
| else |
| Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()}); |
| Add({DT_PLTGOT, Out<ELFT>::Got}); |
| if (Out<ELFT>::MipsRldMap) |
| Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap}); |
| } |
| |
| // +1 for DT_NULL |
| Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *P = reinterpret_cast<Elf_Dyn *>(Buf); |
| |
| for (const Entry &E : Entries) { |
| P->d_tag = E.Tag; |
| switch (E.Kind) { |
| case Entry::SecAddr: |
| P->d_un.d_ptr = E.OutSec->getVA(); |
| break; |
| case Entry::SymAddr: |
| P->d_un.d_ptr = E.Sym->template getVA<ELFT>(); |
| break; |
| case Entry::PlainInt: |
| P->d_un.d_val = E.Val; |
| break; |
| } |
| ++P; |
| } |
| } |
| |
| template <class ELFT> |
| EhFrameHeader<ELFT>::EhFrameHeader() |
| : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} |
| |
| // .eh_frame_hdr contains a binary search table of pointers to FDEs. |
| // Each entry of the search table consists of two values, |
| // the starting PC from where FDEs covers, and the FDE's address. |
| // It is sorted by PC. |
| template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| // Sort the FDE list by their PC and uniqueify. Usually there is only |
| // one FDE for a PC (i.e. function), but if ICF merges two functions |
| // into one, there can be more than one FDEs pointing to the address. |
| auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; |
| std::stable_sort(Fdes.begin(), Fdes.end(), Less); |
| auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; |
| Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); |
| |
| Buf[0] = 1; |
| Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
| Buf[2] = DW_EH_PE_udata4; |
| Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; |
| write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4); |
| write32<E>(Buf + 8, Fdes.size()); |
| Buf += 12; |
| |
| uintX_t VA = this->getVA(); |
| for (FdeData &Fde : Fdes) { |
| write32<E>(Buf, Fde.Pc - VA); |
| write32<E>(Buf + 4, Fde.FdeVA - VA); |
| Buf += 8; |
| } |
| } |
| |
| template <class ELFT> void EhFrameHeader<ELFT>::finalize() { |
| // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. |
| this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8; |
| } |
| |
| template <class ELFT> |
| void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { |
| Fdes.push_back({Pc, FdeVA}); |
| } |
| |
| template <class ELFT> |
| OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) { |
| if (Type == SHT_RELA) |
| this->Header.sh_entsize = sizeof(Elf_Rela); |
| else if (Type == SHT_REL) |
| this->Header.sh_entsize = sizeof(Elf_Rel); |
| } |
| |
| template <class ELFT> void OutputSection<ELFT>::finalize() { |
| uint32_t Type = this->Header.sh_type; |
| if (Type != SHT_RELA && Type != SHT_REL) |
| return; |
| this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex; |
| // sh_info for SHT_REL[A] sections should contain the section header index of |
| // the section to which the relocation applies. |
| InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection(); |
| this->Header.sh_info = S->OutSec->SectionIndex; |
| } |
| |
| template <class ELFT> |
| void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| assert(C->Live); |
| auto *S = cast<InputSection<ELFT>>(C); |
| Sections.push_back(S); |
| S->OutSec = this; |
| this->updateAlignment(S->Alignment); |
| } |
| |
| // If an input string is in the form of "foo.N" where N is a number, |
| // return N. Otherwise, returns 65536, which is one greater than the |
| // lowest priority. |
| static int getPriority(StringRef S) { |
| size_t Pos = S.rfind('.'); |
| if (Pos == StringRef::npos) |
| return 65536; |
| int V; |
| if (S.substr(Pos + 1).getAsInteger(10, V)) |
| return 65536; |
| return V; |
| } |
| |
| // This function is called after we sort input sections |
| // and scan relocations to setup sections' offsets. |
| template <class ELFT> void OutputSection<ELFT>::assignOffsets() { |
| uintX_t Off = this->Header.sh_size; |
| for (InputSection<ELFT> *S : Sections) { |
| Off = alignTo(Off, S->Alignment); |
| S->OutSecOff = Off; |
| Off += S->getSize(); |
| } |
| this->Header.sh_size = Off; |
| } |
| |
| // Sorts input sections by section name suffixes, so that .foo.N comes |
| // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. |
| // We want to keep the original order if the priorities are the same |
| // because the compiler keeps the original initialization order in a |
| // translation unit and we need to respect that. |
| // For more detail, read the section of the GCC's manual about init_priority. |
| template <class ELFT> void OutputSection<ELFT>::sortInitFini() { |
| // Sort sections by priority. |
| typedef std::pair<int, InputSection<ELFT> *> Pair; |
| auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; |
| |
| std::vector<Pair> V; |
| for (InputSection<ELFT> *S : Sections) |
| V.push_back({getPriority(S->getSectionName()), S}); |
| std::stable_sort(V.begin(), V.end(), Comp); |
| Sections.clear(); |
| for (Pair &P : V) |
| Sections.push_back(P.second); |
| } |
| |
| // Returns true if S matches /Filename.?\.o$/. |
| static bool isCrtBeginEnd(StringRef S, StringRef Filename) { |
| if (!S.endswith(".o")) |
| return false; |
| S = S.drop_back(2); |
| if (S.endswith(Filename)) |
| return true; |
| return !S.empty() && S.drop_back().endswith(Filename); |
| } |
| |
| static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } |
| static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } |
| |
| // .ctors and .dtors are sorted by this priority from highest to lowest. |
| // |
| // 1. The section was contained in crtbegin (crtbegin contains |
| // some sentinel value in its .ctors and .dtors so that the runtime |
| // can find the beginning of the sections.) |
| // |
| // 2. The section has an optional priority value in the form of ".ctors.N" |
| // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, |
| // they are compared as string rather than number. |
| // |
| // 3. The section is just ".ctors" or ".dtors". |
| // |
| // 4. The section was contained in crtend, which contains an end marker. |
| // |
| // In an ideal world, we don't need this function because .init_array and |
| // .ctors are duplicate features (and .init_array is newer.) However, there |
| // are too many real-world use cases of .ctors, so we had no choice to |
| // support that with this rather ad-hoc semantics. |
| template <class ELFT> |
| static bool compCtors(const InputSection<ELFT> *A, |
| const InputSection<ELFT> *B) { |
| bool BeginA = isCrtbegin(A->getFile()->getName()); |
| bool BeginB = isCrtbegin(B->getFile()->getName()); |
| if (BeginA != BeginB) |
| return BeginA; |
| bool EndA = isCrtend(A->getFile()->getName()); |
| bool EndB = isCrtend(B->getFile()->getName()); |
| if (EndA != EndB) |
| return EndB; |
| StringRef X = A->getSectionName(); |
| StringRef Y = B->getSectionName(); |
| assert(X.startswith(".ctors") || X.startswith(".dtors")); |
| assert(Y.startswith(".ctors") || Y.startswith(".dtors")); |
| X = X.substr(6); |
| Y = Y.substr(6); |
| if (X.empty() && Y.empty()) |
| return false; |
| return X < Y; |
| } |
| |
| // Sorts input sections by the special rules for .ctors and .dtors. |
| // Unfortunately, the rules are different from the one for .{init,fini}_array. |
| // Read the comment above. |
| template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() { |
| std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>); |
| } |
| |
| static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) { |
| size_t I = 0; |
| for (; I + A.size() < Size; I += A.size()) |
| memcpy(Buf + I, A.data(), A.size()); |
| memcpy(Buf + I, A.data(), Size - I); |
| } |
| |
| template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name); |
| if (!Filler.empty()) |
| fill(Buf, this->getSize(), Filler); |
| if (Config->Threads) { |
| parallel_for_each(Sections.begin(), Sections.end(), |
| [=](InputSection<ELFT> *C) { C->writeTo(Buf); }); |
| } else { |
| for (InputSection<ELFT> *C : Sections) |
| C->writeTo(Buf); |
| } |
| } |
| |
| template <class ELFT> |
| EhOutputSection<ELFT>::EhOutputSection() |
| : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} |
| |
| // Returns the first relocation that points to a region |
| // between Begin and Begin+Size. |
| template <class IntTy, class RelTy> |
| static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef<RelTy> &Rels) { |
| for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { |
| if (I->r_offset < Begin) |
| continue; |
| |
| // Truncate Rels for fast access. That means we expect that the |
| // relocations are sorted and we are looking up symbols in |
| // sequential order. It is naturally satisfied for .eh_frame. |
| Rels = Rels.slice(I - Rels.begin()); |
| if (I->r_offset < Begin + Size) |
| return I; |
| return nullptr; |
| } |
| Rels = ArrayRef<RelTy>(); |
| return nullptr; |
| } |
| |
| // Search for an existing CIE record or create a new one. |
| // CIE records from input object files are uniquified by their contents |
| // and where their relocations point to. |
| template <class ELFT> |
| template <class RelTy> |
| CieRecord *EhOutputSection<ELFT>::addCie(SectionPiece &Piece, |
| EhInputSection<ELFT> *Sec, |
| ArrayRef<RelTy> &Rels) { |
| const endianness E = ELFT::TargetEndianness; |
| if (read32<E>(Piece.data().data() + 4) != 0) |
| fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName()); |
| |
| SymbolBody *Personality = nullptr; |
| if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels)) |
| Personality = &Sec->getFile()->getRelocTargetSym(*Rel); |
| |
| // Search for an existing CIE by CIE contents/relocation target pair. |
| CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; |
| |
| // If not found, create a new one. |
| if (Cie->Piece == nullptr) { |
| Cie->Piece = &Piece; |
| Cies.push_back(Cie); |
| } |
| return Cie; |
| } |
| |
| // There is one FDE per function. Returns true if a given FDE |
| // points to a live function. |
| template <class ELFT> |
| template <class RelTy> |
| bool EhOutputSection<ELFT>::isFdeLive(SectionPiece &Piece, |
| EhInputSection<ELFT> *Sec, |
| ArrayRef<RelTy> &Rels) { |
| const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels); |
| if (!Rel) |
| fatal("FDE doesn't reference another section"); |
| SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel); |
| auto *D = dyn_cast<DefinedRegular<ELFT>>(&B); |
| if (!D || !D->Section) |
| return false; |
| InputSectionBase<ELFT> *Target = D->Section->Repl; |
| return Target && Target->Live; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. In general, there |
| // is one CIE record per input object file which is followed by |
| // a list of FDEs. This function searches an existing CIE or create a new |
| // one and associates FDEs to the CIE. |
| template <class ELFT> |
| template <class RelTy> |
| void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec, |
| ArrayRef<RelTy> Rels) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| DenseMap<size_t, CieRecord *> OffsetToCie; |
| for (SectionPiece &Piece : Sec->Pieces) { |
| // The empty record is the end marker. |
| if (Piece.size() == 4) |
| return; |
| |
| size_t Offset = Piece.InputOff; |
| uint32_t ID = read32<E>(Piece.data().data() + 4); |
| if (ID == 0) { |
| OffsetToCie[Offset] = addCie(Piece, Sec, Rels); |
| continue; |
| } |
| |
| uint32_t CieOffset = Offset + 4 - ID; |
| CieRecord *Cie = OffsetToCie[CieOffset]; |
| if (!Cie) |
| fatal("invalid CIE reference"); |
| |
| if (!isFdeLive(Piece, Sec, Rels)) |
| continue; |
| Cie->FdePieces.push_back(&Piece); |
| NumFdes++; |
| } |
| } |
| |
| template <class ELFT> |
| void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *Sec = cast<EhInputSection<ELFT>>(C); |
| Sec->OutSec = this; |
| this->updateAlignment(Sec->Alignment); |
| Sections.push_back(Sec); |
| |
| // .eh_frame is a sequence of CIE or FDE records. This function |
| // splits it into pieces so that we can call |
| // SplitInputSection::getSectionPiece on the section. |
| Sec->split(); |
| if (Sec->Pieces.empty()) |
| return; |
| |
| if (const Elf_Shdr *RelSec = Sec->RelocSection) { |
| ELFFile<ELFT> &Obj = Sec->getFile()->getObj(); |
| if (RelSec->sh_type == SHT_RELA) |
| addSectionAux(Sec, Obj.relas(RelSec)); |
| else |
| addSectionAux(Sec, Obj.rels(RelSec)); |
| return; |
| } |
| addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); |
| } |
| |
| template <class ELFT> |
| static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { |
| memcpy(Buf, D.data(), D.size()); |
| |
| // Fix the size field. -4 since size does not include the size field itself. |
| const endianness E = ELFT::TargetEndianness; |
| write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); |
| } |
| |
| template <class ELFT> void EhOutputSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| size_t Off = 0; |
| for (CieRecord *Cie : Cies) { |
| Cie->Piece->OutputOff = Off; |
| Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); |
| |
| for (SectionPiece *Fde : Cie->FdePieces) { |
| Fde->OutputOff = Off; |
| Off += alignTo(Fde->size(), sizeof(uintX_t)); |
| } |
| } |
| this->Header.sh_size = Off; |
| } |
| |
| template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { |
| const endianness E = ELFT::TargetEndianness; |
| switch (Size) { |
| case DW_EH_PE_udata2: |
| return read16<E>(Buf); |
| case DW_EH_PE_udata4: |
| return read32<E>(Buf); |
| case DW_EH_PE_udata8: |
| return read64<E>(Buf); |
| case DW_EH_PE_absptr: |
| if (ELFT::Is64Bits) |
| return read64<E>(Buf); |
| return read32<E>(Buf); |
| } |
| fatal("unknown FDE size encoding"); |
| } |
| |
| // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. |
| // We need it to create .eh_frame_hdr section. |
| template <class ELFT> |
| typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, |
| uint8_t Enc) { |
| // The starting address to which this FDE applies is |
| // stored at FDE + 8 byte. |
| size_t Off = FdeOff + 8; |
| uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); |
| if ((Enc & 0x70) == DW_EH_PE_absptr) |
| return Addr; |
| if ((Enc & 0x70) == DW_EH_PE_pcrel) |
| return Addr + this->getVA() + Off; |
| fatal("unknown FDE size relative encoding"); |
| } |
| |
| template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| for (CieRecord *Cie : Cies) { |
| size_t CieOffset = Cie->Piece->OutputOff; |
| writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data()); |
| |
| for (SectionPiece *Fde : Cie->FdePieces) { |
| size_t Off = Fde->OutputOff; |
| writeCieFde<ELFT>(Buf + Off, Fde->data()); |
| |
| // FDE's second word should have the offset to an associated CIE. |
| // Write it. |
| write32<E>(Buf + Off + 4, Off + 4 - CieOffset); |
| } |
| } |
| |
| for (EhInputSection<ELFT> *S : Sections) |
| S->relocate(Buf, nullptr); |
| |
| // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table |
| // to get a FDE from an address to which FDE is applied. So here |
| // we obtain two addresses and pass them to EhFrameHdr object. |
| if (Out<ELFT>::EhFrameHdr) { |
| for (CieRecord *Cie : Cies) { |
| uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data()); |
| for (SectionPiece *Fde : Cie->FdePieces) { |
| uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); |
| uintX_t FdeVA = this->getVA() + Fde->OutputOff; |
| Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); |
| } |
| } |
| } |
| } |
| |
| template <class ELFT> |
| MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags, uintX_t Alignment) |
| : OutputSectionBase<ELFT>(Name, Type, Flags), |
| Builder(StringTableBuilder::RAW, Alignment) {} |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| if (shouldTailMerge()) { |
| StringRef Data = Builder.data(); |
| memcpy(Buf, Data.data(), Data.size()); |
| return; |
| } |
| for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) { |
| StringRef Data = P.first.Val; |
| memcpy(Buf + P.second, Data.data(), Data.size()); |
| } |
| } |
| |
| static StringRef toStringRef(ArrayRef<uint8_t> A) { |
| return {(const char *)A.data(), A.size()}; |
| } |
| |
| template <class ELFT> |
| void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *Sec = cast<MergeInputSection<ELFT>>(C); |
| Sec->OutSec = this; |
| this->updateAlignment(Sec->Alignment); |
| this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize; |
| Sections.push_back(Sec); |
| |
| bool IsString = this->Header.sh_flags & SHF_STRINGS; |
| |
| for (SectionPiece &Piece : Sec->Pieces) { |
| if (!Piece.Live) |
| continue; |
| uintX_t OutputOffset = Builder.add(toStringRef(Piece.data())); |
| if (!IsString || !shouldTailMerge()) |
| Piece.OutputOff = OutputOffset; |
| } |
| } |
| |
| template <class ELFT> |
| unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) { |
| return Builder.getOffset(Val); |
| } |
| |
| template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { |
| return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; |
| } |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::finalize() { |
| if (shouldTailMerge()) |
| Builder.finalize(); |
| this->Header.sh_size = Builder.getSize(); |
| } |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() { |
| for (MergeInputSection<ELFT> *Sec : Sections) |
| Sec->finalizePieces(); |
| } |
| |
| template <class ELFT> |
| StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) |
| : OutputSectionBase<ELFT>(Name, SHT_STRTAB, |
| Dynamic ? (uintX_t)SHF_ALLOC : 0), |
| Dynamic(Dynamic) {} |
| |
| // Adds a string to the string table. If HashIt is true we hash and check for |
| // duplicates. It is optional because the name of global symbols are already |
| // uniqued and hashing them again has a big cost for a small value: uniquing |
| // them with some other string that happens to be the same. |
| template <class ELFT> |
| unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) { |
| if (HashIt) { |
| auto R = StringMap.insert(std::make_pair(S, Size)); |
| if (!R.second) |
| return R.first->second; |
| } |
| unsigned Ret = Size; |
| Size += S.size() + 1; |
| Strings.push_back(S); |
| return Ret; |
| } |
| |
| template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| // ELF string tables start with NUL byte, so advance the pointer by one. |
| ++Buf; |
| for (StringRef S : Strings) { |
| memcpy(Buf, S.data(), S.size()); |
| Buf += S.size() + 1; |
| } |
| } |
| |
| template <class ELFT> |
| typename ELFT::uint DynamicReloc<ELFT>::getOffset() const { |
| if (OutputSec) |
| return OutputSec->getVA() + OffsetInSec; |
| return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec); |
| } |
| |
| template <class ELFT> |
| typename ELFT::uint DynamicReloc<ELFT>::getAddend() const { |
| if (UseSymVA) |
| return Sym->getVA<ELFT>(Addend); |
| return Addend; |
| } |
| |
| template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const { |
| if (Sym && !UseSymVA) |
| return Sym->DynsymIndex; |
| return 0; |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection( |
| StringTableSection<ELFT> &StrTabSec) |
| : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", |
| StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), |
| StrTabSec(StrTabSec) { |
| this->Header.sh_entsize = sizeof(Elf_Sym); |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L, |
| const std::pair<SymbolBody *, unsigned> &R) { |
| // Sort entries related to non-local preemptible symbols by GOT indexes. |
| // All other entries go to the first part of GOT in arbitrary order. |
| bool LIsInLocalGot = !L.first->IsInGlobalMipsGot; |
| bool RIsInLocalGot = !R.first->IsInGlobalMipsGot; |
| if (LIsInLocalGot || RIsInLocalGot) |
| return !RIsInLocalGot; |
| return L.first->GotIndex < R.first->GotIndex; |
| } |
| |
| static uint8_t getSymbolBinding(SymbolBody *Body) { |
| Symbol *S = Body->symbol(); |
| uint8_t Visibility = S->Visibility; |
| if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) |
| return STB_LOCAL; |
| if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) |
| return STB_GLOBAL; |
| return S->Binding; |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); |
| this->Header.sh_link = StrTabSec.SectionIndex; |
| this->Header.sh_info = NumLocals + 1; |
| |
| if (Config->Relocatable) { |
| size_t I = NumLocals; |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) |
| P.first->DynsymIndex = ++I; |
| return; |
| } |
| |
| if (!StrTabSec.isDynamic()) { |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [](const std::pair<SymbolBody *, unsigned> &L, |
| const std::pair<SymbolBody *, unsigned> &R) { |
| return getSymbolBinding(L.first) == STB_LOCAL && |
| getSymbolBinding(R.first) != STB_LOCAL; |
| }); |
| return; |
| } |
| if (Out<ELFT>::GnuHashTab) |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| Out<ELFT>::GnuHashTab->addSymbols(Symbols); |
| else if (Config->EMachine == EM_MIPS) |
| std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); |
| size_t I = 0; |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) |
| P.first->DynsymIndex = ++I; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) { |
| Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| Buf += sizeof(Elf_Sym); |
| |
| // All symbols with STB_LOCAL binding precede the weak and global symbols. |
| // .dynsym only contains global symbols. |
| if (!Config->DiscardAll && !StrTabSec.isDynamic()) |
| writeLocalSymbols(Buf); |
| |
| writeGlobalSymbols(Buf); |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { |
| // Iterate over all input object files to copy their local symbols |
| // to the output symbol table pointed by Buf. |
| for (const std::unique_ptr<ObjectFile<ELFT>> &File : |
| Symtab<ELFT>::X->getObjectFiles()) { |
| for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P : |
| File->KeptLocalSyms) { |
| const DefinedRegular<ELFT> &Body = *P.first; |
| InputSectionBase<ELFT> *Section = Body.Section; |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| |
| if (!Section) { |
| ESym->st_shndx = SHN_ABS; |
| ESym->st_value = Body.Value; |
| } else { |
| const OutputSectionBase<ELFT> *OutSec = Section->OutSec; |
| ESym->st_shndx = OutSec->SectionIndex; |
| ESym->st_value = OutSec->getVA() + Section->getOffset(Body); |
| } |
| ESym->st_name = P.second; |
| ESym->st_size = Body.template getSize<ELFT>(); |
| ESym->setBindingAndType(STB_LOCAL, Body.Type); |
| Buf += sizeof(*ESym); |
| } |
| } |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { |
| // Write the internal symbol table contents to the output symbol table |
| // pointed by Buf. |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) { |
| SymbolBody *Body = P.first; |
| size_t StrOff = P.second; |
| |
| uint8_t Type = Body->Type; |
| uintX_t Size = Body->getSize<ELFT>(); |
| |
| ESym->setBindingAndType(getSymbolBinding(Body), Type); |
| ESym->st_size = Size; |
| ESym->st_name = StrOff; |
| ESym->setVisibility(Body->symbol()->Visibility); |
| ESym->st_value = Body->getVA<ELFT>(); |
| |
| if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body)) |
| ESym->st_shndx = OutSec->SectionIndex; |
| else if (isa<DefinedRegular<ELFT>>(Body)) |
| ESym->st_shndx = SHN_ABS; |
| |
| // On MIPS we need to mark symbol which has a PLT entry and requires pointer |
| // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker |
| // distinguish such symbols and MIPS lazy-binding stubs. |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| if (Config->EMachine == EM_MIPS && Body->isInPlt() && |
| Body->NeedsCopyOrPltAddr) |
| ESym->st_other |= STO_MIPS_PLT; |
| ++ESym; |
| } |
| } |
| |
| template <class ELFT> |
| const OutputSectionBase<ELFT> * |
| SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) { |
| switch (Sym->kind()) { |
| case SymbolBody::DefinedSyntheticKind: |
| return cast<DefinedSynthetic<ELFT>>(Sym)->Section; |
| case SymbolBody::DefinedRegularKind: { |
| auto &D = cast<DefinedRegular<ELFT>>(*Sym); |
| if (D.Section) |
| return D.Section->OutSec; |
| break; |
| } |
| case SymbolBody::DefinedCommonKind: |
| return Out<ELFT>::Bss; |
| case SymbolBody::SharedKind: |
| if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy()) |
| return Out<ELFT>::Bss; |
| break; |
| case SymbolBody::UndefinedKind: |
| case SymbolBody::LazyArchiveKind: |
| case SymbolBody::LazyObjectKind: |
| break; |
| case SymbolBody::DefinedBitcodeKind: |
| llvm_unreachable("should have been replaced"); |
| } |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| VersionDefinitionSection<ELFT>::VersionDefinitionSection() |
| : OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) { |
| this->Header.sh_addralign = sizeof(uint32_t); |
| } |
| |
| static StringRef getFileDefName() { |
| if (!Config->SoName.empty()) |
| return Config->SoName; |
| return Config->OutputFile; |
| } |
| |
| template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() { |
| FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName()); |
| for (VersionDefinition &V : Config->VersionDefinitions) |
| V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name); |
| |
| this->Header.sh_size = |
| (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); |
| this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; |
| |
| // sh_info should be set to the number of definitions. This fact is missed in |
| // documentation, but confirmed by binutils community: |
| // https://sourceware.org/ml/binutils/2014-11/msg00355.html |
| this->Header.sh_info = getVerDefNum(); |
| } |
| |
| template <class ELFT> |
| void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, |
| StringRef Name, size_t NameOff) { |
| auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); |
| Verdef->vd_version = 1; |
| Verdef->vd_cnt = 1; |
| Verdef->vd_aux = sizeof(Elf_Verdef); |
| Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); |
| Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); |
| Verdef->vd_ndx = Index; |
| Verdef->vd_hash = hashSysv(Name); |
| |
| auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); |
| Verdaux->vda_name = NameOff; |
| Verdaux->vda_next = 0; |
| } |
| |
| template <class ELFT> |
| void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { |
| writeOne(Buf, 1, getFileDefName(), FileDefNameOff); |
| |
| for (VersionDefinition &V : Config->VersionDefinitions) { |
| Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); |
| writeOne(Buf, V.Id, V.Name, V.NameOff); |
| } |
| |
| // Need to terminate the last version definition. |
| Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); |
| Verdef->vd_next = 0; |
| } |
| |
| template <class ELFT> |
| VersionTableSection<ELFT>::VersionTableSection() |
| : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { |
| this->Header.sh_addralign = sizeof(uint16_t); |
| } |
| |
| template <class ELFT> void VersionTableSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1); |
| this->Header.sh_entsize = sizeof(Elf_Versym); |
| // At the moment of june 2016 GNU docs does not mention that sh_link field |
| // should be set, but Sun docs do. Also readelf relies on this field. |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| } |
| |
| template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; |
| for (const std::pair<SymbolBody *, size_t> &P : |
| Out<ELFT>::DynSymTab->getSymbols()) { |
| OutVersym->vs_index = P.first->symbol()->VersionId; |
| ++OutVersym; |
| } |
| } |
| |
| template <class ELFT> |
| VersionNeedSection<ELFT>::VersionNeedSection() |
| : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { |
| this->Header.sh_addralign = sizeof(uint32_t); |
| |
| // Identifiers in verneed section start at 2 because 0 and 1 are reserved |
| // for VER_NDX_LOCAL and VER_NDX_GLOBAL. |
| // First identifiers are reserved by verdef section if it exist. |
| NextIndex = getVerDefNum() + 1; |
| } |
| |
| template <class ELFT> |
| void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) { |
| if (!SS->Verdef) { |
| SS->symbol()->VersionId = VER_NDX_GLOBAL; |
| return; |
| } |
| SharedFile<ELFT> *F = SS->file(); |
| // If we don't already know that we need an Elf_Verneed for this DSO, prepare |
| // to create one by adding it to our needed list and creating a dynstr entry |
| // for the soname. |
| if (F->VerdefMap.empty()) |
| Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())}); |
| typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef]; |
| // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, |
| // prepare to create one by allocating a version identifier and creating a |
| // dynstr entry for the version name. |
| if (NV.Index == 0) { |
| NV.StrTab = Out<ELFT>::DynStrTab->addString( |
| SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); |
| NV.Index = NextIndex++; |
| } |
| SS->symbol()->VersionId = NV.Index; |
| } |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { |
| // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. |
| auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); |
| auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); |
| |
| for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { |
| // Create an Elf_Verneed for this DSO. |
| Verneed->vn_version = 1; |
| Verneed->vn_cnt = P.first->VerdefMap.size(); |
| Verneed->vn_file = P.second; |
| Verneed->vn_aux = |
| reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); |
| Verneed->vn_next = sizeof(Elf_Verneed); |
| ++Verneed; |
| |
| // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over |
| // VerdefMap, which will only contain references to needed version |
| // definitions. Each Elf_Vernaux is based on the information contained in |
| // the Elf_Verdef in the source DSO. This loop iterates over a std::map of |
| // pointers, but is deterministic because the pointers refer to Elf_Verdef |
| // data structures within a single input file. |
| for (auto &NV : P.first->VerdefMap) { |
| Vernaux->vna_hash = NV.first->vd_hash; |
| Vernaux->vna_flags = 0; |
| Vernaux->vna_other = NV.second.Index; |
| Vernaux->vna_name = NV.second.StrTab; |
| Vernaux->vna_next = sizeof(Elf_Vernaux); |
| ++Vernaux; |
| } |
| |
| Vernaux[-1].vna_next = 0; |
| } |
| Verneed[-1].vn_next = 0; |
| } |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::finalize() { |
| this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; |
| this->Header.sh_info = Needed.size(); |
| unsigned Size = Needed.size() * sizeof(Elf_Verneed); |
| for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) |
| Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); |
| this->Header.sh_size = Size; |
| } |
| |
| template <class ELFT> |
| BuildIdSection<ELFT>::BuildIdSection(size_t HashSize) |
| : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), |
| HashSize(HashSize) { |
| // 16 bytes for the note section header. |
| this->Header.sh_size = 16 + HashSize; |
| } |
| |
| template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| write32<E>(Buf, 4); // Name size |
| write32<E>(Buf + 4, HashSize); // Content size |
| write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type |
| memcpy(Buf + 12, "GNU", 4); // Name string |
| HashBuf = Buf + 16; |
| } |
| |
| template <class ELFT> |
| void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| // 64-bit FNV-1 hash |
| uint64_t Hash = 0xcbf29ce484222325; |
| for (ArrayRef<uint8_t> Buf : Bufs) { |
| for (uint8_t B : Buf) { |
| Hash *= 0x100000001b3; |
| Hash ^= B; |
| } |
| } |
| write64<E>(this->HashBuf, Hash); |
| } |
| |
| template <class ELFT> |
| void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { |
| MD5 Hash; |
| for (ArrayRef<uint8_t> Buf : Bufs) |
| Hash.update(Buf); |
| MD5::MD5Result Res; |
| Hash.final(Res); |
| memcpy(this->HashBuf, Res, 16); |
| } |
| |
| template <class ELFT> |
| void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { |
| SHA1 Hash; |
| for (ArrayRef<uint8_t> Buf : Bufs) |
| Hash.update(Buf); |
| memcpy(this->HashBuf, Hash.final().data(), 20); |
| } |
| |
| template <class ELFT> |
| BuildIdHexstring<ELFT>::BuildIdHexstring() |
| : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {} |
| |
| template <class ELFT> |
| void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { |
| memcpy(this->HashBuf, Config->BuildIdVector.data(), |
| Config->BuildIdVector.size()); |
| } |
| |
| template <class ELFT> |
| MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() |
| : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { |
| this->Header.sh_addralign = 4; |
| this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); |
| this->Header.sh_size = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); |
| R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; |
| R->ri_gprmask = GprMask; |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| // Copy input object file's .reginfo gprmask to output. |
| auto *S = cast<MipsReginfoInputSection<ELFT>>(C); |
| GprMask |= S->Reginfo->ri_gprmask; |
| S->OutSec = this; |
| } |
| |
| template <class ELFT> |
| MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection() |
| : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS, |
| SHF_ALLOC | SHF_MIPS_NOSTRIP) { |
| this->Header.sh_addralign = 8; |
| this->Header.sh_entsize = 1; |
| this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> |
| void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf); |
| Opt->kind = ODK_REGINFO; |
| Opt->size = this->Header.sh_size; |
| Opt->section = 0; |
| Opt->info = 0; |
| auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt)); |
| Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; |
| Reg->ri_gprmask = GprMask; |
| } |
| |
| template <class ELFT> |
| void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<MipsOptionsInputSection<ELFT>>(C); |
| if (S->Reginfo) |
| GprMask |= S->Reginfo->ri_gprmask; |
| S->OutSec = this; |
| } |
| |
| template <class ELFT> |
| std::pair<OutputSectionBase<ELFT> *, bool> |
| OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, |
| StringRef OutsecName) { |
| SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); |
| OutputSectionBase<ELFT> *&Sec = Map[Key]; |
| if (Sec) |
| return {Sec, false}; |
| |
| switch (C->SectionKind) { |
| case InputSectionBase<ELFT>::Regular: |
| Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); |
| break; |
| case InputSectionBase<ELFT>::EHFrame: |
| return {Out<ELFT>::EhFrame, false}; |
| case InputSectionBase<ELFT>::Merge: |
| Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags, |
| Key.Alignment); |
| break; |
| case InputSectionBase<ELFT>::MipsReginfo: |
| Sec = new MipsReginfoOutputSection<ELFT>(); |
| break; |
| case InputSectionBase<ELFT>::MipsOptions: |
| Sec = new MipsOptionsOutputSection<ELFT>(); |
| break; |
| } |
| return {Sec, true}; |
| } |
| |
| template <class ELFT> |
| OutputSectionBase<ELFT> *OutputSectionFactory<ELFT>::lookup(StringRef Name, |
| uint32_t Type, |
| uintX_t Flags) { |
| return Map.lookup({Name, Type, Flags, 0}); |
| } |
| |
| template <class ELFT> |
| SectionKey<ELFT::Is64Bits> |
| OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C, |
| StringRef OutsecName) { |
| const Elf_Shdr *H = C->getSectionHdr(); |
| uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED; |
| |
| // For SHF_MERGE we create different output sections for each alignment. |
| // This makes each output section simple and keeps a single level mapping from |
| // input to output. |
| uintX_t Alignment = 0; |
| if (isa<MergeInputSection<ELFT>>(C)) |
| Alignment = std::max(H->sh_addralign, H->sh_entsize); |
| |
| uint32_t Type = H->sh_type; |
| return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment}; |
| } |
| |
| template <bool Is64Bits> |
| typename lld::elf::SectionKey<Is64Bits> |
| DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0}; |
| } |
| |
| template <bool Is64Bits> |
| typename lld::elf::SectionKey<Is64Bits> |
| DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0, |
| 0}; |
| } |
| |
| template <bool Is64Bits> |
| unsigned |
| DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) { |
| return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); |
| } |
| |
| template <bool Is64Bits> |
| bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS, |
| const Key &RHS) { |
| return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && |
| LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && |
| LHS.Alignment == RHS.Alignment; |
| } |
| |
| namespace llvm { |
| template struct DenseMapInfo<SectionKey<true>>; |
| template struct DenseMapInfo<SectionKey<false>>; |
| } |
| |
| namespace lld { |
| namespace elf { |
| template class OutputSectionBase<ELF32LE>; |
| template class OutputSectionBase<ELF32BE>; |
| template class OutputSectionBase<ELF64LE>; |
| template class OutputSectionBase<ELF64BE>; |
| |
| template class EhFrameHeader<ELF32LE>; |
| template class EhFrameHeader<ELF32BE>; |
| template class EhFrameHeader<ELF64LE>; |
| template class EhFrameHeader<ELF64BE>; |
| |
| template class GotPltSection<ELF32LE>; |
| template class GotPltSection<ELF32BE>; |
| template class GotPltSection<ELF64LE>; |
| template class GotPltSection<ELF64BE>; |
| |
| template class GotSection<ELF32LE>; |
| template class GotSection<ELF32BE>; |
| template class GotSection<ELF64LE>; |
| template class GotSection<ELF64BE>; |
| |
| template class PltSection<ELF32LE>; |
| template class PltSection<ELF32BE>; |
| template class PltSection<ELF64LE>; |
| template class PltSection<ELF64BE>; |
| |
| template class RelocationSection<ELF32LE>; |
| template class RelocationSection<ELF32BE>; |
| template class RelocationSection<ELF64LE>; |
| template class RelocationSection<ELF64BE>; |
| |
| template class InterpSection<ELF32LE>; |
| template class InterpSection<ELF32BE>; |
| template class InterpSection<ELF64LE>; |
| template class InterpSection<ELF64BE>; |
| |
| template class GnuHashTableSection<ELF32LE>; |
| template class GnuHashTableSection<ELF32BE>; |
| template class GnuHashTableSection<ELF64LE>; |
| template class GnuHashTableSection<ELF64BE>; |
| |
| template class HashTableSection<ELF32LE>; |
| template class HashTableSection<ELF32BE>; |
| template class HashTableSection<ELF64LE>; |
| template class HashTableSection<ELF64BE>; |
| |
| template class DynamicSection<ELF32LE>; |
| template class DynamicSection<ELF32BE>; |
| template class DynamicSection<ELF64LE>; |
| template class DynamicSection<ELF64BE>; |
| |
| template class OutputSection<ELF32LE>; |
| template class OutputSection<ELF32BE>; |
| template class OutputSection<ELF64LE>; |
| template class OutputSection<ELF64BE>; |
| |
| template class EhOutputSection<ELF32LE>; |
| template class EhOutputSection<ELF32BE>; |
| template class EhOutputSection<ELF64LE>; |
| template class EhOutputSection<ELF64BE>; |
| |
| template class MipsReginfoOutputSection<ELF32LE>; |
| template class MipsReginfoOutputSection<ELF32BE>; |
| template class MipsReginfoOutputSection<ELF64LE>; |
| template class MipsReginfoOutputSection<ELF64BE>; |
| |
| template class MipsOptionsOutputSection<ELF32LE>; |
| template class MipsOptionsOutputSection<ELF32BE>; |
| template class MipsOptionsOutputSection<ELF64LE>; |
| template class MipsOptionsOutputSection<ELF64BE>; |
| |
| template class MergeOutputSection<ELF32LE>; |
| template class MergeOutputSection<ELF32BE>; |
| template class MergeOutputSection<ELF64LE>; |
| template class MergeOutputSection<ELF64BE>; |
| |
| template class StringTableSection<ELF32LE>; |
| template class StringTableSection<ELF32BE>; |
| template class StringTableSection<ELF64LE>; |
| template class StringTableSection<ELF64BE>; |
| |
| template class SymbolTableSection<ELF32LE>; |
| template class SymbolTableSection<ELF32BE>; |
| template class SymbolTableSection<ELF64LE>; |
| template class SymbolTableSection<ELF64BE>; |
| |
| template class VersionTableSection<ELF32LE>; |
| template class VersionTableSection<ELF32BE>; |
| template class VersionTableSection<ELF64LE>; |
| template class VersionTableSection<ELF64BE>; |
| |
| template class VersionNeedSection<ELF32LE>; |
| template class VersionNeedSection<ELF32BE>; |
| template class VersionNeedSection<ELF64LE>; |
| template class VersionNeedSection<ELF64BE>; |
| |
| template class VersionDefinitionSection<ELF32LE>; |
| template class VersionDefinitionSection<ELF32BE>; |
| template class VersionDefinitionSection<ELF64LE>; |
| template class VersionDefinitionSection<ELF64BE>; |
| |
| template class BuildIdSection<ELF32LE>; |
| template class BuildIdSection<ELF32BE>; |
| template class BuildIdSection<ELF64LE>; |
| template class BuildIdSection<ELF64BE>; |
| |
| template class BuildIdFnv1<ELF32LE>; |
| template class BuildIdFnv1<ELF32BE>; |
| template class BuildIdFnv1<ELF64LE>; |
| template class BuildIdFnv1<ELF64BE>; |
| |
| template class BuildIdMd5<ELF32LE>; |
| template class BuildIdMd5<ELF32BE>; |
| template class BuildIdMd5<ELF64LE>; |
| template class BuildIdMd5<ELF64BE>; |
| |
| template class BuildIdSha1<ELF32LE>; |
| template class BuildIdSha1<ELF32BE>; |
| template class BuildIdSha1<ELF64LE>; |
| template class BuildIdSha1<ELF64BE>; |
| |
| template class BuildIdHexstring<ELF32LE>; |
| template class BuildIdHexstring<ELF32BE>; |
| template class BuildIdHexstring<ELF64LE>; |
| template class BuildIdHexstring<ELF64BE>; |
| |
| template class OutputSectionFactory<ELF32LE>; |
| template class OutputSectionFactory<ELF32BE>; |
| template class OutputSectionFactory<ELF64LE>; |
| template class OutputSectionFactory<ELF64BE>; |
| } |
| } |