| //===- OutputSections.cpp -------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "OutputSections.h" |
| #include "Config.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| |
| using namespace lld; |
| using namespace lld::elf2; |
| |
| bool elf2::HasGotOffRel = false; |
| |
| template <class ELFT> |
| OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : Name(Name) { |
| memset(&Header, 0, sizeof(Elf_Shdr)); |
| Header.sh_type = Type; |
| Header.sh_flags = Flags; |
| } |
| |
| template <class ELFT> |
| GotPltSection<ELFT>::GotPltSection() |
| : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->GotPltIndex = Target->getGotPltHeaderEntriesNum() + Entries.size(); |
| Entries.push_back(Sym); |
| } |
| |
| template <class ELFT> bool GotPltSection<ELFT>::empty() const { |
| return Entries.empty(); |
| } |
| |
| template <class ELFT> |
| typename GotPltSection<ELFT>::uintX_t |
| GotPltSection<ELFT>::getEntryAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GotPltIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| (Target->getGotPltHeaderEntriesNum() + Entries.size()) * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { |
| Target->writeGotPltHeaderEntries(Buf); |
| Buf += Target->getGotPltHeaderEntriesNum() * sizeof(uintX_t); |
| for (const SymbolBody *B : Entries) { |
| Target->writeGotPltEntry(Buf, Out<ELFT>::Plt->getEntryAddr(*B)); |
| Buf += sizeof(uintX_t); |
| } |
| } |
| |
| template <class ELFT> |
| GotSection<ELFT>::GotSection() |
| : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| if (Config->EMachine == EM_MIPS) |
| this->Header.sh_flags |= SHF_MIPS_GPREL; |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->GotIndex = Target->getGotHeaderEntriesNum() + Entries.size(); |
| Entries.push_back(Sym); |
| } |
| |
| template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody *Sym) { |
| if (Sym->hasGlobalDynIndex()) |
| return false; |
| Sym->GlobalDynIndex = Target->getGotHeaderEntriesNum() + Entries.size(); |
| // Global Dynamic TLS entries take two GOT slots. |
| Entries.push_back(Sym); |
| Entries.push_back(nullptr); |
| return true; |
| } |
| |
| template <class ELFT> bool GotSection<ELFT>::addCurrentModuleTlsIndex() { |
| if (LocalTlsIndexOff != uint32_t(-1)) |
| return false; |
| Entries.push_back(nullptr); |
| Entries.push_back(nullptr); |
| LocalTlsIndexOff = (Entries.size() - 2) * sizeof(uintX_t); |
| return true; |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getEntryAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GotIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { |
| return Entries.empty() ? nullptr : Entries.front(); |
| } |
| |
| template <class ELFT> |
| unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { |
| // TODO: Update when the support of GOT entries for local symbols is added. |
| return Target->getGotHeaderEntriesNum(); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| (Target->getGotHeaderEntriesNum() + Entries.size()) * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { |
| Target->writeGotHeaderEntries(Buf); |
| Buf += Target->getGotHeaderEntriesNum() * sizeof(uintX_t); |
| for (const SymbolBody *B : Entries) { |
| uint8_t *Entry = Buf; |
| Buf += sizeof(uintX_t); |
| if (!B) |
| continue; |
| // MIPS has special rules to fill up GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| // As the first approach, we can just store addresses for all symbols. |
| if (Config->EMachine != EM_MIPS && canBePreempted(B, false)) |
| continue; // The dynamic linker will take care of it. |
| uintX_t VA = getSymVA<ELFT>(*B); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA); |
| } |
| } |
| |
| template <class ELFT> |
| PltSection<ELFT>::PltSection() |
| : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { |
| this->Header.sh_addralign = 16; |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { |
| size_t Off = 0; |
| bool LazyReloc = Target->supportsLazyRelocations(); |
| if (LazyReloc) { |
| // First write PLT[0] entry which is special. |
| Target->writePltZeroEntry(Buf, Out<ELFT>::GotPlt->getVA(), this->getVA()); |
| Off += Target->getPltZeroEntrySize(); |
| } |
| for (auto &I : Entries) { |
| const SymbolBody *E = I.first; |
| unsigned RelOff = I.second; |
| uint64_t GotVA = |
| LazyReloc ? Out<ELFT>::GotPlt->getVA() : Out<ELFT>::Got->getVA(); |
| uint64_t GotE = LazyReloc ? Out<ELFT>::GotPlt->getEntryAddr(*E) |
| : Out<ELFT>::Got->getEntryAddr(*E); |
| uint64_t Plt = this->getVA() + Off; |
| Target->writePltEntry(Buf + Off, GotVA, GotE, Plt, E->PltIndex, RelOff); |
| Off += Target->getPltEntrySize(); |
| } |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->PltIndex = Entries.size(); |
| unsigned RelOff = Target->supportsLazyRelocations() |
| ? Out<ELFT>::RelaPlt->getRelocOffset() |
| : Out<ELFT>::RelaDyn->getRelocOffset(); |
| Entries.push_back(std::make_pair(Sym, RelOff)); |
| } |
| |
| template <class ELFT> |
| typename PltSection<ELFT>::uintX_t |
| PltSection<ELFT>::getEntryAddr(const SymbolBody &B) const { |
| return this->getVA() + Target->getPltZeroEntrySize() + |
| B.PltIndex * Target->getPltEntrySize(); |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::finalize() { |
| this->Header.sh_size = Target->getPltZeroEntrySize() + |
| Entries.size() * Target->getPltEntrySize(); |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(StringRef Name, bool IsRela) |
| : OutputSectionBase<ELFT>(Name, IsRela ? SHT_RELA : SHT_REL, SHF_ALLOC), |
| IsRela(IsRela) { |
| this->Header.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4; |
| } |
| |
| // Applies corresponding symbol and type for dynamic tls relocation. |
| // Returns true if relocation was handled. |
| template <class ELFT> |
| bool RelocationSection<ELFT>::applyTlsDynamicReloc(SymbolBody *Body, |
| uint32_t Type, Elf_Rel *P, |
| Elf_Rel *N) { |
| if (Target->isTlsLocalDynamicReloc(Type)) { |
| P->setSymbolAndType(0, Target->getTlsModuleIndexReloc(), Config->Mips64EL); |
| P->r_offset = Out<ELFT>::Got->getLocalTlsIndexVA(); |
| return true; |
| } |
| |
| if (!Body || !Target->isTlsGlobalDynamicReloc(Type)) |
| return false; |
| |
| if (Target->isTlsOptimized(Type, Body)) { |
| P->setSymbolAndType(Body->DynamicSymbolTableIndex, |
| Target->getTlsGotReloc(), Config->Mips64EL); |
| P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body); |
| return true; |
| } |
| |
| P->setSymbolAndType(Body->DynamicSymbolTableIndex, |
| Target->getTlsModuleIndexReloc(), Config->Mips64EL); |
| P->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body); |
| N->setSymbolAndType(Body->DynamicSymbolTableIndex, |
| Target->getTlsOffsetReloc(), Config->Mips64EL); |
| N->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body) + sizeof(uintX_t); |
| return true; |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { |
| for (const DynamicReloc<ELFT> &Rel : Relocs) { |
| auto *P = reinterpret_cast<Elf_Rel *>(Buf); |
| Buf += IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| |
| // Skip placeholder for global dynamic TLS relocation pair. It was already |
| // handled by the previous relocation. |
| if (!Rel.C) |
| continue; |
| |
| InputSectionBase<ELFT> &C = *Rel.C; |
| const Elf_Rel &RI = *Rel.RI; |
| uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); |
| const ObjectFile<ELFT> &File = *C.getFile(); |
| SymbolBody *Body = File.getSymbolBody(SymIndex); |
| if (Body) |
| Body = Body->repl(); |
| |
| uint32_t Type = RI.getType(Config->Mips64EL); |
| if (applyTlsDynamicReloc(Body, Type, P, reinterpret_cast<Elf_Rel *>(Buf))) |
| continue; |
| bool NeedsCopy = Body && Target->needsCopyRel(Type, *Body); |
| bool NeedsGot = Body && Target->relocNeedsGot(Type, *Body); |
| bool CBP = canBePreempted(Body, NeedsGot); |
| bool LazyReloc = Body && Target->supportsLazyRelocations() && |
| Target->relocNeedsPlt(Type, *Body); |
| bool IsDynRelative = Type == Target->getRelativeReloc(); |
| |
| unsigned Sym = CBP ? Body->DynamicSymbolTableIndex : 0; |
| unsigned Reloc; |
| if (!CBP && Body && isGnuIFunc<ELFT>(*Body)) |
| Reloc = Target->getIRelativeReloc(); |
| else if (!CBP || IsDynRelative) |
| Reloc = Target->getRelativeReloc(); |
| else if (LazyReloc) |
| Reloc = Target->getPltReloc(); |
| else if (NeedsGot) |
| Reloc = Body->isTls() ? Target->getTlsGotReloc() : Target->getGotReloc(); |
| else if (NeedsCopy) |
| Reloc = Target->getCopyReloc(); |
| else |
| Reloc = Target->getDynReloc(Type); |
| P->setSymbolAndType(Sym, Reloc, Config->Mips64EL); |
| |
| if (LazyReloc) |
| P->r_offset = Out<ELFT>::GotPlt->getEntryAddr(*Body); |
| else if (NeedsGot) |
| P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body); |
| else if (NeedsCopy) |
| P->r_offset = Out<ELFT>::Bss->getVA() + |
| cast<SharedSymbol<ELFT>>(Body)->OffsetInBss; |
| else |
| P->r_offset = C.getOffset(RI.r_offset) + C.OutSec->getVA(); |
| |
| uintX_t OrigAddend = 0; |
| if (IsRela && !NeedsGot) |
| OrigAddend = static_cast<const Elf_Rela &>(RI).r_addend; |
| |
| uintX_t Addend; |
| if (NeedsCopy) |
| Addend = 0; |
| else if (CBP || IsDynRelative) |
| Addend = OrigAddend; |
| else if (Body) |
| Addend = getSymVA<ELFT>(*Body) + OrigAddend; |
| else if (IsRela) |
| Addend = |
| getLocalRelTarget(File, static_cast<const Elf_Rela &>(RI), |
| getAddend<ELFT>(static_cast<const Elf_Rela &>(RI))); |
| else |
| Addend = getLocalRelTarget(File, RI, 0); |
| |
| if (IsRela) |
| static_cast<Elf_Rela *>(P)->r_addend = Addend; |
| } |
| } |
| |
| template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { |
| const unsigned EntrySize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| return EntrySize * Relocs.size(); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::finalize() { |
| this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex |
| : Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; |
| } |
| |
| template <class ELFT> |
| InterpSection<ELFT>::InterpSection() |
| : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { |
| this->Header.sh_size = Config->DynamicLinker.size() + 1; |
| this->Header.sh_addralign = 1; |
| } |
| |
| template <class ELFT> |
| void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *SHdr) { |
| Header.sh_name = Out<ELFT>::ShStrTab->addString(Name); |
| *SHdr = Header; |
| } |
| |
| template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { |
| memcpy(Buf, Config->DynamicLinker.data(), Config->DynamicLinker.size()); |
| } |
| |
| template <class ELFT> |
| HashTableSection<ELFT>::HashTableSection() |
| : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = sizeof(Elf_Word); |
| this->Header.sh_addralign = sizeof(Elf_Word); |
| } |
| |
| static uint32_t hashSysv(StringRef Name) { |
| uint32_t H = 0; |
| for (char C : Name) { |
| H = (H << 4) + C; |
| uint32_t G = H & 0xf0000000; |
| if (G) |
| H ^= G >> 24; |
| H &= ~G; |
| } |
| return H; |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::finalize() { |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| |
| unsigned NumEntries = 2; // nbucket and nchain. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| // FIXME: This is simplistic. We can try to optimize it, but implementing |
| // support for SHT_GNU_HASH is probably even more profitable. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); |
| this->Header.sh_size = NumEntries * sizeof(Elf_Word); |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NumSymbols; // nbucket |
| *P++ = NumSymbols; // nchain |
| |
| Elf_Word *Buckets = P; |
| Elf_Word *Chains = P + NumSymbols; |
| |
| for (SymbolBody *Body : Out<ELFT>::DynSymTab->getSymbols()) { |
| StringRef Name = Body->getName(); |
| unsigned I = Body->DynamicSymbolTableIndex; |
| uint32_t Hash = hashSysv(Name) % NumSymbols; |
| Chains[I] = Buckets[Hash]; |
| Buckets[Hash] = I; |
| } |
| } |
| |
| static uint32_t hashGnu(StringRef Name) { |
| uint32_t H = 5381; |
| for (uint8_t C : Name) |
| H = (H << 5) + H + C; |
| return H; |
| } |
| |
| template <class ELFT> |
| GnuHashTableSection<ELFT>::GnuHashTableSection() |
| : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; |
| this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4; |
| } |
| |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { |
| if (!NumHashed) |
| return 0; |
| |
| // These values are prime numbers which are not greater than 2^(N-1) + 1. |
| // In result, for any particular NumHashed we return a prime number |
| // which is not greater than NumHashed. |
| static const unsigned Primes[] = { |
| 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, |
| 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; |
| |
| return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), |
| array_lengthof(Primes) - 1)]; |
| } |
| |
| // Bloom filter estimation: at least 8 bits for each hashed symbol. |
| // GNU Hash table requirement: it should be a power of 2, |
| // the minimum value is 1, even for an empty table. |
| // Expected results for a 32-bit target: |
| // calcMaskWords(0..4) = 1 |
| // calcMaskWords(5..8) = 2 |
| // calcMaskWords(9..16) = 4 |
| // For a 64-bit target: |
| // calcMaskWords(0..8) = 1 |
| // calcMaskWords(9..16) = 2 |
| // calcMaskWords(17..32) = 4 |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { |
| if (!NumHashed) |
| return 1; |
| return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { |
| unsigned NumHashed = HashedSymbols.size(); |
| NBuckets = calcNBuckets(NumHashed); |
| MaskWords = calcMaskWords(NumHashed); |
| // Second hash shift estimation: just predefined values. |
| Shift2 = ELFT::Is64Bits ? 6 : 5; |
| |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = sizeof(Elf_Word) * 4 // Header |
| + sizeof(Elf_Off) * MaskWords // Bloom Filter |
| + sizeof(Elf_Word) * NBuckets // Hash Buckets |
| + sizeof(Elf_Word) * NumHashed; // Hash Values |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| writeHeader(Buf); |
| if (HashedSymbols.empty()) |
| return; |
| writeBloomFilter(Buf); |
| writeHashTable(Buf); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NBuckets; |
| *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - HashedSymbols.size(); |
| *P++ = MaskWords; |
| *P++ = Shift2; |
| Buf = reinterpret_cast<uint8_t *>(P); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { |
| unsigned C = sizeof(Elf_Off) * 8; |
| |
| auto *Masks = reinterpret_cast<Elf_Off *>(Buf); |
| for (const HashedSymbolData &Item : HashedSymbols) { |
| size_t Pos = (Item.Hash / C) & (MaskWords - 1); |
| uintX_t V = (uintX_t(1) << (Item.Hash % C)) | |
| (uintX_t(1) << ((Item.Hash >> Shift2) % C)); |
| Masks[Pos] |= V; |
| } |
| Buf += sizeof(Elf_Off) * MaskWords; |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { |
| Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); |
| Elf_Word *Values = Buckets + NBuckets; |
| |
| int PrevBucket = -1; |
| int I = 0; |
| for (const HashedSymbolData &Item : HashedSymbols) { |
| int Bucket = Item.Hash % NBuckets; |
| assert(PrevBucket <= Bucket); |
| if (Bucket != PrevBucket) { |
| Buckets[Bucket] = Item.Body->DynamicSymbolTableIndex; |
| PrevBucket = Bucket; |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| Values[I] = Item.Hash & ~1; |
| ++I; |
| } |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| |
| static bool includeInGnuHashTable(SymbolBody *B) { |
| // Assume that includeInDynamicSymtab() is already checked. |
| return !B->isUndefined(); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolBody *> &Symbols) { |
| std::vector<SymbolBody *> NotHashed; |
| NotHashed.reserve(Symbols.size()); |
| HashedSymbols.reserve(Symbols.size()); |
| for (SymbolBody *B : Symbols) { |
| if (includeInGnuHashTable(B)) |
| HashedSymbols.push_back(HashedSymbolData{B, hashGnu(B->getName())}); |
| else |
| NotHashed.push_back(B); |
| } |
| if (HashedSymbols.empty()) |
| return; |
| |
| unsigned NBuckets = calcNBuckets(HashedSymbols.size()); |
| std::stable_sort(HashedSymbols.begin(), HashedSymbols.end(), |
| [&](const HashedSymbolData &L, const HashedSymbolData &R) { |
| return L.Hash % NBuckets < R.Hash % NBuckets; |
| }); |
| |
| Symbols = std::move(NotHashed); |
| for (const HashedSymbolData &Item : HashedSymbols) |
| Symbols.push_back(Item.Body); |
| } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab) |
| : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE), |
| SymTab(SymTab) { |
| Elf_Shdr &Header = this->Header; |
| Header.sh_addralign = ELFT::Is64Bits ? 8 : 4; |
| Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Config->EMachine == EM_MIPS) |
| Header.sh_flags = SHF_ALLOC; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| Elf_Shdr &Header = this->Header; |
| Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; |
| |
| unsigned NumEntries = 0; |
| if (Out<ELFT>::RelaDyn->hasRelocs()) { |
| ++NumEntries; // DT_RELA / DT_REL |
| ++NumEntries; // DT_RELASZ / DT_RELSZ |
| ++NumEntries; // DT_RELAENT / DT_RELENT |
| } |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { |
| ++NumEntries; // DT_JMPREL |
| ++NumEntries; // DT_PLTRELSZ |
| ++NumEntries; // DT_PLTGOT / DT_MIPS_PLTGOT |
| ++NumEntries; // DT_PLTREL |
| } |
| |
| ++NumEntries; // DT_SYMTAB |
| ++NumEntries; // DT_SYMENT |
| ++NumEntries; // DT_STRTAB |
| ++NumEntries; // DT_STRSZ |
| if (Out<ELFT>::GnuHashTab) |
| ++NumEntries; // DT_GNU_HASH |
| if (Out<ELFT>::HashTab) |
| ++NumEntries; // DT_HASH |
| |
| if (!Config->RPath.empty()) { |
| ++NumEntries; // DT_RUNPATH / DT_RPATH |
| Out<ELFT>::DynStrTab->reserve(Config->RPath); |
| } |
| |
| if (!Config->SoName.empty()) { |
| ++NumEntries; // DT_SONAME |
| Out<ELFT>::DynStrTab->reserve(Config->SoName); |
| } |
| |
| if (PreInitArraySec) |
| NumEntries += 2; |
| if (InitArraySec) |
| NumEntries += 2; |
| if (FiniArraySec) |
| NumEntries += 2; |
| |
| for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles()) { |
| if (!F->isNeeded()) |
| continue; |
| Out<ELFT>::DynStrTab->reserve(F->getSoName()); |
| ++NumEntries; |
| } |
| |
| if (Symbol *S = SymTab.getSymbols().lookup(Config->Init)) |
| InitSym = S->Body; |
| if (Symbol *S = SymTab.getSymbols().lookup(Config->Fini)) |
| FiniSym = S->Body; |
| if (InitSym) |
| ++NumEntries; // DT_INIT |
| if (FiniSym) |
| ++NumEntries; // DT_FINI |
| |
| if (Config->Bsymbolic) |
| DtFlags |= DF_SYMBOLIC; |
| if (Config->ZNodelete) |
| DtFlags1 |= DF_1_NODELETE; |
| if (Config->ZNow) { |
| DtFlags |= DF_BIND_NOW; |
| DtFlags1 |= DF_1_NOW; |
| } |
| if (Config->ZOrigin) { |
| DtFlags |= DF_ORIGIN; |
| DtFlags1 |= DF_1_ORIGIN; |
| } |
| |
| if (DtFlags) |
| ++NumEntries; // DT_FLAGS |
| if (DtFlags1) |
| ++NumEntries; // DT_FLAGS_1 |
| |
| if (!Config->Entry.empty()) |
| ++NumEntries; // DT_DEBUG |
| |
| if (Config->EMachine == EM_MIPS) { |
| ++NumEntries; // DT_MIPS_RLD_VERSION |
| ++NumEntries; // DT_MIPS_FLAGS |
| ++NumEntries; // DT_MIPS_BASE_ADDRESS |
| ++NumEntries; // DT_MIPS_SYMTABNO |
| ++NumEntries; // DT_MIPS_LOCAL_GOTNO |
| ++NumEntries; // DT_MIPS_GOTSYM; |
| ++NumEntries; // DT_PLTGOT |
| if (Out<ELFT>::MipsRldMap) |
| ++NumEntries; // DT_MIPS_RLD_MAP |
| } |
| |
| ++NumEntries; // DT_NULL |
| |
| Header.sh_size = NumEntries * Header.sh_entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *P = reinterpret_cast<Elf_Dyn *>(Buf); |
| |
| auto WritePtr = [&](int32_t Tag, uint64_t Val) { |
| P->d_tag = Tag; |
| P->d_un.d_ptr = Val; |
| ++P; |
| }; |
| |
| auto WriteVal = [&](int32_t Tag, uint32_t Val) { |
| P->d_tag = Tag; |
| P->d_un.d_val = Val; |
| ++P; |
| }; |
| |
| if (Out<ELFT>::RelaDyn->hasRelocs()) { |
| bool IsRela = Out<ELFT>::RelaDyn->isRela(); |
| WritePtr(IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn->getVA()); |
| WriteVal(IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()); |
| WriteVal(IsRela ? DT_RELAENT : DT_RELENT, |
| IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); |
| } |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { |
| WritePtr(DT_JMPREL, Out<ELFT>::RelaPlt->getVA()); |
| WriteVal(DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()); |
| // On MIPS, the address of the .got.plt section is stored in |
| // the DT_MIPS_PLTGOT entry because the DT_PLTGOT entry points to |
| // the .got section. See "Dynamic Section" in the following document: |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| WritePtr((Config->EMachine == EM_MIPS) ? DT_MIPS_PLTGOT : DT_PLTGOT, |
| Out<ELFT>::GotPlt->getVA()); |
| WriteVal(DT_PLTREL, Out<ELFT>::RelaPlt->isRela() ? DT_RELA : DT_REL); |
| } |
| |
| WritePtr(DT_SYMTAB, Out<ELFT>::DynSymTab->getVA()); |
| WritePtr(DT_SYMENT, sizeof(Elf_Sym)); |
| WritePtr(DT_STRTAB, Out<ELFT>::DynStrTab->getVA()); |
| WriteVal(DT_STRSZ, Out<ELFT>::DynStrTab->getSize()); |
| if (Out<ELFT>::GnuHashTab) |
| WritePtr(DT_GNU_HASH, Out<ELFT>::GnuHashTab->getVA()); |
| if (Out<ELFT>::HashTab) |
| WritePtr(DT_HASH, Out<ELFT>::HashTab->getVA()); |
| |
| // If --enable-new-dtags is set, lld emits DT_RUNPATH |
| // instead of DT_RPATH. The two tags are functionally |
| // equivalent except for the following: |
| // - DT_RUNPATH is searched after LD_LIBRARY_PATH, while |
| // DT_RPATH is searched before. |
| // - DT_RUNPATH is used only to search for direct |
| // dependencies of the object it's contained in, while |
| // DT_RPATH is used for indirect dependencies as well. |
| if (!Config->RPath.empty()) |
| WriteVal(Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, |
| Out<ELFT>::DynStrTab->addString(Config->RPath)); |
| |
| if (!Config->SoName.empty()) |
| WriteVal(DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)); |
| |
| auto WriteArray = [&](int32_t T1, int32_t T2, |
| const OutputSectionBase<ELFT> *Sec) { |
| if (!Sec) |
| return; |
| WritePtr(T1, Sec->getVA()); |
| WriteVal(T2, Sec->getSize()); |
| }; |
| WriteArray(DT_PREINIT_ARRAY, DT_PREINIT_ARRAYSZ, PreInitArraySec); |
| WriteArray(DT_INIT_ARRAY, DT_INIT_ARRAYSZ, InitArraySec); |
| WriteArray(DT_FINI_ARRAY, DT_FINI_ARRAYSZ, FiniArraySec); |
| |
| for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles()) |
| if (F->isNeeded()) |
| WriteVal(DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())); |
| |
| if (InitSym) |
| WritePtr(DT_INIT, getSymVA<ELFT>(*InitSym)); |
| if (FiniSym) |
| WritePtr(DT_FINI, getSymVA<ELFT>(*FiniSym)); |
| if (DtFlags) |
| WriteVal(DT_FLAGS, DtFlags); |
| if (DtFlags1) |
| WriteVal(DT_FLAGS_1, DtFlags1); |
| if (!Config->Entry.empty()) |
| WriteVal(DT_DEBUG, 0); |
| |
| // See "Dynamic Section" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Config->EMachine == EM_MIPS) { |
| WriteVal(DT_MIPS_RLD_VERSION, 1); |
| WriteVal(DT_MIPS_FLAGS, RHF_NOTPOT); |
| WritePtr(DT_MIPS_BASE_ADDRESS, Target->getVAStart()); |
| WriteVal(DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()); |
| WriteVal(DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()); |
| if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) |
| WriteVal(DT_MIPS_GOTSYM, B->DynamicSymbolTableIndex); |
| else |
| WriteVal(DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()); |
| WritePtr(DT_PLTGOT, Out<ELFT>::Got->getVA()); |
| if (Out<ELFT>::MipsRldMap) |
| WritePtr(DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap->getVA()); |
| } |
| |
| WriteVal(DT_NULL, 0); |
| } |
| |
| template <class ELFT> |
| OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) {} |
| |
| template <class ELFT> |
| void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<InputSection<ELFT>>(C); |
| Sections.push_back(S); |
| S->OutSec = this; |
| uint32_t Align = S->getAlign(); |
| if (Align > this->Header.sh_addralign) |
| this->Header.sh_addralign = Align; |
| |
| uintX_t Off = this->Header.sh_size; |
| Off = align(Off, Align); |
| S->OutSecOff = Off; |
| Off += S->getSize(); |
| this->Header.sh_size = Off; |
| } |
| |
| template <class ELFT> |
| typename ELFFile<ELFT>::uintX_t elf2::getSymVA(const SymbolBody &S) { |
| switch (S.kind()) { |
| case SymbolBody::DefinedSyntheticKind: { |
| auto &D = cast<DefinedSynthetic<ELFT>>(S); |
| return D.Section.getVA() + D.Value; |
| } |
| case SymbolBody::DefinedRegularKind: { |
| const auto &DR = cast<DefinedRegular<ELFT>>(S); |
| InputSectionBase<ELFT> *SC = DR.Section; |
| if (!SC) |
| return DR.Sym.st_value; |
| |
| // Symbol offsets for AMDGPU need to be the offset in bytes of the symbol |
| // from the beginning of the section. |
| if (Config->EMachine == EM_AMDGPU) |
| return SC->getOffset(DR.Sym); |
| if (DR.Sym.getType() == STT_TLS) |
| return SC->OutSec->getVA() + SC->getOffset(DR.Sym) - |
| Out<ELFT>::TlsPhdr->p_vaddr; |
| return SC->OutSec->getVA() + SC->getOffset(DR.Sym); |
| } |
| case SymbolBody::DefinedCommonKind: |
| return Out<ELFT>::Bss->getVA() + cast<DefinedCommon>(S).OffsetInBss; |
| case SymbolBody::SharedKind: { |
| auto &SS = cast<SharedSymbol<ELFT>>(S); |
| if (SS.NeedsCopy) |
| return Out<ELFT>::Bss->getVA() + SS.OffsetInBss; |
| return 0; |
| } |
| case SymbolBody::UndefinedElfKind: |
| case SymbolBody::UndefinedKind: |
| return 0; |
| case SymbolBody::LazyKind: |
| assert(S.isUsedInRegularObj() && "Lazy symbol reached writer"); |
| return 0; |
| } |
| llvm_unreachable("Invalid symbol kind"); |
| } |
| |
| // Returns a VA which a relocatin RI refers to. Used only for local symbols. |
| // For non-local symbols, use getSymVA instead. |
| template <class ELFT, bool IsRela> |
| typename ELFFile<ELFT>::uintX_t |
| elf2::getLocalRelTarget(const ObjectFile<ELFT> &File, |
| const Elf_Rel_Impl<ELFT, IsRela> &RI, |
| typename ELFFile<ELFT>::uintX_t Addend) { |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| |
| // PPC64 has a special relocation representing the TOC base pointer |
| // that does not have a corresponding symbol. |
| if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) |
| return getPPC64TocBase() + Addend; |
| |
| const Elf_Sym *Sym = |
| File.getObj().getRelocationSymbol(&RI, File.getSymbolTable()); |
| |
| if (!Sym) |
| error("Unsupported relocation without symbol"); |
| |
| InputSectionBase<ELFT> *Section = File.getSection(*Sym); |
| |
| if (Sym->getType() == STT_TLS) |
| return (Section->OutSec->getVA() + Section->getOffset(*Sym) + Addend) - |
| Out<ELFT>::TlsPhdr->p_vaddr; |
| |
| // According to the ELF spec reference to a local symbol from outside |
| // the group are not allowed. Unfortunately .eh_frame breaks that rule |
| // and must be treated specially. For now we just replace the symbol with |
| // 0. |
| if (Section == &InputSection<ELFT>::Discarded || !Section->isLive()) |
| return Addend; |
| |
| uintX_t VA = Section->OutSec->getVA(); |
| if (isa<InputSection<ELFT>>(Section)) |
| return VA + Section->getOffset(*Sym) + Addend; |
| |
| uintX_t Offset = Sym->st_value; |
| if (Sym->getType() == STT_SECTION) { |
| Offset += Addend; |
| Addend = 0; |
| } |
| return VA + Section->getOffset(Offset) + Addend; |
| } |
| |
| // Returns true if a symbol can be replaced at load-time by a symbol |
| // with the same name defined in other ELF executable or DSO. |
| bool elf2::canBePreempted(const SymbolBody *Body, bool NeedsGot) { |
| if (!Body) |
| return false; // Body is a local symbol. |
| if (Body->isShared()) |
| return true; |
| |
| if (Body->isUndefined()) { |
| if (!Body->isWeak()) |
| return true; |
| |
| // This is an horrible corner case. Ideally we would like to say that any |
| // undefined symbol can be preempted so that the dynamic linker has a |
| // chance of finding it at runtime. |
| // |
| // The problem is that the code sequence used to test for weak undef |
| // functions looks like |
| // if (func) func() |
| // If the code is -fPIC the first reference is a load from the got and |
| // everything works. |
| // If the code is not -fPIC there is no reasonable way to solve it: |
| // * A relocation writing to the text segment will fail (it is ro). |
| // * A copy relocation doesn't work for functions. |
| // * The trick of using a plt entry as the address would fail here since |
| // the plt entry would have a non zero address. |
| // Since we cannot do anything better, we just resolve the symbol to 0 and |
| // don't produce a dynamic relocation. |
| // |
| // As an extra hack, assume that if we are producing a shared library the |
| // user knows what he or she is doing and can handle a dynamic relocation. |
| return Config->Shared || NeedsGot; |
| } |
| if (!Config->Shared) |
| return false; |
| return Body->getVisibility() == STV_DEFAULT; |
| } |
| |
| template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| for (InputSection<ELFT> *C : Sections) |
| C->writeTo(Buf); |
| } |
| |
| template <class ELFT> |
| EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) {} |
| |
| template <class ELFT> |
| EHRegion<ELFT>::EHRegion(EHInputSection<ELFT> *S, unsigned Index) |
| : S(S), Index(Index) {} |
| |
| template <class ELFT> StringRef EHRegion<ELFT>::data() const { |
| ArrayRef<uint8_t> SecData = S->getSectionData(); |
| ArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets; |
| size_t Start = Offsets[Index].first; |
| size_t End = |
| Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first; |
| return StringRef((const char *)SecData.data() + Start, End - Start); |
| } |
| |
| template <class ELFT> |
| Cie<ELFT>::Cie(EHInputSection<ELFT> *S, unsigned Index) |
| : EHRegion<ELFT>(S, Index) {} |
| |
| template <class ELFT> |
| template <bool IsRela> |
| void EHOutputSection<ELFT>::addSectionAux( |
| EHInputSection<ELFT> *S, |
| iterator_range<const Elf_Rel_Impl<ELFT, IsRela> *> Rels) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| S->OutSec = this; |
| uint32_t Align = S->getAlign(); |
| if (Align > this->Header.sh_addralign) |
| this->Header.sh_addralign = Align; |
| |
| Sections.push_back(S); |
| |
| ArrayRef<uint8_t> SecData = S->getSectionData(); |
| ArrayRef<uint8_t> D = SecData; |
| uintX_t Offset = 0; |
| auto RelI = Rels.begin(); |
| auto RelE = Rels.end(); |
| |
| DenseMap<unsigned, unsigned> OffsetToIndex; |
| while (!D.empty()) { |
| unsigned Index = S->Offsets.size(); |
| S->Offsets.push_back(std::make_pair(Offset, -1)); |
| |
| uintX_t Length = readEntryLength(D); |
| StringRef Entry((const char *)D.data(), Length); |
| |
| while (RelI != RelE && RelI->r_offset < Offset) |
| ++RelI; |
| uintX_t NextOffset = Offset + Length; |
| bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset; |
| |
| uint32_t ID = read32<E>(D.data() + 4); |
| if (ID == 0) { |
| // CIE |
| Cie<ELFT> C(S, Index); |
| |
| StringRef Personality; |
| if (HasReloc) { |
| uint32_t SymIndex = RelI->getSymbol(Config->Mips64EL); |
| SymbolBody &Body = *S->getFile()->getSymbolBody(SymIndex)->repl(); |
| Personality = Body.getName(); |
| } |
| |
| std::pair<StringRef, StringRef> CieInfo(Entry, Personality); |
| auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size())); |
| if (P.second) { |
| Cies.push_back(C); |
| this->Header.sh_size += align(Length, sizeof(uintX_t)); |
| } |
| OffsetToIndex[Offset] = P.first->second; |
| } else { |
| if (!HasReloc) |
| error("FDE doesn't reference another section"); |
| InputSectionBase<ELFT> *Target = S->getRelocTarget(*RelI); |
| if (Target != &InputSection<ELFT>::Discarded && Target->isLive()) { |
| uint32_t CieOffset = Offset + 4 - ID; |
| auto I = OffsetToIndex.find(CieOffset); |
| if (I == OffsetToIndex.end()) |
| error("Invalid CIE reference"); |
| Cies[I->second].Fdes.push_back(EHRegion<ELFT>(S, Index)); |
| this->Header.sh_size += align(Length, sizeof(uintX_t)); |
| } |
| } |
| |
| Offset = NextOffset; |
| D = D.slice(Length); |
| } |
| } |
| |
| template <class ELFT> |
| typename EHOutputSection<ELFT>::uintX_t |
| EHOutputSection<ELFT>::readEntryLength(ArrayRef<uint8_t> D) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| if (D.size() < 4) |
| error("Truncated CIE/FDE length"); |
| uint64_t Len = read32<E>(D.data()); |
| if (Len < UINT32_MAX) { |
| if (Len > (UINT32_MAX - 4)) |
| error("CIE/FIE size is too large"); |
| if (Len + 4 > D.size()) |
| error("CIE/FIE ends past the end of the section"); |
| return Len + 4; |
| } |
| |
| if (D.size() < 12) |
| error("Truncated CIE/FDE length"); |
| Len = read64<E>(D.data() + 4); |
| if (Len > (UINT64_MAX - 12)) |
| error("CIE/FIE size is too large"); |
| if (Len + 12 > D.size()) |
| error("CIE/FIE ends past the end of the section"); |
| return Len + 12; |
| } |
| |
| template <class ELFT> |
| void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<EHInputSection<ELFT>>(C); |
| const Elf_Shdr *RelSec = S->RelocSection; |
| if (!RelSec) |
| return addSectionAux( |
| S, make_range((const Elf_Rela *)nullptr, (const Elf_Rela *)nullptr)); |
| ELFFile<ELFT> &Obj = S->getFile()->getObj(); |
| if (RelSec->sh_type == SHT_RELA) |
| return addSectionAux(S, Obj.relas(RelSec)); |
| return addSectionAux(S, Obj.rels(RelSec)); |
| } |
| |
| template <class ELFT> |
| static typename ELFFile<ELFT>::uintX_t writeAlignedCieOrFde(StringRef Data, |
| uint8_t *Buf) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| const endianness E = ELFT::TargetEndianness; |
| uint64_t Len = align(Data.size(), sizeof(uintX_t)); |
| write32<E>(Buf, Len - 4); |
| memcpy(Buf + 4, Data.data() + 4, Data.size() - 4); |
| return Len; |
| } |
| |
| template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| size_t Offset = 0; |
| for (const Cie<ELFT> &C : Cies) { |
| size_t CieOffset = Offset; |
| |
| uintX_t CIELen = writeAlignedCieOrFde<ELFT>(C.data(), Buf + Offset); |
| C.S->Offsets[C.Index].second = Offset; |
| Offset += CIELen; |
| |
| for (const EHRegion<ELFT> &F : C.Fdes) { |
| uintX_t Len = writeAlignedCieOrFde<ELFT>(F.data(), Buf + Offset); |
| write32<E>(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer |
| F.S->Offsets[F.Index].second = Offset; |
| Offset += Len; |
| } |
| } |
| |
| for (EHInputSection<ELFT> *S : Sections) { |
| const Elf_Shdr *RelSec = S->RelocSection; |
| if (!RelSec) |
| continue; |
| ELFFile<ELFT> &EObj = S->getFile()->getObj(); |
| if (RelSec->sh_type == SHT_RELA) |
| S->relocate(Buf, nullptr, EObj.relas(RelSec)); |
| else |
| S->relocate(Buf, nullptr, EObj.rels(RelSec)); |
| } |
| } |
| |
| template <class ELFT> |
| MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) {} |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| if (shouldTailMerge()) { |
| StringRef Data = Builder.data(); |
| memcpy(Buf, Data.data(), Data.size()); |
| return; |
| } |
| for (const std::pair<StringRef, size_t> &P : Builder.getMap()) { |
| StringRef Data = P.first; |
| memcpy(Buf + P.second, Data.data(), Data.size()); |
| } |
| } |
| |
| static size_t findNull(StringRef S, size_t EntSize) { |
| // Optimize the common case. |
| if (EntSize == 1) |
| return S.find(0); |
| |
| for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { |
| const char *B = S.begin() + I; |
| if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) |
| return I; |
| } |
| return StringRef::npos; |
| } |
| |
| template <class ELFT> |
| void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<MergeInputSection<ELFT>>(C); |
| S->OutSec = this; |
| uint32_t Align = S->getAlign(); |
| if (Align > this->Header.sh_addralign) |
| this->Header.sh_addralign = Align; |
| |
| ArrayRef<uint8_t> D = S->getSectionData(); |
| StringRef Data((const char *)D.data(), D.size()); |
| uintX_t EntSize = S->getSectionHdr()->sh_entsize; |
| |
| if (this->Header.sh_flags & SHF_STRINGS) { |
| uintX_t Offset = 0; |
| while (!Data.empty()) { |
| size_t End = findNull(Data, EntSize); |
| if (End == StringRef::npos) |
| error("String is not null terminated"); |
| StringRef Entry = Data.substr(0, End + EntSize); |
| uintX_t OutputOffset = Builder.add(Entry); |
| if (shouldTailMerge()) |
| OutputOffset = -1; |
| S->Offsets.push_back(std::make_pair(Offset, OutputOffset)); |
| uintX_t Size = End + EntSize; |
| Data = Data.substr(Size); |
| Offset += Size; |
| } |
| } else { |
| for (unsigned I = 0, N = Data.size(); I != N; I += EntSize) { |
| StringRef Entry = Data.substr(I, EntSize); |
| size_t OutputOffset = Builder.add(Entry); |
| S->Offsets.push_back(std::make_pair(I, OutputOffset)); |
| } |
| } |
| } |
| |
| template <class ELFT> |
| unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) { |
| return Builder.getOffset(Val); |
| } |
| |
| template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { |
| return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; |
| } |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::finalize() { |
| if (shouldTailMerge()) |
| Builder.finalize(); |
| this->Header.sh_size = Builder.getSize(); |
| } |
| |
| template <class ELFT> |
| StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) |
| : OutputSectionBase<ELFT>(Name, SHT_STRTAB, |
| Dynamic ? (uintX_t)SHF_ALLOC : 0), |
| Dynamic(Dynamic) { |
| this->Header.sh_addralign = 1; |
| } |
| |
| // String tables are created in two phases. First you call reserve() |
| // to reserve room in the string table, and then call addString() to actually |
| // add that string. |
| // |
| // Why two phases? We want to know the size of the string table as early as |
| // possible to fix file layout. So we have separated finalize(), which |
| // determines the size of the section, from writeTo(), which writes the section |
| // contents to the output buffer. If we merge reserve() with addString(), |
| // we need a plumbing work for finalize() and writeTo() so that offsets |
| // we obtained in the former function can be written in the latter. |
| // This design eliminated that need. |
| template <class ELFT> void StringTableSection<ELFT>::reserve(StringRef S) { |
| Reserved += S.size() + 1; // +1 for NUL |
| } |
| |
| // Adds a string to the string table. You must call reserve() with the |
| // same string before calling addString(). |
| template <class ELFT> size_t StringTableSection<ELFT>::addString(StringRef S) { |
| size_t Pos = Used; |
| Strings.push_back(S); |
| Used += S.size() + 1; |
| Reserved -= S.size() + 1; |
| assert((int64_t)Reserved >= 0); |
| return Pos; |
| } |
| |
| template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| // ELF string tables start with NUL byte, so advance the pointer by one. |
| ++Buf; |
| for (StringRef S : Strings) { |
| memcpy(Buf, S.data(), S.size()); |
| Buf += S.size() + 1; |
| } |
| } |
| |
| template <class ELFT> |
| bool elf2::shouldKeepInSymtab(const ObjectFile<ELFT> &File, StringRef SymName, |
| const typename ELFFile<ELFT>::Elf_Sym &Sym) { |
| if (Sym.getType() == STT_SECTION) |
| return false; |
| |
| InputSectionBase<ELFT> *Sec = File.getSection(Sym); |
| // If sym references a section in a discarded group, don't keep it. |
| if (Sec == &InputSection<ELFT>::Discarded) |
| return false; |
| |
| if (Config->DiscardNone) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (!SymName.startswith(".L") && !SymName.empty()) |
| return true; |
| |
| if (Config->DiscardLocals) |
| return false; |
| |
| return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection( |
| SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec) |
| : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", |
| StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), |
| Table(Table), StrTabSec(StrTabSec) { |
| this->Header.sh_entsize = sizeof(Elf_Sym); |
| this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4; |
| } |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static bool sortMipsSymbols(SymbolBody *L, SymbolBody *R) { |
| if (!L->isInGot() || !R->isInGot()) |
| return R->isInGot(); |
| return L->GotIndex < R->GotIndex; |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); |
| this->Header.sh_link = StrTabSec.SectionIndex; |
| this->Header.sh_info = NumLocals + 1; |
| |
| if (!StrTabSec.isDynamic()) { |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [](SymbolBody *L, SymbolBody *R) { |
| return getSymbolBinding(L) == STB_LOCAL && |
| getSymbolBinding(R) != STB_LOCAL; |
| }); |
| return; |
| } |
| if (Out<ELFT>::GnuHashTab) |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| Out<ELFT>::GnuHashTab->addSymbols(Symbols); |
| else if (Config->EMachine == EM_MIPS) |
| std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); |
| size_t I = 0; |
| for (SymbolBody *B : Symbols) |
| B->DynamicSymbolTableIndex = ++I; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::addLocalSymbol(StringRef Name) { |
| StrTabSec.reserve(Name); |
| ++NumVisible; |
| ++NumLocals; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::addSymbol(SymbolBody *Body) { |
| StrTabSec.reserve(Body->getName()); |
| Symbols.push_back(Body); |
| ++NumVisible; |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| Buf += sizeof(Elf_Sym); |
| |
| // All symbols with STB_LOCAL binding precede the weak and global symbols. |
| // .dynsym only contains global symbols. |
| if (!Config->DiscardAll && !StrTabSec.isDynamic()) |
| writeLocalSymbols(Buf); |
| |
| writeGlobalSymbols(Buf); |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { |
| // Iterate over all input object files to copy their local symbols |
| // to the output symbol table pointed by Buf. |
| for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) { |
| Elf_Sym_Range Syms = File->getLocalSymbols(); |
| for (const Elf_Sym &Sym : Syms) { |
| ErrorOr<StringRef> SymNameOrErr = Sym.getName(File->getStringTable()); |
| error(SymNameOrErr); |
| StringRef SymName = *SymNameOrErr; |
| if (!shouldKeepInSymtab<ELFT>(*File, SymName, Sym)) |
| continue; |
| |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| uintX_t VA = 0; |
| if (Sym.st_shndx == SHN_ABS) { |
| ESym->st_shndx = SHN_ABS; |
| VA = Sym.st_value; |
| } else { |
| InputSectionBase<ELFT> *Section = File->getSection(Sym); |
| if (!Section->isLive()) |
| continue; |
| const OutputSectionBase<ELFT> *OutSec = Section->OutSec; |
| ESym->st_shndx = OutSec->SectionIndex; |
| VA = Section->getOffset(Sym); |
| // Symbol offsets for AMDGPU need to be the offset in bytes of the |
| // symbol from the beginning of the section. |
| if (Config->EMachine != EM_AMDGPU) |
| VA += OutSec->getVA(); |
| } |
| ESym->st_name = StrTabSec.addString(SymName); |
| ESym->st_size = Sym.st_size; |
| ESym->setBindingAndType(Sym.getBinding(), Sym.getType()); |
| ESym->st_value = VA; |
| Buf += sizeof(*ESym); |
| } |
| } |
| } |
| |
| template <class ELFT> |
| static const typename llvm::object::ELFFile<ELFT>::Elf_Sym * |
| getElfSym(SymbolBody &Body) { |
| if (auto *EBody = dyn_cast<DefinedElf<ELFT>>(&Body)) |
| return &EBody->Sym; |
| if (auto *EBody = dyn_cast<UndefinedElf<ELFT>>(&Body)) |
| return &EBody->Sym; |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { |
| // Write the internal symbol table contents to the output symbol table |
| // pointed by Buf. |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| for (SymbolBody *Body : Symbols) { |
| const OutputSectionBase<ELFT> *OutSec = nullptr; |
| |
| switch (Body->kind()) { |
| case SymbolBody::DefinedSyntheticKind: |
| OutSec = &cast<DefinedSynthetic<ELFT>>(Body)->Section; |
| break; |
| case SymbolBody::DefinedRegularKind: { |
| auto *Sym = cast<DefinedRegular<ELFT>>(Body->repl()); |
| if (InputSectionBase<ELFT> *Sec = Sym->Section) { |
| if (!Sec->isLive()) |
| continue; |
| OutSec = Sec->OutSec; |
| } |
| break; |
| } |
| case SymbolBody::DefinedCommonKind: |
| OutSec = Out<ELFT>::Bss; |
| break; |
| case SymbolBody::SharedKind: { |
| if (cast<SharedSymbol<ELFT>>(Body)->NeedsCopy) |
| OutSec = Out<ELFT>::Bss; |
| break; |
| } |
| case SymbolBody::UndefinedElfKind: |
| case SymbolBody::UndefinedKind: |
| case SymbolBody::LazyKind: |
| break; |
| } |
| |
| StringRef Name = Body->getName(); |
| ESym->st_name = StrTabSec.addString(Name); |
| |
| unsigned char Type = STT_NOTYPE; |
| uintX_t Size = 0; |
| if (const Elf_Sym *InputSym = getElfSym<ELFT>(*Body)) { |
| Type = InputSym->getType(); |
| Size = InputSym->st_size; |
| } else if (auto *C = dyn_cast<DefinedCommon>(Body)) { |
| Type = STT_OBJECT; |
| Size = C->Size; |
| } |
| |
| ESym->setBindingAndType(getSymbolBinding(Body), Type); |
| ESym->st_size = Size; |
| ESym->setVisibility(Body->getVisibility()); |
| ESym->st_value = getSymVA<ELFT>(*Body); |
| |
| if (OutSec) |
| ESym->st_shndx = OutSec->SectionIndex; |
| else if (isa<DefinedRegular<ELFT>>(Body)) |
| ESym->st_shndx = SHN_ABS; |
| |
| ++ESym; |
| } |
| } |
| |
| template <class ELFT> |
| uint8_t SymbolTableSection<ELFT>::getSymbolBinding(SymbolBody *Body) { |
| uint8_t Visibility = Body->getVisibility(); |
| if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) |
| return STB_LOCAL; |
| if (const Elf_Sym *ESym = getElfSym<ELFT>(*Body)) |
| return ESym->getBinding(); |
| if (isa<DefinedSynthetic<ELFT>>(Body)) |
| return STB_LOCAL; |
| return Body->isWeak() ? STB_WEAK : STB_GLOBAL; |
| } |
| |
| template <class ELFT> |
| MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() |
| : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { |
| this->Header.sh_addralign = 4; |
| this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); |
| this->Header.sh_size = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); |
| R->ri_gp_value = getMipsGpAddr<ELFT>(); |
| R->ri_gprmask = GprMask; |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| // Copy input object file's .reginfo gprmask to output. |
| auto *S = cast<MipsReginfoInputSection<ELFT>>(C); |
| GprMask |= S->Reginfo->ri_gprmask; |
| } |
| |
| namespace lld { |
| namespace elf2 { |
| template class OutputSectionBase<ELF32LE>; |
| template class OutputSectionBase<ELF32BE>; |
| template class OutputSectionBase<ELF64LE>; |
| template class OutputSectionBase<ELF64BE>; |
| |
| template class GotPltSection<ELF32LE>; |
| template class GotPltSection<ELF32BE>; |
| template class GotPltSection<ELF64LE>; |
| template class GotPltSection<ELF64BE>; |
| |
| template class GotSection<ELF32LE>; |
| template class GotSection<ELF32BE>; |
| template class GotSection<ELF64LE>; |
| template class GotSection<ELF64BE>; |
| |
| template class PltSection<ELF32LE>; |
| template class PltSection<ELF32BE>; |
| template class PltSection<ELF64LE>; |
| template class PltSection<ELF64BE>; |
| |
| template class RelocationSection<ELF32LE>; |
| template class RelocationSection<ELF32BE>; |
| template class RelocationSection<ELF64LE>; |
| template class RelocationSection<ELF64BE>; |
| |
| template class InterpSection<ELF32LE>; |
| template class InterpSection<ELF32BE>; |
| template class InterpSection<ELF64LE>; |
| template class InterpSection<ELF64BE>; |
| |
| template class GnuHashTableSection<ELF32LE>; |
| template class GnuHashTableSection<ELF32BE>; |
| template class GnuHashTableSection<ELF64LE>; |
| template class GnuHashTableSection<ELF64BE>; |
| |
| template class HashTableSection<ELF32LE>; |
| template class HashTableSection<ELF32BE>; |
| template class HashTableSection<ELF64LE>; |
| template class HashTableSection<ELF64BE>; |
| |
| template class DynamicSection<ELF32LE>; |
| template class DynamicSection<ELF32BE>; |
| template class DynamicSection<ELF64LE>; |
| template class DynamicSection<ELF64BE>; |
| |
| template class OutputSection<ELF32LE>; |
| template class OutputSection<ELF32BE>; |
| template class OutputSection<ELF64LE>; |
| template class OutputSection<ELF64BE>; |
| |
| template class EHOutputSection<ELF32LE>; |
| template class EHOutputSection<ELF32BE>; |
| template class EHOutputSection<ELF64LE>; |
| template class EHOutputSection<ELF64BE>; |
| |
| template class MipsReginfoOutputSection<ELF32LE>; |
| template class MipsReginfoOutputSection<ELF32BE>; |
| template class MipsReginfoOutputSection<ELF64LE>; |
| template class MipsReginfoOutputSection<ELF64BE>; |
| |
| template class MergeOutputSection<ELF32LE>; |
| template class MergeOutputSection<ELF32BE>; |
| template class MergeOutputSection<ELF64LE>; |
| template class MergeOutputSection<ELF64BE>; |
| |
| template class StringTableSection<ELF32LE>; |
| template class StringTableSection<ELF32BE>; |
| template class StringTableSection<ELF64LE>; |
| template class StringTableSection<ELF64BE>; |
| |
| template class SymbolTableSection<ELF32LE>; |
| template class SymbolTableSection<ELF32BE>; |
| template class SymbolTableSection<ELF64LE>; |
| template class SymbolTableSection<ELF64BE>; |
| |
| template ELFFile<ELF32LE>::uintX_t getSymVA<ELF32LE>(const SymbolBody &); |
| template ELFFile<ELF32BE>::uintX_t getSymVA<ELF32BE>(const SymbolBody &); |
| template ELFFile<ELF64LE>::uintX_t getSymVA<ELF64LE>(const SymbolBody &); |
| template ELFFile<ELF64BE>::uintX_t getSymVA<ELF64BE>(const SymbolBody &); |
| |
| template ELFFile<ELF32LE>::uintX_t |
| getLocalRelTarget(const ObjectFile<ELF32LE> &, |
| const ELFFile<ELF32LE>::Elf_Rel &, |
| ELFFile<ELF32LE>::uintX_t Addend); |
| template ELFFile<ELF32BE>::uintX_t |
| getLocalRelTarget(const ObjectFile<ELF32BE> &, |
| const ELFFile<ELF32BE>::Elf_Rel &, |
| ELFFile<ELF32BE>::uintX_t Addend); |
| template ELFFile<ELF64LE>::uintX_t |
| getLocalRelTarget(const ObjectFile<ELF64LE> &, |
| const ELFFile<ELF64LE>::Elf_Rel &, |
| ELFFile<ELF64LE>::uintX_t Addend); |
| template ELFFile<ELF64BE>::uintX_t |
| getLocalRelTarget(const ObjectFile<ELF64BE> &, |
| const ELFFile<ELF64BE>::Elf_Rel &, |
| ELFFile<ELF64BE>::uintX_t Addend); |
| |
| template bool shouldKeepInSymtab<ELF32LE>(const ObjectFile<ELF32LE> &, |
| StringRef, |
| const ELFFile<ELF32LE>::Elf_Sym &); |
| template bool shouldKeepInSymtab<ELF32BE>(const ObjectFile<ELF32BE> &, |
| StringRef, |
| const ELFFile<ELF32BE>::Elf_Sym &); |
| template bool shouldKeepInSymtab<ELF64LE>(const ObjectFile<ELF64LE> &, |
| StringRef, |
| const ELFFile<ELF64LE>::Elf_Sym &); |
| template bool shouldKeepInSymtab<ELF64BE>(const ObjectFile<ELF64BE> &, |
| StringRef, |
| const ELFFile<ELF64BE>::Elf_Sym &); |
| } |
| } |