| //===- LinkerScript.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the parser/evaluator of the linker script. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LinkerScript.h" |
| #include "Config.h" |
| #include "InputSection.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Writer.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "lld/Common/Threads.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| LinkerScript *elf::script; |
| |
| static uint64_t getOutputSectionVA(SectionBase *sec) { |
| OutputSection *os = sec->getOutputSection(); |
| assert(os && "input section has no output section assigned"); |
| return os ? os->addr : 0; |
| } |
| |
| uint64_t ExprValue::getValue() const { |
| if (sec) |
| return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), |
| alignment); |
| return alignTo(val, alignment); |
| } |
| |
| uint64_t ExprValue::getSecAddr() const { |
| if (sec) |
| return sec->getOffset(0) + getOutputSectionVA(sec); |
| return 0; |
| } |
| |
| uint64_t ExprValue::getSectionOffset() const { |
| // If the alignment is trivial, we don't have to compute the full |
| // value to know the offset. This allows this function to succeed in |
| // cases where the output section is not yet known. |
| if (alignment == 1 && !sec) |
| return val; |
| return getValue() - getSecAddr(); |
| } |
| |
| OutputSection *LinkerScript::createOutputSection(StringRef name, |
| StringRef location) { |
| OutputSection *&secRef = nameToOutputSection[name]; |
| OutputSection *sec; |
| if (secRef && secRef->location.empty()) { |
| // There was a forward reference. |
| sec = secRef; |
| } else { |
| sec = make<OutputSection>(name, SHT_PROGBITS, 0); |
| if (!secRef) |
| secRef = sec; |
| } |
| sec->location = location; |
| return sec; |
| } |
| |
| OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { |
| OutputSection *&cmdRef = nameToOutputSection[name]; |
| if (!cmdRef) |
| cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); |
| return cmdRef; |
| } |
| |
| // Expands the memory region by the specified size. |
| static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, |
| StringRef regionName, StringRef secName) { |
| memRegion->curPos += size; |
| uint64_t newSize = memRegion->curPos - memRegion->origin; |
| if (newSize > memRegion->length) |
| error("section '" + secName + "' will not fit in region '" + regionName + |
| "': overflowed by " + Twine(newSize - memRegion->length) + " bytes"); |
| } |
| |
| void LinkerScript::expandMemoryRegions(uint64_t size) { |
| if (ctx->memRegion) |
| expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, |
| ctx->outSec->name); |
| // Only expand the LMARegion if it is different from memRegion. |
| if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) |
| expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, |
| ctx->outSec->name); |
| } |
| |
| void LinkerScript::expandOutputSection(uint64_t size) { |
| ctx->outSec->size += size; |
| expandMemoryRegions(size); |
| } |
| |
| void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { |
| uint64_t val = e().getValue(); |
| if (val < dot && inSec) |
| error(loc + ": unable to move location counter backward for: " + |
| ctx->outSec->name); |
| |
| // Update to location counter means update to section size. |
| if (inSec) |
| expandOutputSection(val - dot); |
| |
| dot = val; |
| } |
| |
| // Used for handling linker symbol assignments, for both finalizing |
| // their values and doing early declarations. Returns true if symbol |
| // should be defined from linker script. |
| static bool shouldDefineSym(SymbolAssignment *cmd) { |
| if (cmd->name == ".") |
| return false; |
| |
| if (!cmd->provide) |
| return true; |
| |
| // If a symbol was in PROVIDE(), we need to define it only |
| // when it is a referenced undefined symbol. |
| Symbol *b = symtab->find(cmd->name); |
| if (b && !b->isDefined()) |
| return true; |
| return false; |
| } |
| |
| // Called by processSymbolAssignments() to assign definitions to |
| // linker-script-defined symbols. |
| void LinkerScript::addSymbol(SymbolAssignment *cmd) { |
| if (!shouldDefineSym(cmd)) |
| return; |
| |
| // Define a symbol. |
| ExprValue value = cmd->expression(); |
| SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; |
| uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; |
| |
| // When this function is called, section addresses have not been |
| // fixed yet. So, we may or may not know the value of the RHS |
| // expression. |
| // |
| // For example, if an expression is `x = 42`, we know x is always 42. |
| // However, if an expression is `x = .`, there's no way to know its |
| // value at the moment. |
| // |
| // We want to set symbol values early if we can. This allows us to |
| // use symbols as variables in linker scripts. Doing so allows us to |
| // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. |
| uint64_t symValue = value.sec ? 0 : value.getValue(); |
| |
| Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, |
| symValue, 0, sec); |
| |
| Symbol *sym = symtab->insert(cmd->name); |
| sym->mergeProperties(newSym); |
| sym->replace(newSym); |
| cmd->sym = cast<Defined>(sym); |
| } |
| |
| // This function is called from LinkerScript::declareSymbols. |
| // It creates a placeholder symbol if needed. |
| static void declareSymbol(SymbolAssignment *cmd) { |
| if (!shouldDefineSym(cmd)) |
| return; |
| |
| uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; |
| Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, |
| nullptr); |
| |
| // We can't calculate final value right now. |
| Symbol *sym = symtab->insert(cmd->name); |
| sym->mergeProperties(newSym); |
| sym->replace(newSym); |
| |
| cmd->sym = cast<Defined>(sym); |
| cmd->provide = false; |
| sym->scriptDefined = true; |
| } |
| |
| using SymbolAssignmentMap = |
| DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; |
| |
| // Collect section/value pairs of linker-script-defined symbols. This is used to |
| // check whether symbol values converge. |
| static SymbolAssignmentMap |
| getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { |
| SymbolAssignmentMap ret; |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { |
| if (cmd->sym) // sym is nullptr for dot. |
| ret.try_emplace(cmd->sym, |
| std::make_pair(cmd->sym->section, cmd->sym->value)); |
| continue; |
| } |
| for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) |
| if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) |
| if (cmd->sym) |
| ret.try_emplace(cmd->sym, |
| std::make_pair(cmd->sym->section, cmd->sym->value)); |
| } |
| return ret; |
| } |
| |
| // Returns the lexicographical smallest (for determinism) Defined whose |
| // section/value has changed. |
| static const Defined * |
| getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { |
| const Defined *changed = nullptr; |
| for (auto &it : oldValues) { |
| const Defined *sym = it.first; |
| if (std::make_pair(sym->section, sym->value) != it.second && |
| (!changed || sym->getName() < changed->getName())) |
| changed = sym; |
| } |
| return changed; |
| } |
| |
| // This method is used to handle INSERT AFTER statement. Here we rebuild |
| // the list of script commands to mix sections inserted into. |
| void LinkerScript::processInsertCommands() { |
| std::vector<BaseCommand *> v; |
| auto insert = [&](std::vector<BaseCommand *> &from) { |
| v.insert(v.end(), from.begin(), from.end()); |
| from.clear(); |
| }; |
| |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *os = dyn_cast<OutputSection>(base)) { |
| insert(insertBeforeCommands[os->name]); |
| v.push_back(base); |
| insert(insertAfterCommands[os->name]); |
| continue; |
| } |
| v.push_back(base); |
| } |
| |
| for (auto &cmds : {insertBeforeCommands, insertAfterCommands}) |
| for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds) |
| if (!p.second.empty()) |
| error("unable to INSERT AFTER/BEFORE " + p.first + |
| ": section not defined"); |
| |
| sectionCommands = std::move(v); |
| } |
| |
| // Symbols defined in script should not be inlined by LTO. At the same time |
| // we don't know their final values until late stages of link. Here we scan |
| // over symbol assignment commands and create placeholder symbols if needed. |
| void LinkerScript::declareSymbols() { |
| assert(!ctx); |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { |
| declareSymbol(cmd); |
| continue; |
| } |
| |
| // If the output section directive has constraints, |
| // we can't say for sure if it is going to be included or not. |
| // Skip such sections for now. Improve the checks if we ever |
| // need symbols from that sections to be declared early. |
| auto *sec = cast<OutputSection>(base); |
| if (sec->constraint != ConstraintKind::NoConstraint) |
| continue; |
| for (BaseCommand *base2 : sec->sectionCommands) |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) |
| declareSymbol(cmd); |
| } |
| } |
| |
| // This function is called from assignAddresses, while we are |
| // fixing the output section addresses. This function is supposed |
| // to set the final value for a given symbol assignment. |
| void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { |
| if (cmd->name == ".") { |
| setDot(cmd->expression, cmd->location, inSec); |
| return; |
| } |
| |
| if (!cmd->sym) |
| return; |
| |
| ExprValue v = cmd->expression(); |
| if (v.isAbsolute()) { |
| cmd->sym->section = nullptr; |
| cmd->sym->value = v.getValue(); |
| } else { |
| cmd->sym->section = v.sec; |
| cmd->sym->value = v.getSectionOffset(); |
| } |
| } |
| |
| static std::string getFilename(InputFile *file) { |
| if (!file) |
| return ""; |
| if (file->archiveName.empty()) |
| return file->getName(); |
| return (file->archiveName + "(" + file->getName() + ")").str(); |
| } |
| |
| bool LinkerScript::shouldKeep(InputSectionBase *s) { |
| if (keptSections.empty()) |
| return false; |
| std::string filename = getFilename(s->file); |
| for (InputSectionDescription *id : keptSections) |
| if (id->filePat.match(filename)) |
| for (SectionPattern &p : id->sectionPatterns) |
| if (p.sectionPat.match(s->name)) |
| return true; |
| return false; |
| } |
| |
| // A helper function for the SORT() command. |
| static bool matchConstraints(ArrayRef<InputSectionBase *> sections, |
| ConstraintKind kind) { |
| if (kind == ConstraintKind::NoConstraint) |
| return true; |
| |
| bool isRW = llvm::any_of( |
| sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); |
| |
| return (isRW && kind == ConstraintKind::ReadWrite) || |
| (!isRW && kind == ConstraintKind::ReadOnly); |
| } |
| |
| static void sortSections(MutableArrayRef<InputSectionBase *> vec, |
| SortSectionPolicy k) { |
| auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| // ">" is not a mistake. Sections with larger alignments are placed |
| // before sections with smaller alignments in order to reduce the |
| // amount of padding necessary. This is compatible with GNU. |
| return a->alignment > b->alignment; |
| }; |
| auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| return a->name < b->name; |
| }; |
| auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| return getPriority(a->name) < getPriority(b->name); |
| }; |
| |
| switch (k) { |
| case SortSectionPolicy::Default: |
| case SortSectionPolicy::None: |
| return; |
| case SortSectionPolicy::Alignment: |
| return llvm::stable_sort(vec, alignmentComparator); |
| case SortSectionPolicy::Name: |
| return llvm::stable_sort(vec, nameComparator); |
| case SortSectionPolicy::Priority: |
| return llvm::stable_sort(vec, priorityComparator); |
| } |
| } |
| |
| // Sort sections as instructed by SORT-family commands and --sort-section |
| // option. Because SORT-family commands can be nested at most two depth |
| // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command |
| // line option is respected even if a SORT command is given, the exact |
| // behavior we have here is a bit complicated. Here are the rules. |
| // |
| // 1. If two SORT commands are given, --sort-section is ignored. |
| // 2. If one SORT command is given, and if it is not SORT_NONE, |
| // --sort-section is handled as an inner SORT command. |
| // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. |
| // 4. If no SORT command is given, sort according to --sort-section. |
| static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, |
| const SectionPattern &pat) { |
| if (pat.sortOuter == SortSectionPolicy::None) |
| return; |
| |
| if (pat.sortInner == SortSectionPolicy::Default) |
| sortSections(vec, config->sortSection); |
| else |
| sortSections(vec, pat.sortInner); |
| sortSections(vec, pat.sortOuter); |
| } |
| |
| // Compute and remember which sections the InputSectionDescription matches. |
| std::vector<InputSectionBase *> |
| LinkerScript::computeInputSections(const InputSectionDescription *cmd) { |
| std::vector<InputSectionBase *> ret; |
| |
| // Collects all sections that satisfy constraints of Cmd. |
| for (const SectionPattern &pat : cmd->sectionPatterns) { |
| size_t sizeBefore = ret.size(); |
| |
| for (InputSectionBase *sec : inputSections) { |
| if (!sec->isLive() || sec->parent) |
| continue; |
| |
| // For -emit-relocs we have to ignore entries like |
| // .rela.dyn : { *(.rela.data) } |
| // which are common because they are in the default bfd script. |
| // We do not ignore SHT_REL[A] linker-synthesized sections here because |
| // want to support scripts that do custom layout for them. |
| if (isa<InputSection>(sec) && |
| cast<InputSection>(sec)->getRelocatedSection()) |
| continue; |
| |
| std::string filename = getFilename(sec->file); |
| if (!cmd->filePat.match(filename) || |
| pat.excludedFilePat.match(filename) || |
| !pat.sectionPat.match(sec->name)) |
| continue; |
| |
| ret.push_back(sec); |
| } |
| |
| sortInputSections( |
| MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat); |
| } |
| return ret; |
| } |
| |
| void LinkerScript::discard(InputSectionBase *s) { |
| if (s == in.shStrTab || s == mainPart->relaDyn || s == mainPart->relrDyn) |
| error("discarding " + s->name + " section is not allowed"); |
| |
| // You can discard .hash and .gnu.hash sections by linker scripts. Since |
| // they are synthesized sections, we need to handle them differently than |
| // other regular sections. |
| if (s == mainPart->gnuHashTab) |
| mainPart->gnuHashTab = nullptr; |
| if (s == mainPart->hashTab) |
| mainPart->hashTab = nullptr; |
| |
| s->markDead(); |
| s->parent = nullptr; |
| for (InputSection *ds : s->dependentSections) |
| discard(ds); |
| } |
| |
| std::vector<InputSectionBase *> |
| LinkerScript::createInputSectionList(OutputSection &outCmd) { |
| std::vector<InputSectionBase *> ret; |
| |
| for (BaseCommand *base : outCmd.sectionCommands) { |
| if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { |
| cmd->sectionBases = computeInputSections(cmd); |
| for (InputSectionBase *s : cmd->sectionBases) |
| s->parent = &outCmd; |
| ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); |
| } |
| } |
| return ret; |
| } |
| |
| // Create output sections described by SECTIONS commands. |
| void LinkerScript::processSectionCommands() { |
| size_t i = 0; |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *sec = dyn_cast<OutputSection>(base)) { |
| std::vector<InputSectionBase *> v = createInputSectionList(*sec); |
| |
| // The output section name `/DISCARD/' is special. |
| // Any input section assigned to it is discarded. |
| if (sec->name == "/DISCARD/") { |
| for (InputSectionBase *s : v) |
| discard(s); |
| sec->sectionCommands.clear(); |
| continue; |
| } |
| |
| // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive |
| // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input |
| // sections satisfy a given constraint. If not, a directive is handled |
| // as if it wasn't present from the beginning. |
| // |
| // Because we'll iterate over SectionCommands many more times, the easy |
| // way to "make it as if it wasn't present" is to make it empty. |
| if (!matchConstraints(v, sec->constraint)) { |
| for (InputSectionBase *s : v) |
| s->parent = nullptr; |
| sec->sectionCommands.clear(); |
| continue; |
| } |
| |
| // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign |
| // is given, input sections are aligned to that value, whether the |
| // given value is larger or smaller than the original section alignment. |
| if (sec->subalignExpr) { |
| uint32_t subalign = sec->subalignExpr().getValue(); |
| for (InputSectionBase *s : v) |
| s->alignment = subalign; |
| } |
| |
| sec->sectionIndex = i++; |
| } |
| } |
| } |
| |
| void LinkerScript::processSymbolAssignments() { |
| // Dot outside an output section still represents a relative address, whose |
| // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section |
| // that fills the void outside a section. It has an index of one, which is |
| // indistinguishable from any other regular section index. |
| aether = make<OutputSection>("", 0, SHF_ALLOC); |
| aether->sectionIndex = 1; |
| |
| // ctx captures the local AddressState and makes it accessible deliberately. |
| // This is needed as there are some cases where we cannot just thread the |
| // current state through to a lambda function created by the script parser. |
| AddressState state; |
| ctx = &state; |
| ctx->outSec = aether; |
| |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) |
| addSymbol(cmd); |
| else |
| for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) |
| if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) |
| addSymbol(cmd); |
| } |
| |
| ctx = nullptr; |
| } |
| |
| static OutputSection *findByName(ArrayRef<BaseCommand *> vec, |
| StringRef name) { |
| for (BaseCommand *base : vec) |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| if (sec->name == name) |
| return sec; |
| return nullptr; |
| } |
| |
| static OutputSection *createSection(InputSectionBase *isec, |
| StringRef outsecName) { |
| OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); |
| sec->recordSection(isec); |
| return sec; |
| } |
| |
| static OutputSection * |
| addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, |
| InputSectionBase *isec, StringRef outsecName) { |
| // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r |
| // option is given. A section with SHT_GROUP defines a "section group", and |
| // its members have SHF_GROUP attribute. Usually these flags have already been |
| // stripped by InputFiles.cpp as section groups are processed and uniquified. |
| // However, for the -r option, we want to pass through all section groups |
| // as-is because adding/removing members or merging them with other groups |
| // change their semantics. |
| if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) |
| return createSection(isec, outsecName); |
| |
| // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have |
| // relocation sections .rela.foo and .rela.bar for example. Most tools do |
| // not allow multiple REL[A] sections for output section. Hence we |
| // should combine these relocation sections into single output. |
| // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any |
| // other REL[A] sections created by linker itself. |
| if (!isa<SyntheticSection>(isec) && |
| (isec->type == SHT_REL || isec->type == SHT_RELA)) { |
| auto *sec = cast<InputSection>(isec); |
| OutputSection *out = sec->getRelocatedSection()->getOutputSection(); |
| |
| if (out->relocationSection) { |
| out->relocationSection->recordSection(sec); |
| return nullptr; |
| } |
| |
| out->relocationSection = createSection(isec, outsecName); |
| return out->relocationSection; |
| } |
| |
| // The ELF spec just says |
| // ---------------------------------------------------------------- |
| // In the first phase, input sections that match in name, type and |
| // attribute flags should be concatenated into single sections. |
| // ---------------------------------------------------------------- |
| // |
| // However, it is clear that at least some flags have to be ignored for |
| // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be |
| // ignored. We should not have two output .text sections just because one was |
| // in a group and another was not for example. |
| // |
| // It also seems that wording was a late addition and didn't get the |
| // necessary scrutiny. |
| // |
| // Merging sections with different flags is expected by some users. One |
| // reason is that if one file has |
| // |
| // int *const bar __attribute__((section(".foo"))) = (int *)0; |
| // |
| // gcc with -fPIC will produce a read only .foo section. But if another |
| // file has |
| // |
| // int zed; |
| // int *const bar __attribute__((section(".foo"))) = (int *)&zed; |
| // |
| // gcc with -fPIC will produce a read write section. |
| // |
| // Last but not least, when using linker script the merge rules are forced by |
| // the script. Unfortunately, linker scripts are name based. This means that |
| // expressions like *(.foo*) can refer to multiple input sections with |
| // different flags. We cannot put them in different output sections or we |
| // would produce wrong results for |
| // |
| // start = .; *(.foo.*) end = .; *(.bar) |
| // |
| // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to |
| // another. The problem is that there is no way to layout those output |
| // sections such that the .foo sections are the only thing between the start |
| // and end symbols. |
| // |
| // Given the above issues, we instead merge sections by name and error on |
| // incompatible types and flags. |
| TinyPtrVector<OutputSection *> &v = map[outsecName]; |
| for (OutputSection *sec : v) { |
| if (sec->partition != isec->partition) |
| continue; |
| sec->recordSection(isec); |
| return nullptr; |
| } |
| |
| OutputSection *sec = createSection(isec, outsecName); |
| v.push_back(sec); |
| return sec; |
| } |
| |
| // Add sections that didn't match any sections command. |
| void LinkerScript::addOrphanSections() { |
| StringMap<TinyPtrVector<OutputSection *>> map; |
| std::vector<OutputSection *> v; |
| |
| auto add = [&](InputSectionBase *s) { |
| if (!s->isLive() || s->parent) |
| return; |
| |
| StringRef name = getOutputSectionName(s); |
| |
| if (config->orphanHandling == OrphanHandlingPolicy::Error) |
| error(toString(s) + " is being placed in '" + name + "'"); |
| else if (config->orphanHandling == OrphanHandlingPolicy::Warn) |
| warn(toString(s) + " is being placed in '" + name + "'"); |
| |
| if (OutputSection *sec = findByName(sectionCommands, name)) { |
| sec->recordSection(s); |
| return; |
| } |
| |
| if (OutputSection *os = addInputSec(map, s, name)) |
| v.push_back(os); |
| assert(isa<MergeInputSection>(s) || |
| s->getOutputSection()->sectionIndex == UINT32_MAX); |
| }; |
| |
| // For futher --emit-reloc handling code we need target output section |
| // to be created before we create relocation output section, so we want |
| // to create target sections first. We do not want priority handling |
| // for synthetic sections because them are special. |
| for (InputSectionBase *isec : inputSections) { |
| if (auto *sec = dyn_cast<InputSection>(isec)) |
| if (InputSectionBase *rel = sec->getRelocatedSection()) |
| if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) |
| add(relIS); |
| add(isec); |
| } |
| |
| // If no SECTIONS command was given, we should insert sections commands |
| // before others, so that we can handle scripts which refers them, |
| // for example: "foo = ABSOLUTE(ADDR(.text)));". |
| // When SECTIONS command is present we just add all orphans to the end. |
| if (hasSectionsCommand) |
| sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); |
| else |
| sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); |
| } |
| |
| uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { |
| bool isTbss = |
| (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; |
| uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; |
| start = alignTo(start, alignment); |
| uint64_t end = start + size; |
| |
| if (isTbss) |
| ctx->threadBssOffset = end - dot; |
| else |
| dot = end; |
| return end; |
| } |
| |
| void LinkerScript::output(InputSection *s) { |
| assert(ctx->outSec == s->getParent()); |
| uint64_t before = advance(0, 1); |
| uint64_t pos = advance(s->getSize(), s->alignment); |
| s->outSecOff = pos - s->getSize() - ctx->outSec->addr; |
| |
| // Update output section size after adding each section. This is so that |
| // SIZEOF works correctly in the case below: |
| // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } |
| expandOutputSection(pos - before); |
| } |
| |
| void LinkerScript::switchTo(OutputSection *sec) { |
| ctx->outSec = sec; |
| |
| uint64_t before = advance(0, 1); |
| ctx->outSec->addr = advance(0, ctx->outSec->alignment); |
| expandMemoryRegions(ctx->outSec->addr - before); |
| } |
| |
| // This function searches for a memory region to place the given output |
| // section in. If found, a pointer to the appropriate memory region is |
| // returned. Otherwise, a nullptr is returned. |
| MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { |
| // If a memory region name was specified in the output section command, |
| // then try to find that region first. |
| if (!sec->memoryRegionName.empty()) { |
| if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) |
| return m; |
| error("memory region '" + sec->memoryRegionName + "' not declared"); |
| return nullptr; |
| } |
| |
| // If at least one memory region is defined, all sections must |
| // belong to some memory region. Otherwise, we don't need to do |
| // anything for memory regions. |
| if (memoryRegions.empty()) |
| return nullptr; |
| |
| // See if a region can be found by matching section flags. |
| for (auto &pair : memoryRegions) { |
| MemoryRegion *m = pair.second; |
| if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) |
| return m; |
| } |
| |
| // Otherwise, no suitable region was found. |
| if (sec->flags & SHF_ALLOC) |
| error("no memory region specified for section '" + sec->name + "'"); |
| return nullptr; |
| } |
| |
| static OutputSection *findFirstSection(PhdrEntry *load) { |
| for (OutputSection *sec : outputSections) |
| if (sec->ptLoad == load) |
| return sec; |
| return nullptr; |
| } |
| |
| // This function assigns offsets to input sections and an output section |
| // for a single sections command (e.g. ".text { *(.text); }"). |
| void LinkerScript::assignOffsets(OutputSection *sec) { |
| if (!(sec->flags & SHF_ALLOC)) |
| dot = 0; |
| |
| ctx->memRegion = sec->memRegion; |
| ctx->lmaRegion = sec->lmaRegion; |
| if (ctx->memRegion) |
| dot = ctx->memRegion->curPos; |
| |
| if ((sec->flags & SHF_ALLOC) && sec->addrExpr) |
| setDot(sec->addrExpr, sec->location, false); |
| |
| // If the address of the section has been moved forward by an explicit |
| // expression so that it now starts past the current curPos of the enclosing |
| // region, we need to expand the current region to account for the space |
| // between the previous section, if any, and the start of this section. |
| if (ctx->memRegion && ctx->memRegion->curPos < dot) |
| expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, |
| ctx->memRegion->name, sec->name); |
| |
| switchTo(sec); |
| |
| if (sec->lmaExpr) |
| ctx->lmaOffset = sec->lmaExpr().getValue() - dot; |
| |
| if (MemoryRegion *mr = sec->lmaRegion) |
| ctx->lmaOffset = mr->curPos - dot; |
| |
| // If neither AT nor AT> is specified for an allocatable section, the linker |
| // will set the LMA such that the difference between VMA and LMA for the |
| // section is the same as the preceding output section in the same region |
| // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html |
| // This, however, should only be done by the first "non-header" section |
| // in the segment. |
| if (PhdrEntry *l = ctx->outSec->ptLoad) |
| if (sec == findFirstSection(l)) |
| l->lmaOffset = ctx->lmaOffset; |
| |
| // We can call this method multiple times during the creation of |
| // thunks and want to start over calculation each time. |
| sec->size = 0; |
| |
| // We visited SectionsCommands from processSectionCommands to |
| // layout sections. Now, we visit SectionsCommands again to fix |
| // section offsets. |
| for (BaseCommand *base : sec->sectionCommands) { |
| // This handles the assignments to symbol or to the dot. |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { |
| cmd->addr = dot; |
| assignSymbol(cmd, true); |
| cmd->size = dot - cmd->addr; |
| continue; |
| } |
| |
| // Handle BYTE(), SHORT(), LONG(), or QUAD(). |
| if (auto *cmd = dyn_cast<ByteCommand>(base)) { |
| cmd->offset = dot - ctx->outSec->addr; |
| dot += cmd->size; |
| expandOutputSection(cmd->size); |
| continue; |
| } |
| |
| // Handle a single input section description command. |
| // It calculates and assigns the offsets for each section and also |
| // updates the output section size. |
| for (InputSection *sec : cast<InputSectionDescription>(base)->sections) |
| output(sec); |
| } |
| } |
| |
| static bool isDiscardable(OutputSection &sec) { |
| if (sec.name == "/DISCARD/") |
| return true; |
| |
| // We do not remove empty sections that are explicitly |
| // assigned to any segment. |
| if (!sec.phdrs.empty()) |
| return false; |
| |
| // We do not want to remove OutputSections with expressions that reference |
| // symbols even if the OutputSection is empty. We want to ensure that the |
| // expressions can be evaluated and report an error if they cannot. |
| if (sec.expressionsUseSymbols) |
| return false; |
| |
| // OutputSections may be referenced by name in ADDR and LOADADDR expressions, |
| // as an empty Section can has a valid VMA and LMA we keep the OutputSection |
| // to maintain the integrity of the other Expression. |
| if (sec.usedInExpression) |
| return false; |
| |
| for (BaseCommand *base : sec.sectionCommands) { |
| if (auto cmd = dyn_cast<SymbolAssignment>(base)) |
| // Don't create empty output sections just for unreferenced PROVIDE |
| // symbols. |
| if (cmd->name != "." && !cmd->sym) |
| continue; |
| |
| if (!isa<InputSectionDescription>(*base)) |
| return false; |
| } |
| return true; |
| } |
| |
| void LinkerScript::adjustSectionsBeforeSorting() { |
| // If the output section contains only symbol assignments, create a |
| // corresponding output section. The issue is what to do with linker script |
| // like ".foo : { symbol = 42; }". One option would be to convert it to |
| // "symbol = 42;". That is, move the symbol out of the empty section |
| // description. That seems to be what bfd does for this simple case. The |
| // problem is that this is not completely general. bfd will give up and |
| // create a dummy section too if there is a ". = . + 1" inside the section |
| // for example. |
| // Given that we want to create the section, we have to worry what impact |
| // it will have on the link. For example, if we just create a section with |
| // 0 for flags, it would change which PT_LOADs are created. |
| // We could remember that particular section is dummy and ignore it in |
| // other parts of the linker, but unfortunately there are quite a few places |
| // that would need to change: |
| // * The program header creation. |
| // * The orphan section placement. |
| // * The address assignment. |
| // The other option is to pick flags that minimize the impact the section |
| // will have on the rest of the linker. That is why we copy the flags from |
| // the previous sections. Only a few flags are needed to keep the impact low. |
| uint64_t flags = SHF_ALLOC; |
| |
| for (BaseCommand *&cmd : sectionCommands) { |
| auto *sec = dyn_cast<OutputSection>(cmd); |
| if (!sec) |
| continue; |
| |
| // Handle align (e.g. ".foo : ALIGN(16) { ... }"). |
| if (sec->alignExpr) |
| sec->alignment = |
| std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); |
| |
| // The input section might have been removed (if it was an empty synthetic |
| // section), but we at least know the flags. |
| if (sec->hasInputSections) |
| flags = sec->flags; |
| |
| // We do not want to keep any special flags for output section |
| // in case it is empty. |
| bool isEmpty = getInputSections(sec).empty(); |
| if (isEmpty) |
| sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | |
| SHF_WRITE | SHF_EXECINSTR); |
| |
| if (isEmpty && isDiscardable(*sec)) { |
| sec->markDead(); |
| cmd = nullptr; |
| } else if (!sec->isLive()) { |
| sec->markLive(); |
| } |
| } |
| |
| // It is common practice to use very generic linker scripts. So for any |
| // given run some of the output sections in the script will be empty. |
| // We could create corresponding empty output sections, but that would |
| // clutter the output. |
| // We instead remove trivially empty sections. The bfd linker seems even |
| // more aggressive at removing them. |
| llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); |
| } |
| |
| void LinkerScript::adjustSectionsAfterSorting() { |
| // Try and find an appropriate memory region to assign offsets in. |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *sec = dyn_cast<OutputSection>(base)) { |
| if (!sec->lmaRegionName.empty()) { |
| if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) |
| sec->lmaRegion = m; |
| else |
| error("memory region '" + sec->lmaRegionName + "' not declared"); |
| } |
| sec->memRegion = findMemoryRegion(sec); |
| } |
| } |
| |
| // If output section command doesn't specify any segments, |
| // and we haven't previously assigned any section to segment, |
| // then we simply assign section to the very first load segment. |
| // Below is an example of such linker script: |
| // PHDRS { seg PT_LOAD; } |
| // SECTIONS { .aaa : { *(.aaa) } } |
| std::vector<StringRef> defPhdrs; |
| auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { |
| return cmd.type == PT_LOAD; |
| }); |
| if (firstPtLoad != phdrsCommands.end()) |
| defPhdrs.push_back(firstPtLoad->name); |
| |
| // Walk the commands and propagate the program headers to commands that don't |
| // explicitly specify them. |
| for (BaseCommand *base : sectionCommands) { |
| auto *sec = dyn_cast<OutputSection>(base); |
| if (!sec) |
| continue; |
| |
| if (sec->phdrs.empty()) { |
| // To match the bfd linker script behaviour, only propagate program |
| // headers to sections that are allocated. |
| if (sec->flags & SHF_ALLOC) |
| sec->phdrs = defPhdrs; |
| } else { |
| defPhdrs = sec->phdrs; |
| } |
| } |
| } |
| |
| static uint64_t computeBase(uint64_t min, bool allocateHeaders) { |
| // If there is no SECTIONS or if the linkerscript is explicit about program |
| // headers, do our best to allocate them. |
| if (!script->hasSectionsCommand || allocateHeaders) |
| return 0; |
| // Otherwise only allocate program headers if that would not add a page. |
| return alignDown(min, config->maxPageSize); |
| } |
| |
| // When the SECTIONS command is used, try to find an address for the file and |
| // program headers output sections, which can be added to the first PT_LOAD |
| // segment when program headers are created. |
| // |
| // We check if the headers fit below the first allocated section. If there isn't |
| // enough space for these sections, we'll remove them from the PT_LOAD segment, |
| // and we'll also remove the PT_PHDR segment. |
| void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { |
| uint64_t min = std::numeric_limits<uint64_t>::max(); |
| for (OutputSection *sec : outputSections) |
| if (sec->flags & SHF_ALLOC) |
| min = std::min<uint64_t>(min, sec->addr); |
| |
| auto it = llvm::find_if( |
| phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); |
| if (it == phdrs.end()) |
| return; |
| PhdrEntry *firstPTLoad = *it; |
| |
| bool hasExplicitHeaders = |
| llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { |
| return cmd.hasPhdrs || cmd.hasFilehdr; |
| }); |
| bool paged = !config->omagic && !config->nmagic; |
| uint64_t headerSize = getHeaderSize(); |
| if ((paged || hasExplicitHeaders) && |
| headerSize <= min - computeBase(min, hasExplicitHeaders)) { |
| min = alignDown(min - headerSize, config->maxPageSize); |
| Out::elfHeader->addr = min; |
| Out::programHeaders->addr = min + Out::elfHeader->size; |
| return; |
| } |
| |
| // Error if we were explicitly asked to allocate headers. |
| if (hasExplicitHeaders) |
| error("could not allocate headers"); |
| |
| Out::elfHeader->ptLoad = nullptr; |
| Out::programHeaders->ptLoad = nullptr; |
| firstPTLoad->firstSec = findFirstSection(firstPTLoad); |
| |
| llvm::erase_if(phdrs, |
| [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); |
| } |
| |
| LinkerScript::AddressState::AddressState() { |
| for (auto &mri : script->memoryRegions) { |
| MemoryRegion *mr = mri.second; |
| mr->curPos = mr->origin; |
| } |
| } |
| |
| // Here we assign addresses as instructed by linker script SECTIONS |
| // sub-commands. Doing that allows us to use final VA values, so here |
| // we also handle rest commands like symbol assignments and ASSERTs. |
| // Returns a symbol that has changed its section or value, or nullptr if no |
| // symbol has changed. |
| const Defined *LinkerScript::assignAddresses() { |
| if (script->hasSectionsCommand) { |
| // With a linker script, assignment of addresses to headers is covered by |
| // allocateHeaders(). |
| dot = config->imageBase.getValueOr(0); |
| } else { |
| // Assign addresses to headers right now. |
| dot = target->getImageBase(); |
| Out::elfHeader->addr = dot; |
| Out::programHeaders->addr = dot + Out::elfHeader->size; |
| dot += getHeaderSize(); |
| } |
| |
| auto deleter = std::make_unique<AddressState>(); |
| ctx = deleter.get(); |
| errorOnMissingSection = true; |
| switchTo(aether); |
| |
| SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); |
| for (BaseCommand *base : sectionCommands) { |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { |
| cmd->addr = dot; |
| assignSymbol(cmd, false); |
| cmd->size = dot - cmd->addr; |
| continue; |
| } |
| assignOffsets(cast<OutputSection>(base)); |
| } |
| |
| ctx = nullptr; |
| return getChangedSymbolAssignment(oldValues); |
| } |
| |
| // Creates program headers as instructed by PHDRS linker script command. |
| std::vector<PhdrEntry *> LinkerScript::createPhdrs() { |
| std::vector<PhdrEntry *> ret; |
| |
| // Process PHDRS and FILEHDR keywords because they are not |
| // real output sections and cannot be added in the following loop. |
| for (const PhdrsCommand &cmd : phdrsCommands) { |
| PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); |
| |
| if (cmd.hasFilehdr) |
| phdr->add(Out::elfHeader); |
| if (cmd.hasPhdrs) |
| phdr->add(Out::programHeaders); |
| |
| if (cmd.lmaExpr) { |
| phdr->p_paddr = cmd.lmaExpr().getValue(); |
| phdr->hasLMA = true; |
| } |
| ret.push_back(phdr); |
| } |
| |
| // Add output sections to program headers. |
| for (OutputSection *sec : outputSections) { |
| // Assign headers specified by linker script |
| for (size_t id : getPhdrIndices(sec)) { |
| ret[id]->add(sec); |
| if (!phdrsCommands[id].flags.hasValue()) |
| ret[id]->p_flags |= sec->getPhdrFlags(); |
| } |
| } |
| return ret; |
| } |
| |
| // Returns true if we should emit an .interp section. |
| // |
| // We usually do. But if PHDRS commands are given, and |
| // no PT_INTERP is there, there's no place to emit an |
| // .interp, so we don't do that in that case. |
| bool LinkerScript::needsInterpSection() { |
| if (phdrsCommands.empty()) |
| return true; |
| for (PhdrsCommand &cmd : phdrsCommands) |
| if (cmd.type == PT_INTERP) |
| return true; |
| return false; |
| } |
| |
| ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { |
| if (name == ".") { |
| if (ctx) |
| return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; |
| error(loc + ": unable to get location counter value"); |
| return 0; |
| } |
| |
| if (Symbol *sym = symtab->find(name)) { |
| if (auto *ds = dyn_cast<Defined>(sym)) |
| return {ds->section, false, ds->value, loc}; |
| if (isa<SharedSymbol>(sym)) |
| if (!errorOnMissingSection) |
| return {nullptr, false, 0, loc}; |
| } |
| |
| error(loc + ": symbol not found: " + name); |
| return 0; |
| } |
| |
| // Returns the index of the segment named Name. |
| static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, |
| StringRef name) { |
| for (size_t i = 0; i < vec.size(); ++i) |
| if (vec[i].name == name) |
| return i; |
| return None; |
| } |
| |
| // Returns indices of ELF headers containing specific section. Each index is a |
| // zero based number of ELF header listed within PHDRS {} script block. |
| std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { |
| std::vector<size_t> ret; |
| |
| for (StringRef s : cmd->phdrs) { |
| if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) |
| ret.push_back(*idx); |
| else if (s != "NONE") |
| error(cmd->location + ": section header '" + s + |
| "' is not listed in PHDRS"); |
| } |
| return ret; |
| } |