blob: 5f1149a0747281f2c23bef9d055ef4902e360d43 [file] [log] [blame]
//===- Relocations.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains platform-independent functions to process relocations.
// I'll describe the overview of this file here.
//
// Simple relocations are easy to handle for the linker. For example,
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
// with the relative offsets to the target symbols. It would just be
// reading records from relocation sections and applying them to output.
//
// But not all relocations are that easy to handle. For example, for
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
// symbols if they don't exist, and fix up locations with GOT entry
// offsets from the beginning of GOT section. So there is more than
// fixing addresses in relocation processing.
//
// ELF defines a large number of complex relocations.
//
// The functions in this file analyze relocations and do whatever needs
// to be done. It includes, but not limited to, the following.
//
// - create GOT/PLT entries
// - create new relocations in .dynsym to let the dynamic linker resolve
// them at runtime (since ELF supports dynamic linking, not all
// relocations can be resolved at link-time)
// - create COPY relocs and reserve space in .bss
// - replace expensive relocs (in terms of runtime cost) with cheap ones
// - error out infeasible combinations such as PIC and non-relative relocs
//
// Note that the functions in this file don't actually apply relocations
// because it doesn't know about the output file nor the output file buffer.
// It instead stores Relocation objects to InputSection's Relocations
// vector to let it apply later in InputSection::writeTo.
//
//===----------------------------------------------------------------------===//
#include "Relocations.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;
static Optional<std::string> getLinkerScriptLocation(const Symbol &Sym) {
for (BaseCommand *Base : Script->SectionCommands)
if (auto *Cmd = dyn_cast<SymbolAssignment>(Base))
if (Cmd->Sym == &Sym)
return Cmd->Location;
return None;
}
// Construct a message in the following format.
//
// >>> defined in /home/alice/src/foo.o
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
// >>> /home/alice/src/bar.o:(.text+0x1)
static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
uint64_t Off) {
std::string Msg = "\n>>> defined in ";
if (Sym.File)
Msg += toString(Sym.File);
else if (Optional<std::string> Loc = getLinkerScriptLocation(Sym))
Msg += *Loc;
Msg += "\n>>> referenced by ";
std::string Src = S.getSrcMsg(Sym, Off);
if (!Src.empty())
Msg += Src + "\n>>> ";
return Msg + S.getObjMsg(Off);
}
namespace {
// Build a bitmask with one bit set for each RelExpr.
//
// Constexpr function arguments can't be used in static asserts, so we
// use template arguments to build the mask.
// But function template partial specializations don't exist (needed
// for base case of the recursion), so we need a dummy struct.
template <RelExpr... Exprs> struct RelExprMaskBuilder {
static inline uint64_t build() { return 0; }
};
// Specialization for recursive case.
template <RelExpr Head, RelExpr... Tail>
struct RelExprMaskBuilder<Head, Tail...> {
static inline uint64_t build() {
static_assert(0 <= Head && Head < 64,
"RelExpr is too large for 64-bit mask!");
return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
}
};
} // namespace
// Return true if `Expr` is one of `Exprs`.
// There are fewer than 64 RelExpr's, so we can represent any set of
// RelExpr's as a constant bit mask and test for membership with a
// couple cheap bitwise operations.
template <RelExpr... Exprs> bool oneof(RelExpr Expr) {
assert(0 <= Expr && (int)Expr < 64 &&
"RelExpr is too large for 64-bit mask!");
return (uint64_t(1) << Expr) & RelExprMaskBuilder<Exprs...>::build();
}
// This function is similar to the `handleTlsRelocation`. MIPS does not
// support any relaxations for TLS relocations so by factoring out MIPS
// handling in to the separate function we can simplify the code and do not
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
// Mips has a custom MipsGotSection that handles the writing of GOT entries
// without dynamic relocations.
static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
InputSectionBase &C, uint64_t Offset,
int64_t Addend, RelExpr Expr) {
if (Expr == R_MIPS_TLSLD) {
In.MipsGot->addTlsIndex(*C.File);
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
if (Expr == R_MIPS_TLSGD) {
In.MipsGot->addDynTlsEntry(*C.File, Sym);
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
return 0;
}
// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
// support any relaxations for TLS relocations. ARM is logically similar to Mips
// in how it handles TLS, but Mips uses its own custom GOT which handles some
// of the cases that ARM uses GOT relocations for.
//
// We look for TLS global dynamic and local dynamic relocations, these may
// require the generation of a pair of GOT entries that have associated
// dynamic relocations. When the results of the dynamic relocations can be
// resolved at static link time we do so. This is necessary for static linking
// as there will be no dynamic loader to resolve them at load-time.
//
// The pair of GOT entries created are of the form
// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
// GOT[e1] Offset of symbol in TLS block
static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
InputSectionBase &C, uint64_t Offset,
int64_t Addend, RelExpr Expr) {
// The Dynamic TLS Module Index Relocation for a symbol defined in an
// executable is always 1. If the target Symbol is not preemptible then
// we know the offset into the TLS block at static link time.
bool NeedDynId = Sym.IsPreemptible || Config->Shared;
bool NeedDynOff = Sym.IsPreemptible;
auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
if (Dyn)
In.RelaDyn->addReloc(Type, In.Got, Off, Dest);
else
In.Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
};
// Local Dynamic is for access to module local TLS variables, while still
// being suitable for being dynamically loaded via dlopen.
// GOT[e0] is the module index, with a special value of 0 for the current
// module. GOT[e1] is unused. There only needs to be one module index entry.
if (Expr == R_TLSLD_PC && In.Got->addTlsIndex()) {
AddTlsReloc(In.Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
NeedDynId ? nullptr : &Sym, NeedDynId);
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
// Global Dynamic is the most general purpose access model. When we know
// the module index and offset of symbol in TLS block we can fill these in
// using static GOT relocations.
if (Expr == R_TLSGD_PC) {
if (In.Got->addDynTlsEntry(Sym)) {
uint64_t Off = In.Got->getGlobalDynOffset(Sym);
AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
NeedDynOff);
}
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
return 0;
}
// Returns the number of relocations processed.
template <class ELFT>
static unsigned
handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
if (!Sym.isTls())
return 0;
if (Config->EMachine == EM_ARM)
return handleARMTlsRelocation(Type, Sym, C, Offset, Addend, Expr);
if (Config->EMachine == EM_MIPS)
return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr);
if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
Expr) &&
Config->Shared) {
if (In.Got->addDynTlsEntry(Sym)) {
uint64_t Off = In.Got->getGlobalDynOffset(Sym);
In.RelaDyn->addReloc(
{Target->TlsDescRel, In.Got, Off, !Sym.IsPreemptible, &Sym, 0});
}
if (Expr != R_TLSDESC_CALL)
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
Expr)) {
// Local-Dynamic relocs can be relaxed to Local-Exec.
if (!Config->Shared) {
C.Relocations.push_back(
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type,
Offset, Addend, &Sym});
return Target->getTlsGdRelaxSkip(Type);
}
if (Expr == R_TLSLD_HINT)
return 1;
if (In.Got->addTlsIndex())
In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got,
In.Got->getTlsIndexOff(), nullptr);
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
// Local-Dynamic relocs can be relaxed to Local-Exec.
if (Expr == R_DTPREL && !Config->Shared) {
C.Relocations.push_back(
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type,
Offset, Addend, &Sym});
return 1;
}
// Local-Dynamic sequence where offset of tls variable relative to dynamic
// thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
if (Expr == R_TLSLD_GOT_OFF) {
if (!Sym.isInGot()) {
In.Got->addEntry(Sym);
uint64_t Off = Sym.getGotOffset();
In.Got->Relocations.push_back(
{R_ABS, Target->TlsOffsetRel, Off, 0, &Sym});
}
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(Expr)) {
if (Config->Shared) {
if (In.Got->addDynTlsEntry(Sym)) {
uint64_t Off = In.Got->getGlobalDynOffset(Sym);
In.RelaDyn->addReloc(Target->TlsModuleIndexRel, In.Got, Off, &Sym);
// If the symbol is preemptible we need the dynamic linker to write
// the offset too.
uint64_t OffsetOff = Off + Config->Wordsize;
if (Sym.IsPreemptible)
In.RelaDyn->addReloc(Target->TlsOffsetRel, In.Got, OffsetOff, &Sym);
else
In.Got->Relocations.push_back(
{R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
}
C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
// Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
// depending on the symbol being locally defined or not.
if (Sym.IsPreemptible) {
C.Relocations.push_back(
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
Offset, Addend, &Sym});
if (!Sym.isInGot()) {
In.Got->addEntry(Sym);
In.RelaDyn->addReloc(Target->TlsGotRel, In.Got, Sym.getGotOffset(),
&Sym);
}
} else {
C.Relocations.push_back(
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
Offset, Addend, &Sym});
}
return Target->getTlsGdRelaxSkip(Type);
}
// Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
// defined.
if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
R_TLSIE_HINT>(Expr) &&
!Config->Shared && !Sym.IsPreemptible) {
C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
return 1;
}
if (Expr == R_TLSIE_HINT)
return 1;
return 0;
}
static RelType getMipsPairType(RelType Type, bool IsLocal) {
switch (Type) {
case R_MIPS_HI16:
return R_MIPS_LO16;
case R_MIPS_GOT16:
// In case of global symbol, the R_MIPS_GOT16 relocation does not
// have a pair. Each global symbol has a unique entry in the GOT
// and a corresponding instruction with help of the R_MIPS_GOT16
// relocation loads an address of the symbol. In case of local
// symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
// the high 16 bits of the symbol's value. A paired R_MIPS_LO16
// relocations handle low 16 bits of the address. That allows
// to allocate only one GOT entry for every 64 KBytes of local data.
return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
case R_MICROMIPS_GOT16:
return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
case R_MIPS_PCHI16:
return R_MIPS_PCLO16;
case R_MICROMIPS_HI16:
return R_MICROMIPS_LO16;
default:
return R_MIPS_NONE;
}
}
// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
static bool isAbsolute(const Symbol &Sym) {
if (Sym.isUndefWeak())
return true;
if (const auto *DR = dyn_cast<Defined>(&Sym))
return DR->Section == nullptr; // Absolute symbol.
return false;
}
static bool isAbsoluteValue(const Symbol &Sym) {
return isAbsolute(Sym) || Sym.isTls();
}
// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr Expr) {
return oneof<R_PLT_PC, R_PPC64_CALL_PLT, R_PLT>(Expr);
}
// Returns true if Expr refers a GOT entry. Note that this function
// returns false for TLS variables even though they need GOT, because
// TLS variables uses GOT differently than the regular variables.
static bool needsGot(RelExpr Expr) {
return oneof<R_GOT, R_GOT_OFF, R_HEXAGON_GOT, R_MIPS_GOT_LOCAL_PAGE,
R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC,
R_GOT_PC, R_GOTPLT>(Expr);
}
// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC,
R_RELAX_GOT_PC>(Expr);
}
// Returns true if a given relocation can be computed at link-time.
//
// For instance, we know the offset from a relocation to its target at
// link-time if the relocation is PC-relative and refers a
// non-interposable function in the same executable. This function
// will return true for such relocation.
//
// If this function returns false, that means we need to emit a
// dynamic relocation so that the relocation will be fixed at load-time.
static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
InputSectionBase &S, uint64_t RelOff) {
// These expressions always compute a constant
if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_HEXAGON_GOT, R_TLSLD_GOT_OFF,
R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC64_CALL_PLT,
R_PPC64_RELAX_TOC, R_TLSDESC_CALL, R_TLSDESC_PC,
R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, R_TLSIE_HINT>(E))
return true;
// These never do, except if the entire file is position dependent or if
// only the low bits are used.
if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
if (Sym.IsPreemptible)
return false;
if (!Config->Pic)
return true;
// The size of a non preemptible symbol is a constant.
if (E == R_SIZE)
return true;
// For the target and the relocation, we want to know if they are
// absolute or relative.
bool AbsVal = isAbsoluteValue(Sym);
bool RelE = isRelExpr(E);
if (AbsVal && !RelE)
return true;
if (!AbsVal && RelE)
return true;
if (!AbsVal && !RelE)
return Target->usesOnlyLowPageBits(Type);
// Relative relocation to an absolute value. This is normally unrepresentable,
// but if the relocation refers to a weak undefined symbol, we allow it to
// resolve to the image base. This is a little strange, but it allows us to
// link function calls to such symbols. Normally such a call will be guarded
// with a comparison, which will load a zero from the GOT.
// Another special case is MIPS _gp_disp symbol which represents offset
// between start of a function and '_gp' value and defined as absolute just
// to simplify the code.
assert(AbsVal && RelE);
if (Sym.isUndefWeak())
return true;
// We set the final symbols values for linker script defined symbols later.
// They always can be computed as a link time constant.
if (Sym.ScriptDefined)
return true;
error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
toString(Sym) + getLocation(S, Sym, RelOff));
return true;
}
static RelExpr toPlt(RelExpr Expr) {
switch (Expr) {
case R_PPC64_CALL:
return R_PPC64_CALL_PLT;
case R_PC:
return R_PLT_PC;
case R_ABS:
return R_PLT;
default:
return Expr;
}
}
static RelExpr fromPlt(RelExpr Expr) {
// We decided not to use a plt. Optimize a reference to the plt to a
// reference to the symbol itself.
switch (Expr) {
case R_PLT_PC:
return R_PC;
case R_PPC64_CALL_PLT:
return R_PPC64_CALL;
case R_PLT:
return R_ABS;
default:
return Expr;
}
}
// Returns true if a given shared symbol is in a read-only segment in a DSO.
template <class ELFT> static bool isReadOnly(SharedSymbol &SS) {
using Elf_Phdr = typename ELFT::Phdr;
// Determine if the symbol is read-only by scanning the DSO's program headers.
const SharedFile &File = SS.getFile();
for (const Elf_Phdr &Phdr :
check(File.template getObj<ELFT>().program_headers()))
if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
!(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr &&
SS.Value < Phdr.p_vaddr + Phdr.p_memsz)
return true;
return false;
}
// Returns symbols at the same offset as a given symbol, including SS itself.
//
// If two or more symbols are at the same offset, and at least one of
// them are copied by a copy relocation, all of them need to be copied.
// Otherwise, they would refer to different places at runtime.
template <class ELFT>
static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) {
using Elf_Sym = typename ELFT::Sym;
SharedFile &File = SS.getFile();
SmallSet<SharedSymbol *, 4> Ret;
for (const Elf_Sym &S : File.template getGlobalELFSyms<ELFT>()) {
if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
S.getType() == STT_TLS || S.st_value != SS.Value)
continue;
StringRef Name = check(S.getName(File.getStringTable()));
Symbol *Sym = Symtab->find(Name);
if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
Ret.insert(Alias);
}
return Ret;
}
// When a symbol is copy relocated or we create a canonical plt entry, it is
// effectively a defined symbol. In the case of copy relocation the symbol is
// in .bss and in the case of a canonical plt entry it is in .plt. This function
// replaces the existing symbol with a Defined pointing to the appropriate
// location.
static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value,
uint64_t Size) {
Symbol Old = Sym;
Sym.replace(Defined{Sym.File, Sym.getName(), Sym.Binding, Sym.StOther,
Sym.Type, Value, Size, Sec});
Sym.PltIndex = Old.PltIndex;
Sym.GotIndex = Old.GotIndex;
Sym.VerdefIndex = Old.VerdefIndex;
Sym.PPC64BranchltIndex = Old.PPC64BranchltIndex;
Sym.IsPreemptible = true;
Sym.ExportDynamic = true;
Sym.IsUsedInRegularObj = true;
Sym.Used = true;
}
// Reserve space in .bss or .bss.rel.ro for copy relocation.
//
// The copy relocation is pretty much a hack. If you use a copy relocation
// in your program, not only the symbol name but the symbol's size, RW/RO
// bit and alignment become part of the ABI. In addition to that, if the
// symbol has aliases, the aliases become part of the ABI. That's subtle,
// but if you violate that implicit ABI, that can cause very counter-
// intuitive consequences.
//
// So, what is the copy relocation? It's for linking non-position
// independent code to DSOs. In an ideal world, all references to data
// exported by DSOs should go indirectly through GOT. But if object files
// are compiled as non-PIC, all data references are direct. There is no
// way for the linker to transform the code to use GOT, as machine
// instructions are already set in stone in object files. This is where
// the copy relocation takes a role.
//
// A copy relocation instructs the dynamic linker to copy data from a DSO
// to a specified address (which is usually in .bss) at load-time. If the
// static linker (that's us) finds a direct data reference to a DSO
// symbol, it creates a copy relocation, so that the symbol can be
// resolved as if it were in .bss rather than in a DSO.
//
// As you can see in this function, we create a copy relocation for the
// dynamic linker, and the relocation contains not only symbol name but
// various other informtion about the symbol. So, such attributes become a
// part of the ABI.
//
// Note for application developers: I can give you a piece of advice if
// you are writing a shared library. You probably should export only
// functions from your library. You shouldn't export variables.
//
// As an example what can happen when you export variables without knowing
// the semantics of copy relocations, assume that you have an exported
// variable of type T. It is an ABI-breaking change to add new members at
// end of T even though doing that doesn't change the layout of the
// existing members. That's because the space for the new members are not
// reserved in .bss unless you recompile the main program. That means they
// are likely to overlap with other data that happens to be laid out next
// to the variable in .bss. This kind of issue is sometimes very hard to
// debug. What's a solution? Instead of exporting a varaible V from a DSO,
// define an accessor getV().
template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) {
// Copy relocation against zero-sized symbol doesn't make sense.
uint64_t SymSize = SS.getSize();
if (SymSize == 0 || SS.Alignment == 0)
fatal("cannot create a copy relocation for symbol " + toString(SS));
// See if this symbol is in a read-only segment. If so, preserve the symbol's
// memory protection by reserving space in the .bss.rel.ro section.
bool IsReadOnly = isReadOnly<ELFT>(SS);
BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
SymSize, SS.Alignment);
if (IsReadOnly)
In.BssRelRo->getParent()->addSection(Sec);
else
In.Bss->getParent()->addSection(Sec);
// Look through the DSO's dynamic symbol table for aliases and create a
// dynamic symbol for each one. This causes the copy relocation to correctly
// interpose any aliases.
for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS))
replaceWithDefined(*Sym, Sec, 0, Sym->Size);
In.RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS);
}
// MIPS has an odd notion of "paired" relocations to calculate addends.
// For example, if a relocation is of R_MIPS_HI16, there must be a
// R_MIPS_LO16 relocation after that, and an addend is calculated using
// the two relocations.
template <class ELFT, class RelTy>
static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
InputSectionBase &Sec, RelExpr Expr,
bool IsLocal) {
if (Expr == R_MIPS_GOTREL && IsLocal)
return Sec.getFile<ELFT>()->MipsGp0;
// The ABI says that the paired relocation is used only for REL.
// See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (RelTy::IsRela)
return 0;
RelType Type = Rel.getType(Config->IsMips64EL);
uint32_t PairTy = getMipsPairType(Type, IsLocal);
if (PairTy == R_MIPS_NONE)
return 0;
const uint8_t *Buf = Sec.data().data();
uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
// To make things worse, paired relocations might not be contiguous in
// the relocation table, so we need to do linear search. *sigh*
for (const RelTy *RI = &Rel; RI != End; ++RI)
if (RI->getType(Config->IsMips64EL) == PairTy &&
RI->getSymbol(Config->IsMips64EL) == SymIndex)
return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
warn("can't find matching " + toString(PairTy) + " relocation for " +
toString(Type));
return 0;
}
// Returns an addend of a given relocation. If it is RELA, an addend
// is in a relocation itself. If it is REL, we need to read it from an
// input section.
template <class ELFT, class RelTy>
static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
InputSectionBase &Sec, RelExpr Expr,
bool IsLocal) {
int64_t Addend;
RelType Type = Rel.getType(Config->IsMips64EL);
if (RelTy::IsRela) {
Addend = getAddend<ELFT>(Rel);
} else {
const uint8_t *Buf = Sec.data().data();
Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
}
if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
Addend += getPPC64TocBase();
if (Config->EMachine == EM_MIPS)
Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);
return Addend;
}
// Custom error message if Sym is defined in a discarded section.
template <class ELFT>
static std::string maybeReportDiscarded(Undefined &Sym, InputSectionBase &Sec,
uint64_t Offset) {
auto *File = dyn_cast_or_null<ObjFile<ELFT>>(Sym.File);
if (!File || !Sym.DiscardedSecIdx ||
File->getSections()[Sym.DiscardedSecIdx] != &InputSection::Discarded)
return "";
ArrayRef<Elf_Shdr_Impl<ELFT>> ObjSections =
CHECK(File->getObj().sections(), File);
std::string Msg;
if (Sym.Type == ELF::STT_SECTION) {
Msg = "relocation refers to a discarded section: ";
Msg += CHECK(
File->getObj().getSectionName(&ObjSections[Sym.DiscardedSecIdx]), File);
} else {
Msg = "relocation refers to a symbol in a discarded section: " +
toString(Sym);
}
Msg += "\n>>> defined in " + toString(File);
Elf_Shdr_Impl<ELFT> ELFSec = ObjSections[Sym.DiscardedSecIdx - 1];
if (ELFSec.sh_type != SHT_GROUP)
return Msg;
// If the discarded section is a COMDAT.
StringRef Signature = File->getShtGroupSignature(ObjSections, ELFSec);
if (const InputFile *Prevailing =
Symtab->ComdatGroups.lookup(CachedHashStringRef(Signature)))
Msg += "\n>>> section group signature: " + Signature.str() +
"\n>>> prevailing definition is in " + toString(Prevailing);
return Msg;
}
// Report an undefined symbol if necessary.
// Returns true if this function printed out an error message.
template <class ELFT>
static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
uint64_t Offset) {
if (!Sym.isUndefined() || Sym.isWeak())
return false;
bool CanBeExternal = !Sym.isLocal() && Sym.computeBinding() != STB_LOCAL &&
Sym.Visibility == STV_DEFAULT;
if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
return false;
auto Visibility = [&]() -> std::string {
switch (Sym.Visibility) {
case STV_INTERNAL:
return "internal ";
case STV_HIDDEN:
return "hidden ";
case STV_PROTECTED:
return "protected ";
default:
return "";
}
};
std::string Msg =
maybeReportDiscarded<ELFT>(cast<Undefined>(Sym), Sec, Offset);
if (Msg.empty())
Msg = "undefined " + Visibility() + "symbol: " + toString(Sym);
Msg += "\n>>> referenced by ";
std::string Src = Sec.getSrcMsg(Sym, Offset);
if (!Src.empty())
Msg += Src + "\n>>> ";
Msg += Sec.getObjMsg(Offset);
if (Sym.getName().startswith("_ZTV"))
Msg += "\nthe vtable symbol may be undefined because the class is missing "
"its key function (see https://lld.llvm.org/missingkeyfunction)";
if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
Config->NoinhibitExec) {
warn(Msg);
return false;
}
error(Msg);
return true;
}
// MIPS N32 ABI treats series of successive relocations with the same offset
// as a single relocation. The similar approach used by N64 ABI, but this ABI
// packs all relocations into the single relocation record. Here we emulate
// this for the N32 ABI. Iterate over relocation with the same offset and put
// theirs types into the single bit-set.
template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
RelType Type = 0;
uint64_t Offset = Rel->r_offset;
int N = 0;
while (Rel != End && Rel->r_offset == Offset)
Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++);
return Type;
}
// .eh_frame sections are mergeable input sections, so their input
// offsets are not linearly mapped to output section. For each input
// offset, we need to find a section piece containing the offset and
// add the piece's base address to the input offset to compute the
// output offset. That isn't cheap.
//
// This class is to speed up the offset computation. When we process
// relocations, we access offsets in the monotonically increasing
// order. So we can optimize for that access pattern.
//
// For sections other than .eh_frame, this class doesn't do anything.
namespace {
class OffsetGetter {
public:
explicit OffsetGetter(InputSectionBase &Sec) {
if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
Pieces = Eh->Pieces;
}
// Translates offsets in input sections to offsets in output sections.
// Given offset must increase monotonically. We assume that Piece is
// sorted by InputOff.
uint64_t get(uint64_t Off) {
if (Pieces.empty())
return Off;
while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
++I;
if (I == Pieces.size())
fatal(".eh_frame: relocation is not in any piece");
// Pieces must be contiguous, so there must be no holes in between.
assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");
// Offset -1 means that the piece is dead (i.e. garbage collected).
if (Pieces[I].OutputOff == -1)
return -1;
return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
}
private:
ArrayRef<EhSectionPiece> Pieces;
size_t I = 0;
};
} // namespace
static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec,
Symbol *Sym, int64_t Addend, RelExpr Expr,
RelType Type) {
// Add a relative relocation. If RelrDyn section is enabled, and the
// relocation offset is guaranteed to be even, add the relocation to
// the RelrDyn section, otherwise add it to the RelaDyn section.
// RelrDyn sections don't support odd offsets. Also, RelrDyn sections
// don't store the addend values, so we must write it to the relocated
// address.
if (In.RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) {
IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym});
In.RelrDyn->Relocs.push_back({IS, OffsetInSec});
return;
}
In.RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend, Expr,
Type);
}
template <class ELFT, class GotPltSection>
static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
RelocationBaseSection *Rel, RelType Type, Symbol &Sym) {
Plt->addEntry<ELFT>(Sym);
GotPlt->addEntry(Sym);
Rel->addReloc(
{Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0});
}
static void addGotEntry(Symbol &Sym) {
In.Got->addEntry(Sym);
RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
uint64_t Off = Sym.getGotOffset();
// If a GOT slot value can be calculated at link-time, which is now,
// we can just fill that out.
//
// (We don't actually write a value to a GOT slot right now, but we
// add a static relocation to a Relocations vector so that
// InputSection::relocate will do the work for us. We may be able
// to just write a value now, but it is a TODO.)
bool IsLinkTimeConstant =
!Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym));
if (IsLinkTimeConstant) {
In.Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
return;
}
// Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
// the GOT slot will be fixed at load-time.
if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) {
addRelativeReloc(In.Got, Off, &Sym, 0, R_ABS, Target->GotRel);
return;
}
In.RelaDyn->addReloc(Sym.isTls() ? Target->TlsGotRel : Target->GotRel, In.Got,
Off, &Sym, 0, Sym.IsPreemptible ? R_ADDEND : R_ABS,
Target->GotRel);
}
// Return true if we can define a symbol in the executable that
// contains the value/function of a symbol defined in a shared
// library.
static bool canDefineSymbolInExecutable(Symbol &Sym) {
// If the symbol has default visibility the symbol defined in the
// executable will preempt it.
// Note that we want the visibility of the shared symbol itself, not
// the visibility of the symbol in the output file we are producing. That is
// why we use Sym.StOther.
if ((Sym.StOther & 0x3) == STV_DEFAULT)
return true;
// If we are allowed to break address equality of functions, defining
// a plt entry will allow the program to call the function in the
// .so, but the .so and the executable will no agree on the address
// of the function. Similar logic for objects.
return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) ||
(Sym.isObject() && Config->IgnoreDataAddressEquality));
}
// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type,
uint64_t Offset, Symbol &Sym, const RelTy &Rel,
int64_t Addend) {
if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) {
Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return;
}
bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText;
if (CanWrite) {
// R_GOT refers to a position in the got, even if the symbol is preemptible.
bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT;
if (!IsPreemptibleValue) {
addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type);
return;
} else if (RelType Rel = Target->getDynRel(Type)) {
In.RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type);
// MIPS ABI turns using of GOT and dynamic relocations inside out.
// While regular ABI uses dynamic relocations to fill up GOT entries
// MIPS ABI requires dynamic linker to fills up GOT entries using
// specially sorted dynamic symbol table. This affects even dynamic
// relocations against symbols which do not require GOT entries
// creation explicitly, i.e. do not have any GOT-relocations. So if
// a preemptible symbol has a dynamic relocation we anyway have
// to create a GOT entry for it.
// If a non-preemptible symbol has a dynamic relocation against it,
// dynamic linker takes it st_value, adds offset and writes down
// result of the dynamic relocation. In case of preemptible symbol
// dynamic linker performs symbol resolution, writes the symbol value
// to the GOT entry and reads the GOT entry when it needs to perform
// a dynamic relocation.
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
if (Config->EMachine == EM_MIPS)
In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr);
return;
}
}
// If the relocation is to a weak undef, and we are producing
// executable, give up on it and produce a non preemptible 0.
if (!Config->Shared && Sym.isUndefWeak()) {
Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return;
}
if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) {
error(
"can't create dynamic relocation " + toString(Type) + " against " +
(Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
" in readonly segment; recompile object files with -fPIC "
"or pass '-Wl,-z,notext' to allow text relocations in the output" +
getLocation(Sec, Sym, Offset));
return;
}
// Copy relocations are only possible if we are creating an executable.
if (Config->Shared) {
errorOrWarn("relocation " + toString(Type) +
" cannot be used against symbol " + toString(Sym) +
"; recompile with -fPIC" + getLocation(Sec, Sym, Offset));
return;
}
// If the symbol is undefined we already reported any relevant errors.
if (Sym.isUndefined())
return;
if (!canDefineSymbolInExecutable(Sym)) {
error("cannot preempt symbol: " + toString(Sym) +
getLocation(Sec, Sym, Offset));
return;
}
if (Sym.isObject()) {
// Produce a copy relocation.
if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) {
if (!Config->ZCopyreloc)
error("unresolvable relocation " + toString(Type) +
" against symbol '" + toString(*SS) +
"'; recompile with -fPIC or remove '-z nocopyreloc'" +
getLocation(Sec, Sym, Offset));
addCopyRelSymbol<ELFT>(*SS);
}
Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return;
}
if (Sym.isFunc()) {
// This handles a non PIC program call to function in a shared library. In
// an ideal world, we could just report an error saying the relocation can
// overflow at runtime. In the real world with glibc, crt1.o has a
// R_X86_64_PC32 pointing to libc.so.
//
// The general idea on how to handle such cases is to create a PLT entry and
// use that as the function value.
//
// For the static linking part, we just return a plt expr and everything
// else will use the PLT entry as the address.
//
// The remaining problem is making sure pointer equality still works. We
// need the help of the dynamic linker for that. We let it know that we have
// a direct reference to a so symbol by creating an undefined symbol with a
// non zero st_value. Seeing that, the dynamic linker resolves the symbol to
// the value of the symbol we created. This is true even for got entries, so
// pointer equality is maintained. To avoid an infinite loop, the only entry
// that points to the real function is a dedicated got entry used by the
// plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
// R_386_JMP_SLOT, etc).
// For position independent executable on i386, the plt entry requires ebx
// to be set. This causes two problems:
// * If some code has a direct reference to a function, it was probably
// compiled without -fPIE/-fPIC and doesn't maintain ebx.
// * If a library definition gets preempted to the executable, it will have
// the wrong ebx value.
if (Config->Pie && Config->EMachine == EM_386)
errorOrWarn("symbol '" + toString(Sym) +
"' cannot be preempted; recompile with -fPIE" +
getLocation(Sec, Sym, Offset));
if (!Sym.isInPlt())
addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym);
if (!Sym.isDefined())
replaceWithDefined(
Sym, In.Plt,
Target->PltHeaderSize + Target->PltEntrySize * Sym.PltIndex, 0);
Sym.NeedsPltAddr = true;
Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return;
}
errorOrWarn("symbol '" + toString(Sym) + "' has no type" +
getLocation(Sec, Sym, Offset));
}
struct IRelativeReloc {
RelType Type;
InputSectionBase *Sec;
uint64_t Offset;
Symbol *Sym;
};
static std::vector<IRelativeReloc> IRelativeRelocs;
template <class ELFT, class RelTy>
static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I,
RelTy *End) {
const RelTy &Rel = *I;
uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
Symbol &Sym = Sec.getFile<ELFT>()->getSymbol(SymIndex);
RelType Type;
// Deal with MIPS oddity.
if (Config->MipsN32Abi) {
Type = getMipsN32RelType(I, End);
} else {
Type = Rel.getType(Config->IsMips64EL);
++I;
}
// Get an offset in an output section this relocation is applied to.
uint64_t Offset = GetOffset.get(Rel.r_offset);
if (Offset == uint64_t(-1))
return;
// Error if the target symbol is undefined. Symbol index 0 may be used by
// marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
if (SymIndex != 0 && maybeReportUndefined<ELFT>(Sym, Sec, Rel.r_offset))
return;
const uint8_t *RelocatedAddr = Sec.data().begin() + Rel.r_offset;
RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr);
// Ignore "hint" relocations because they are only markers for relaxation.
if (oneof<R_HINT, R_NONE>(Expr))
return;
// We can separate the small code model relocations into 2 categories:
// 1) Those that access the compiler generated .toc sections.
// 2) Those that access the linker allocated got entries.
// lld allocates got entries to symbols on demand. Since we don't try to sort
// the got entries in any way, we don't have to track which objects have
// got-based small code model relocs. The .toc sections get placed after the
// end of the linker allocated .got section and we do sort those so sections
// addressed with small code model relocations come first.
if (Config->EMachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(Type))
Sec.File->PPC64SmallCodeModelTocRelocs = true;
if (Sym.isGnuIFunc() && !Config->ZText && Config->WarnIfuncTextrel) {
warn("using ifunc symbols when text relocations are allowed may produce "
"a binary that will segfault, if the object file is linked with "
"old version of glibc (glibc 2.28 and earlier). If this applies to "
"you, consider recompiling the object files without -fPIC and "
"without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
"turn off this warning." +
getLocation(Sec, Sym, Offset));
}
// Relax relocations.
//
// If we know that a PLT entry will be resolved within the same ELF module, we
// can skip PLT access and directly jump to the destination function. For
// example, if we are linking a main exectuable, all dynamic symbols that can
// be resolved within the executable will actually be resolved that way at
// runtime, because the main exectuable is always at the beginning of a search
// list. We can leverage that fact.
if (!Sym.IsPreemptible && (!Sym.isGnuIFunc() || Config->ZIfuncNoplt)) {
if (Expr == R_GOT_PC && !isAbsoluteValue(Sym))
Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr);
else
Expr = fromPlt(Expr);
}
// If the relocation does not emit a GOT or GOTPLT entry but its computation
// uses their addresses, we need GOT or GOTPLT to be created.
//
// The 4 types that relative GOTPLT are all x86 and x86-64 specific.
if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(Expr)) {
In.GotPlt->HasGotPltOffRel = true;
} else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
Expr)) {
In.Got->HasGotOffRel = true;
}
// Read an addend.
int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
// Process some TLS relocations, including relaxing TLS relocations.
// Note that this function does not handle all TLS relocations.
if (unsigned Processed =
handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
I += (Processed - 1);
return;
}
// We were asked not to generate PLT entries for ifuncs. Instead, pass the
// direct relocation on through.
if (Sym.isGnuIFunc() && Config->ZIfuncNoplt) {
Sym.ExportDynamic = true;
In.RelaDyn->addReloc(Type, &Sec, Offset, &Sym, Addend, R_ADDEND, Type);
return;
}
// Non-preemptible ifuncs require special handling. First, handle the usual
// case where the symbol isn't one of these.
if (!Sym.isGnuIFunc() || Sym.IsPreemptible) {
// If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
if (needsPlt(Expr) && !Sym.isInPlt())
addPltEntry<ELFT>(In.Plt, In.GotPlt, In.RelaPlt, Target->PltRel, Sym);
// Create a GOT slot if a relocation needs GOT.
if (needsGot(Expr)) {
if (Config->EMachine == EM_MIPS) {
// MIPS ABI has special rules to process GOT entries and doesn't
// require relocation entries for them. A special case is TLS
// relocations. In that case dynamic loader applies dynamic
// relocations to initialize TLS GOT entries.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
In.MipsGot->addEntry(*Sec.File, Sym, Addend, Expr);
} else if (!Sym.isInGot()) {
addGotEntry(Sym);
}
}
} else {
// Handle a reference to a non-preemptible ifunc. These are special in a
// few ways:
//
// - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
// a fixed value. But assuming that all references to the ifunc are
// GOT-generating or PLT-generating, the handling of an ifunc is
// relatively straightforward. We create a PLT entry in Iplt, which is
// usually at the end of .plt, which makes an indirect call using a
// matching GOT entry in IgotPlt, which is usually at the end of .got.plt.
// The GOT entry is relocated using an IRELATIVE relocation in RelaIplt,
// which is usually at the end of .rela.plt. Unlike most relocations in
// .rela.plt, which may be evaluated lazily without -z now, dynamic
// loaders evaluate IRELATIVE relocs eagerly, which means that for
// IRELATIVE relocs only, GOT-generating relocations can point directly to
// .got.plt without requiring a separate GOT entry.
//
// - Despite the fact that an ifunc does not have a fixed value, compilers
// that are not passed -fPIC will assume that they do, and will emit
// direct (non-GOT-generating, non-PLT-generating) relocations to the
// symbol. This means that if a direct relocation to the symbol is
// seen, the linker must set a value for the symbol, and this value must
// be consistent no matter what type of reference is made to the symbol.
// This can be done by creating a PLT entry for the symbol in the way
// described above and making it canonical, that is, making all references
// point to the PLT entry instead of the resolver. In lld we also store
// the address of the PLT entry in the dynamic symbol table, which means
// that the symbol will also have the same value in other modules.
// Because the value loaded from the GOT needs to be consistent with
// the value computed using a direct relocation, a non-preemptible ifunc
// may end up with two GOT entries, one in .got.plt that points to the
// address returned by the resolver and is used only by the PLT entry,
// and another in .got that points to the PLT entry and is used by
// GOT-generating relocations.
//
// - The fact that these symbols do not have a fixed value makes them an
// exception to the general rule that a statically linked executable does
// not require any form of dynamic relocation. To handle these relocations
// correctly, the IRELATIVE relocations are stored in an array which a
// statically linked executable's startup code must enumerate using the
// linker-defined symbols __rela?_iplt_{start,end}.
//
// - An absolute relocation to a non-preemptible ifunc (such as a global
// variable containing a pointer to the ifunc) needs to be relocated in
// the exact same way as a GOT entry, so we can avoid needing to make the
// PLT entry canonical by translating such relocations into IRELATIVE
// relocations in the RelaIplt.
if (!Sym.isInPlt()) {
// Create PLT and GOTPLT slots for the symbol.
Sym.IsInIplt = true;
// Create a copy of the symbol to use as the target of the IRELATIVE
// relocation in the IgotPlt. This is in case we make the PLT canonical
// later, which would overwrite the original symbol.
//
// FIXME: Creating a copy of the symbol here is a bit of a hack. All
// that's really needed to create the IRELATIVE is the section and value,
// so ideally we should just need to copy those.
auto *DirectSym = make<Defined>(cast<Defined>(Sym));
addPltEntry<ELFT>(In.Iplt, In.IgotPlt, In.RelaIplt, Target->IRelativeRel,
*DirectSym);
Sym.PltIndex = DirectSym->PltIndex;
}
if (Expr == R_ABS && Addend == 0 && (Sec.Flags & SHF_WRITE)) {
// We might be able to represent this as an IRELATIVE. But we don't know
// yet whether some later relocation will make the symbol point to a
// canonical PLT, which would make this either a dynamic RELATIVE (PIC) or
// static (non-PIC) relocation. So we keep a record of the information
// required to process the relocation, and after scanRelocs() has been
// called on all relocations, the relocation is resolved by
// addIRelativeRelocs().
IRelativeRelocs.push_back({Type, &Sec, Offset, &Sym});
return;
}
if (needsGot(Expr)) {
// Redirect GOT accesses to point to the Igot.
//
// This field is also used to keep track of whether we ever needed a GOT
// entry. If we did and we make the PLT canonical later, we'll need to
// create a GOT entry pointing to the PLT entry for Sym.
Sym.GotInIgot = true;
} else if (!needsPlt(Expr)) {
// Make the ifunc's PLT entry canonical by changing the value of its
// symbol to redirect all references to point to it.
unsigned EntryOffset = Sym.PltIndex * Target->PltEntrySize;
if (Config->ZRetpolineplt)
EntryOffset += Target->PltHeaderSize;
auto &D = cast<Defined>(Sym);
D.Section = In.Iplt;
D.Value = EntryOffset;
D.Size = 0;
// It's important to set the symbol type here so that dynamic loaders
// don't try to call the PLT as if it were an ifunc resolver.
D.Type = STT_FUNC;
if (Sym.GotInIgot) {
// We previously encountered a GOT generating reference that we
// redirected to the Igot. Now that the PLT entry is canonical we must
// clear the redirection to the Igot and add a GOT entry. As we've
// changed the symbol type to STT_FUNC future GOT generating references
// will naturally use this GOT entry.
//
// We don't need to worry about creating a MIPS GOT here because ifuncs
// aren't a thing on MIPS.
Sym.GotInIgot = false;
addGotEntry(Sym);
}
}
}
processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend);
}
template <class ELFT, class RelTy>
static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
OffsetGetter GetOffset(Sec);
// Not all relocations end up in Sec.Relocations, but a lot do.
Sec.Relocations.reserve(Rels.size());
for (auto I = Rels.begin(), End = Rels.end(); I != End;)
scanReloc<ELFT>(Sec, GetOffset, I, End);
// Sort relocations by offset for more efficient searching for
// R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
if (Config->EMachine == EM_RISCV ||
(Config->EMachine == EM_PPC64 && Sec.Name == ".toc"))
llvm::stable_sort(Sec.Relocations,
[](const Relocation &LHS, const Relocation &RHS) {
return LHS.Offset < RHS.Offset;
});
}
template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
if (S.AreRelocsRela)
scanRelocs<ELFT>(S, S.relas<ELFT>());
else
scanRelocs<ELFT>(S, S.rels<ELFT>());
}
// Figure out which representation to use for any absolute relocs to
// non-preemptible ifuncs that we visited during scanRelocs().
void elf::addIRelativeRelocs() {
for (IRelativeReloc &R : IRelativeRelocs) {
if (R.Sym->Type == STT_GNU_IFUNC)
In.RelaIplt->addReloc(
{Target->IRelativeRel, R.Sec, R.Offset, true, R.Sym, 0});
else if (Config->Pic)
addRelativeReloc(R.Sec, R.Offset, R.Sym, 0, R_ABS, R.Type);
else
R.Sec->Relocations.push_back({R_ABS, R.Type, R.Offset, 0, R.Sym});
}
IRelativeRelocs.clear();
}
static bool mergeCmp(const InputSection *A, const InputSection *B) {
// std::merge requires a strict weak ordering.
if (A->OutSecOff < B->OutSecOff)
return true;
if (A->OutSecOff == B->OutSecOff) {
auto *TA = dyn_cast<ThunkSection>(A);
auto *TB = dyn_cast<ThunkSection>(B);
// Check if Thunk is immediately before any specific Target
// InputSection for example Mips LA25 Thunks.
if (TA && TA->getTargetInputSection() == B)
return true;
// Place Thunk Sections without specific targets before
// non-Thunk Sections.
if (TA && !TB && !TA->getTargetInputSection())
return true;
}
return false;
}
// Call Fn on every executable InputSection accessed via the linker script
// InputSectionDescription::Sections.
static void forEachInputSectionDescription(
ArrayRef<OutputSection *> OutputSections,
llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) {
for (OutputSection *OS : OutputSections) {
if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
continue;
for (BaseCommand *BC : OS->SectionCommands)
if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
Fn(OS, ISD);
}
}
// Thunk Implementation
//
// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
// of code that the linker inserts inbetween a caller and a callee. The thunks
// are added at link time rather than compile time as the decision on whether
// a thunk is needed, such as the caller and callee being out of range, can only
// be made at link time.
//
// It is straightforward to tell given the current state of the program when a
// thunk is needed for a particular call. The more difficult part is that
// the thunk needs to be placed in the program such that the caller can reach
// the thunk and the thunk can reach the callee; furthermore, adding thunks to
// the program alters addresses, which can mean more thunks etc.
//
// In lld we have a synthetic ThunkSection that can hold many Thunks.
// The decision to have a ThunkSection act as a container means that we can
// more easily handle the most common case of a single block of contiguous
// Thunks by inserting just a single ThunkSection.
//
// The implementation of Thunks in lld is split across these areas
// Relocations.cpp : Framework for creating and placing thunks
// Thunks.cpp : The code generated for each supported thunk
// Target.cpp : Target specific hooks that the framework uses to decide when
// a thunk is used
// Synthetic.cpp : Implementation of ThunkSection
// Writer.cpp : Iteratively call framework until no more Thunks added
//
// Thunk placement requirements:
// Mips LA25 thunks. These must be placed immediately before the callee section
// We can assume that the caller is in range of the Thunk. These are modelled
// by Thunks that return the section they must precede with
// getTargetInputSection().
//
// ARM interworking and range extension thunks. These thunks must be placed
// within range of the caller. All implemented ARM thunks can always reach the
// callee as they use an indirect jump via a register that has no range
// restrictions.
//
// Thunk placement algorithm:
// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
// getTargetInputSection().
//
// For thunks that must be placed within range of the caller there are many
// possible choices given that the maximum range from the caller is usually
// much larger than the average InputSection size. Desirable properties include:
// - Maximize reuse of thunks by multiple callers
// - Minimize number of ThunkSections to simplify insertion
// - Handle impact of already added Thunks on addresses
// - Simple to understand and implement
//
// In lld for the first pass, we pre-create one or more ThunkSections per
// InputSectionDescription at Target specific intervals. A ThunkSection is
// placed so that the estimated end of the ThunkSection is within range of the
// start of the InputSectionDescription or the previous ThunkSection. For
// example:
// InputSectionDescription
// Section 0
// ...
// Section N
// ThunkSection 0
// Section N + 1
// ...
// Section N + K
// Thunk Section 1
//
// The intention is that we can add a Thunk to a ThunkSection that is well
// spaced enough to service a number of callers without having to do a lot
// of work. An important principle is that it is not an error if a Thunk cannot
// be placed in a pre-created ThunkSection; when this happens we create a new
// ThunkSection placed next to the caller. This allows us to handle the vast
// majority of thunks simply, but also handle rare cases where the branch range
// is smaller than the target specific spacing.
//
// The algorithm is expected to create all the thunks that are needed in a
// single pass, with a small number of programs needing a second pass due to
// the insertion of thunks in the first pass increasing the offset between
// callers and callees that were only just in range.
//
// A consequence of allowing new ThunkSections to be created outside of the
// pre-created ThunkSections is that in rare cases calls to Thunks that were in
// range in pass K, are out of range in some pass > K due to the insertion of
// more Thunks in between the caller and callee. When this happens we retarget
// the relocation back to the original target and create another Thunk.
// Remove ThunkSections that are empty, this should only be the initial set
// precreated on pass 0.
// Insert the Thunks for OutputSection OS into their designated place
// in the Sections vector, and recalculate the InputSection output section
// offsets.
// This may invalidate any output section offsets stored outside of InputSection
void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
forEachInputSectionDescription(
OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
if (ISD->ThunkSections.empty())
return;
// Remove any zero sized precreated Thunks.
llvm::erase_if(ISD->ThunkSections,
[](const std::pair<ThunkSection *, uint32_t> &TS) {
return TS.first->getSize() == 0;
});
// ISD->ThunkSections contains all created ThunkSections, including
// those inserted in previous passes. Extract the Thunks created this
// pass and order them in ascending OutSecOff.
std::vector<ThunkSection *> NewThunks;
for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
if (TS.second == Pass)
NewThunks.push_back(TS.first);
llvm::stable_sort(NewThunks,
[](const ThunkSection *A, const ThunkSection *B) {
return A->OutSecOff < B->OutSecOff;
});
// Merge sorted vectors of Thunks and InputSections by OutSecOff
std::vector<InputSection *> Tmp;
Tmp.reserve(ISD->Sections.size() + NewThunks.size());
std::merge(ISD->Sections.begin(), ISD->Sections.end(),
NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
mergeCmp);
ISD->Sections = std::move(Tmp);
});
}
// Find or create a ThunkSection within the InputSectionDescription (ISD) that
// is in range of Src. An ISD maps to a range of InputSections described by a
// linker script section pattern such as { .text .text.* }.
ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
InputSectionDescription *ISD,
uint32_t Type, uint64_t Src) {
for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
ThunkSection *TS = TP.first;
uint64_t TSBase = OS->Addr + TS->OutSecOff;
uint64_t TSLimit = TSBase + TS->getSize();
if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
return TS;
}
// No suitable ThunkSection exists. This can happen when there is a branch
// with lower range than the ThunkSection spacing or when there are too
// many Thunks. Create a new ThunkSection as close to the InputSection as
// possible. Error if InputSection is so large we cannot place ThunkSection
// anywhere in Range.
uint64_t ThunkSecOff = IS->OutSecOff;
if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
ThunkSecOff = IS->OutSecOff + IS->getSize();
if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
fatal("InputSection too large for range extension thunk " +
IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
}
return addThunkSection(OS, ISD, ThunkSecOff);
}
// Add a Thunk that needs to be placed in a ThunkSection that immediately
// precedes its Target.
ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
ThunkSection *TS = ThunkedSections.lookup(IS);
if (TS)
return TS;
// Find InputSectionRange within Target Output Section (TOS) that the
// InputSection (IS) that we need to precede is in.
OutputSection *TOS = IS->getParent();
for (BaseCommand *BC : TOS->SectionCommands) {
auto *ISD = dyn_cast<InputSectionDescription>(BC);
if (!ISD || ISD->Sections.empty())
continue;
InputSection *First = ISD->Sections.front();
InputSection *Last = ISD->Sections.back();
if (IS->OutSecOff < First->OutSecOff || Last->OutSecOff < IS->OutSecOff)
continue;
TS = addThunkSection(TOS, ISD, IS->OutSecOff);
ThunkedSections[IS] = TS;
return TS;
}
return nullptr;
}
// Create one or more ThunkSections per OS that can be used to place Thunks.
// We attempt to place the ThunkSections using the following desirable
// properties:
// - Within range of the maximum number of callers
// - Minimise the number of ThunkSections
//
// We follow a simple but conservative heuristic to place ThunkSections at
// offsets that are multiples of a Target specific branch range.
// For an InputSectionDescription that is smaller than the range, a single
// ThunkSection at the end of the range will do.
//
// For an InputSectionDescription that is more than twice the size of the range,
// we place the last ThunkSection at range bytes from the end of the
// InputSectionDescription in order to increase the likelihood that the
// distance from a thunk to its target will be sufficiently small to
// allow for the creation of a short thunk.
void ThunkCreator::createInitialThunkSections(
ArrayRef<OutputSection *> OutputSections) {
uint32_t ThunkSectionSpacing = Target->getThunkSectionSpacing();
forEachInputSectionDescription(
OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
if (ISD->Sections.empty())
return;
uint32_t ISDBegin = ISD->Sections.front()->OutSecOff;
uint32_t ISDEnd =
ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize();
uint32_t LastThunkLowerBound = -1;
if (ISDEnd - ISDBegin > ThunkSectionSpacing * 2)
LastThunkLowerBound = ISDEnd - ThunkSectionSpacing;
uint32_t ISLimit;
uint32_t PrevISLimit = ISDBegin;
uint32_t ThunkUpperBound = ISDBegin + ThunkSectionSpacing;
for (const InputSection *IS : ISD->Sections) {
ISLimit = IS->OutSecOff + IS->getSize();
if (ISLimit > ThunkUpperBound) {
addThunkSection(OS, ISD, PrevISLimit);
ThunkUpperBound = PrevISLimit + ThunkSectionSpacing;
}
if (ISLimit > LastThunkLowerBound)
break;
PrevISLimit = ISLimit;
}
addThunkSection(OS, ISD, ISLimit);
});
}
ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
InputSectionDescription *ISD,
uint64_t Off) {
auto *TS = make<ThunkSection>(OS, Off);
TS->Partition = OS->Partition;
ISD->ThunkSections.push_back({TS, Pass});
return TS;
}
static bool isThunkSectionCompatible(InputSection *Source,
SectionBase *Target) {
// We can't reuse thunks in different loadable partitions because they might
// not be loaded. But partition 1 (the main partition) will always be loaded.
if (Source->Partition != Target->Partition)
return Target->Partition == 1;
return true;
}
std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *IS, Symbol &Sym,
RelType Type, uint64_t Src) {
std::vector<Thunk *> *ThunkVec = nullptr;
// We use (section, offset) pair to find the thunk position if possible so
// that we create only one thunk for aliased symbols or ICFed sections.
if (auto *D = dyn_cast<Defined>(&Sym))
if (!D->isInPlt() && D->Section)
ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}];
if (!ThunkVec)
ThunkVec = &ThunkedSymbols[&Sym];
// Check existing Thunks for Sym to see if they can be reused
for (Thunk *T : *ThunkVec)
if (isThunkSectionCompatible(IS, T->getThunkTargetSym()->Section) &&
T->isCompatibleWith(Type) &&
Target->inBranchRange(Type, Src, T->getThunkTargetSym()->getVA()))
return std::make_pair(T, false);
// No existing compatible Thunk in range, create a new one
Thunk *T = addThunk(Type, Sym);
ThunkVec->push_back(T);
return std::make_pair(T, true);
}
// Return true if the relocation target is an in range Thunk.
// Return false if the relocation is not to a Thunk. If the relocation target
// was originally to a Thunk, but is no longer in range we revert the
// relocation back to its original non-Thunk target.
bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
if (Thunk *T = Thunks.lookup(Rel.Sym)) {
if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
return true;
Rel.Sym = &T->Destination;
if (Rel.Sym->isInPlt())
Rel.Expr = toPlt(Rel.Expr);
}
return false;
}
// Process all relocations from the InputSections that have been assigned
// to InputSectionDescriptions and redirect through Thunks if needed. The
// function should be called iteratively until it returns false.
//
// PreConditions:
// All InputSections that may need a Thunk are reachable from
// OutputSectionCommands.
//
// All OutputSections have an address and all InputSections have an offset
// within the OutputSection.
//
// The offsets between caller (relocation place) and callee
// (relocation target) will not be modified outside of createThunks().
//
// PostConditions:
// If return value is true then ThunkSections have been inserted into
// OutputSections. All relocations that needed a Thunk based on the information
// available to createThunks() on entry have been redirected to a Thunk. Note
// that adding Thunks changes offsets between caller and callee so more Thunks
// may be required.
//
// If return value is false then no more Thunks are needed, and createThunks has
// made no changes. If the target requires range extension thunks, currently
// ARM, then any future change in offset between caller and callee risks a
// relocation out of range error.
bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
bool AddressesChanged = false;
if (Pass == 0 && Target->getThunkSectionSpacing())
createInitialThunkSections(OutputSections);
// With Thunk Size much smaller than branch range we expect to
// converge quickly; if we get to 10 something has gone wrong.
if (Pass == 10)
fatal("thunk creation not converged");
// Create all the Thunks and insert them into synthetic ThunkSections. The
// ThunkSections are later inserted back into InputSectionDescriptions.
// We separate the creation of ThunkSections from the insertion of the
// ThunkSections as ThunkSections are not always inserted into the same
// InputSectionDescription as the caller.
forEachInputSectionDescription(
OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
for (InputSection *IS : ISD->Sections)
for (Relocation &Rel : IS->Relocations) {
uint64_t Src = IS->getVA(Rel.Offset);
// If we are a relocation to an existing Thunk, check if it is
// still in range. If not then Rel will be altered to point to its
// original target so another Thunk can be generated.
if (Pass > 0 && normalizeExistingThunk(Rel, Src))
continue;
if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
*Rel.Sym))
continue;
Thunk *T;
bool IsNew;
std::tie(T, IsNew) = getThunk(IS, *Rel.Sym, Rel.Type, Src);
if (IsNew) {
// Find or create a ThunkSection for the new Thunk
ThunkSection *TS;
if (auto *TIS = T->getTargetInputSection())
TS = getISThunkSec(TIS);
else
TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
TS->addThunk(T);
Thunks[T->getThunkTargetSym()] = T;
}
// Redirect relocation to Thunk, we never go via the PLT to a Thunk
Rel.Sym = T->getThunkTargetSym();
Rel.Expr = fromPlt(Rel.Expr);
}
for (auto &P : ISD->ThunkSections)
AddressesChanged |= P.first->assignOffsets();
});
for (auto &P : ThunkedSections)
AddressesChanged |= P.second->assignOffsets();
// Merge all created synthetic ThunkSections back into OutputSection
mergeThunks(OutputSections);
++Pass;
return AddressesChanged;
}
template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);