| //===- Relocations.cpp ----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains platform-independent functions to process relocations. |
| // I'll describe the overview of this file here. |
| // |
| // Simple relocations are easy to handle for the linker. For example, |
| // for R_X86_64_PC64 relocs, the linker just has to fix up locations |
| // with the relative offsets to the target symbols. It would just be |
| // reading records from relocation sections and applying them to output. |
| // |
| // But not all relocations are that easy to handle. For example, for |
| // R_386_GOTOFF relocs, the linker has to create new GOT entries for |
| // symbols if they don't exist, and fix up locations with GOT entry |
| // offsets from the beginning of GOT section. So there is more than |
| // fixing addresses in relocation processing. |
| // |
| // ELF defines a large number of complex relocations. |
| // |
| // The functions in this file analyze relocations and do whatever needs |
| // to be done. It includes, but not limited to, the following. |
| // |
| // - create GOT/PLT entries |
| // - create new relocations in .dynsym to let the dynamic linker resolve |
| // them at runtime (since ELF supports dynamic linking, not all |
| // relocations can be resolved at link-time) |
| // - create COPY relocs and reserve space in .bss |
| // - replace expensive relocs (in terms of runtime cost) with cheap ones |
| // - error out infeasible combinations such as PIC and non-relative relocs |
| // |
| // Note that the functions in this file don't actually apply relocations |
| // because it doesn't know about the output file nor the output file buffer. |
| // It instead stores Relocation objects to InputSection's Relocations |
| // vector to let it apply later in InputSection::writeTo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Relocations.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) { |
| for (BaseCommand *base : script->sectionCommands) |
| if (auto *cmd = dyn_cast<SymbolAssignment>(base)) |
| if (cmd->sym == &sym) |
| return cmd->location; |
| return None; |
| } |
| |
| // Construct a message in the following format. |
| // |
| // >>> defined in /home/alice/src/foo.o |
| // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) |
| // >>> /home/alice/src/bar.o:(.text+0x1) |
| static std::string getLocation(InputSectionBase &s, const Symbol &sym, |
| uint64_t off) { |
| std::string msg = "\n>>> defined in "; |
| if (sym.file) |
| msg += toString(sym.file); |
| else if (Optional<std::string> loc = getLinkerScriptLocation(sym)) |
| msg += *loc; |
| |
| msg += "\n>>> referenced by "; |
| std::string src = s.getSrcMsg(sym, off); |
| if (!src.empty()) |
| msg += src + "\n>>> "; |
| return msg + s.getObjMsg(off); |
| } |
| |
| namespace { |
| // Build a bitmask with one bit set for each RelExpr. |
| // |
| // Constexpr function arguments can't be used in static asserts, so we |
| // use template arguments to build the mask. |
| // But function template partial specializations don't exist (needed |
| // for base case of the recursion), so we need a dummy struct. |
| template <RelExpr... Exprs> struct RelExprMaskBuilder { |
| static inline uint64_t build() { return 0; } |
| }; |
| |
| // Specialization for recursive case. |
| template <RelExpr Head, RelExpr... Tail> |
| struct RelExprMaskBuilder<Head, Tail...> { |
| static inline uint64_t build() { |
| static_assert(0 <= Head && Head < 64, |
| "RelExpr is too large for 64-bit mask!"); |
| return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build(); |
| } |
| }; |
| } // namespace |
| |
| // Return true if `Expr` is one of `Exprs`. |
| // There are fewer than 64 RelExpr's, so we can represent any set of |
| // RelExpr's as a constant bit mask and test for membership with a |
| // couple cheap bitwise operations. |
| template <RelExpr... Exprs> bool oneof(RelExpr expr) { |
| assert(0 <= expr && (int)expr < 64 && |
| "RelExpr is too large for 64-bit mask!"); |
| return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build(); |
| } |
| |
| // This function is similar to the `handleTlsRelocation`. MIPS does not |
| // support any relaxations for TLS relocations so by factoring out MIPS |
| // handling in to the separate function we can simplify the code and do not |
| // pollute other `handleTlsRelocation` by MIPS `ifs` statements. |
| // Mips has a custom MipsGotSection that handles the writing of GOT entries |
| // without dynamic relocations. |
| static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, |
| InputSectionBase &c, uint64_t offset, |
| int64_t addend, RelExpr expr) { |
| if (expr == R_MIPS_TLSLD) { |
| in.mipsGot->addTlsIndex(*c.file); |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| if (expr == R_MIPS_TLSGD) { |
| in.mipsGot->addDynTlsEntry(*c.file, sym); |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Notes about General Dynamic and Local Dynamic TLS models below. They may |
| // require the generation of a pair of GOT entries that have associated dynamic |
| // relocations. The pair of GOT entries created are of the form GOT[e0] Module |
| // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of |
| // symbol in TLS block. |
| // |
| // Returns the number of relocations processed. |
| template <class ELFT> |
| static unsigned |
| handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c, |
| typename ELFT::uint offset, int64_t addend, RelExpr expr) { |
| if (!sym.isTls()) |
| return 0; |
| |
| if (config->emachine == EM_MIPS) |
| return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); |
| |
| if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>( |
| expr) && |
| config->shared) { |
| if (in.got->addDynTlsEntry(sym)) { |
| uint64_t off = in.got->getGlobalDynOffset(sym); |
| mainPart->relaDyn->addReloc( |
| {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0}); |
| } |
| if (expr != R_TLSDESC_CALL) |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| |
| bool canRelax = config->emachine != EM_ARM && config->emachine != EM_RISCV; |
| |
| // If we are producing an executable and the symbol is non-preemptable, it |
| // must be defined and the code sequence can be relaxed to use Local-Exec. |
| // |
| // ARM and RISC-V do not support any relaxations for TLS relocations, however, |
| // we can omit the DTPMOD dynamic relocations and resolve them at link time |
| // because them are always 1. This may be necessary for static linking as |
| // DTPMOD may not be expected at load time. |
| bool isLocalInExecutable = !sym.isPreemptible && !config->shared; |
| |
| // Local Dynamic is for access to module local TLS variables, while still |
| // being suitable for being dynamically loaded via dlopen. GOT[e0] is the |
| // module index, with a special value of 0 for the current module. GOT[e1] is |
| // unused. There only needs to be one module index entry. |
| if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( |
| expr)) { |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (canRelax && !config->shared) { |
| c.relocations.push_back( |
| {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, |
| offset, addend, &sym}); |
| return target->getTlsGdRelaxSkip(type); |
| } |
| if (expr == R_TLSLD_HINT) |
| return 1; |
| if (in.got->addTlsIndex()) { |
| if (isLocalInExecutable) |
| in.got->relocations.push_back( |
| {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym}); |
| else |
| mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, |
| in.got->getTlsIndexOff(), nullptr); |
| } |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (expr == R_DTPREL && !config->shared) { |
| c.relocations.push_back( |
| {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type, |
| offset, addend, &sym}); |
| return 1; |
| } |
| |
| // Local-Dynamic sequence where offset of tls variable relative to dynamic |
| // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. |
| if (expr == R_TLSLD_GOT_OFF) { |
| if (!sym.isInGot()) { |
| in.got->addEntry(sym); |
| uint64_t off = sym.getGotOffset(); |
| in.got->relocations.push_back( |
| {R_ABS, target->tlsOffsetRel, off, 0, &sym}); |
| } |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| |
| if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, |
| R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { |
| if (!canRelax || config->shared) { |
| if (in.got->addDynTlsEntry(sym)) { |
| uint64_t off = in.got->getGlobalDynOffset(sym); |
| |
| if (isLocalInExecutable) |
| // Write one to the GOT slot. |
| in.got->relocations.push_back( |
| {R_ADDEND, target->symbolicRel, off, 1, &sym}); |
| else |
| mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym); |
| |
| // If the symbol is preemptible we need the dynamic linker to write |
| // the offset too. |
| uint64_t offsetOff = off + config->wordsize; |
| if (sym.isPreemptible) |
| mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff, |
| &sym); |
| else |
| in.got->relocations.push_back( |
| {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); |
| } |
| c.relocations.push_back({expr, type, offset, addend, &sym}); |
| return 1; |
| } |
| |
| // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec |
| // depending on the symbol being locally defined or not. |
| if (sym.isPreemptible) { |
| c.relocations.push_back( |
| {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type, |
| offset, addend, &sym}); |
| if (!sym.isInGot()) { |
| in.got->addEntry(sym); |
| mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(), |
| &sym); |
| } |
| } else { |
| c.relocations.push_back( |
| {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type, |
| offset, addend, &sym}); |
| } |
| return target->getTlsGdRelaxSkip(type); |
| } |
| |
| // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally |
| // defined. |
| if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, |
| R_TLSIE_HINT>(expr) && |
| canRelax && isLocalInExecutable) { |
| c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); |
| return 1; |
| } |
| |
| if (expr == R_TLSIE_HINT) |
| return 1; |
| return 0; |
| } |
| |
| static RelType getMipsPairType(RelType type, bool isLocal) { |
| switch (type) { |
| case R_MIPS_HI16: |
| return R_MIPS_LO16; |
| case R_MIPS_GOT16: |
| // In case of global symbol, the R_MIPS_GOT16 relocation does not |
| // have a pair. Each global symbol has a unique entry in the GOT |
| // and a corresponding instruction with help of the R_MIPS_GOT16 |
| // relocation loads an address of the symbol. In case of local |
| // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold |
| // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 |
| // relocations handle low 16 bits of the address. That allows |
| // to allocate only one GOT entry for every 64 KBytes of local data. |
| return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; |
| case R_MICROMIPS_GOT16: |
| return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; |
| case R_MIPS_PCHI16: |
| return R_MIPS_PCLO16; |
| case R_MICROMIPS_HI16: |
| return R_MICROMIPS_LO16; |
| default: |
| return R_MIPS_NONE; |
| } |
| } |
| |
| // True if non-preemptable symbol always has the same value regardless of where |
| // the DSO is loaded. |
| static bool isAbsolute(const Symbol &sym) { |
| if (sym.isUndefWeak()) |
| return true; |
| if (const auto *dr = dyn_cast<Defined>(&sym)) |
| return dr->section == nullptr; // Absolute symbol. |
| return false; |
| } |
| |
| static bool isAbsoluteValue(const Symbol &sym) { |
| return isAbsolute(sym) || sym.isTls(); |
| } |
| |
| // Returns true if Expr refers a PLT entry. |
| static bool needsPlt(RelExpr expr) { |
| return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr); |
| } |
| |
| // Returns true if Expr refers a GOT entry. Note that this function |
| // returns false for TLS variables even though they need GOT, because |
| // TLS variables uses GOT differently than the regular variables. |
| static bool needsGot(RelExpr expr) { |
| return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, |
| R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>( |
| expr); |
| } |
| |
| // True if this expression is of the form Sym - X, where X is a position in the |
| // file (PC, or GOT for example). |
| static bool isRelExpr(RelExpr expr) { |
| return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, |
| R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, |
| R_RISCV_PC_INDIRECT>(expr); |
| } |
| |
| // Returns true if a given relocation can be computed at link-time. |
| // |
| // For instance, we know the offset from a relocation to its target at |
| // link-time if the relocation is PC-relative and refers a |
| // non-interposable function in the same executable. This function |
| // will return true for such relocation. |
| // |
| // If this function returns false, that means we need to emit a |
| // dynamic relocation so that the relocation will be fixed at load-time. |
| static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, |
| InputSectionBase &s, uint64_t relOff) { |
| // These expressions always compute a constant |
| if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF, |
| R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF, |
| R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD, |
| R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, |
| R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL, |
| R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL, |
| R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT, |
| R_TLSIE_HINT>(e)) |
| return true; |
| |
| // These never do, except if the entire file is position dependent or if |
| // only the low bits are used. |
| if (e == R_GOT || e == R_PLT || e == R_TLSDESC) |
| return target->usesOnlyLowPageBits(type) || !config->isPic; |
| |
| if (sym.isPreemptible) |
| return false; |
| if (!config->isPic) |
| return true; |
| |
| // The size of a non preemptible symbol is a constant. |
| if (e == R_SIZE) |
| return true; |
| |
| // For the target and the relocation, we want to know if they are |
| // absolute or relative. |
| bool absVal = isAbsoluteValue(sym); |
| bool relE = isRelExpr(e); |
| if (absVal && !relE) |
| return true; |
| if (!absVal && relE) |
| return true; |
| if (!absVal && !relE) |
| return target->usesOnlyLowPageBits(type); |
| |
| // Relative relocation to an absolute value. This is normally unrepresentable, |
| // but if the relocation refers to a weak undefined symbol, we allow it to |
| // resolve to the image base. This is a little strange, but it allows us to |
| // link function calls to such symbols. Normally such a call will be guarded |
| // with a comparison, which will load a zero from the GOT. |
| // Another special case is MIPS _gp_disp symbol which represents offset |
| // between start of a function and '_gp' value and defined as absolute just |
| // to simplify the code. |
| assert(absVal && relE); |
| if (sym.isUndefWeak()) |
| return true; |
| |
| // We set the final symbols values for linker script defined symbols later. |
| // They always can be computed as a link time constant. |
| if (sym.scriptDefined) |
| return true; |
| |
| error("relocation " + toString(type) + " cannot refer to absolute symbol: " + |
| toString(sym) + getLocation(s, sym, relOff)); |
| return true; |
| } |
| |
| static RelExpr toPlt(RelExpr expr) { |
| switch (expr) { |
| case R_PPC64_CALL: |
| return R_PPC64_CALL_PLT; |
| case R_PC: |
| return R_PLT_PC; |
| case R_ABS: |
| return R_PLT; |
| default: |
| return expr; |
| } |
| } |
| |
| static RelExpr fromPlt(RelExpr expr) { |
| // We decided not to use a plt. Optimize a reference to the plt to a |
| // reference to the symbol itself. |
| switch (expr) { |
| case R_PLT_PC: |
| case R_PPC32_PLTREL: |
| return R_PC; |
| case R_PPC64_CALL_PLT: |
| return R_PPC64_CALL; |
| case R_PLT: |
| return R_ABS; |
| default: |
| return expr; |
| } |
| } |
| |
| // Returns true if a given shared symbol is in a read-only segment in a DSO. |
| template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { |
| using Elf_Phdr = typename ELFT::Phdr; |
| |
| // Determine if the symbol is read-only by scanning the DSO's program headers. |
| const SharedFile &file = ss.getFile(); |
| for (const Elf_Phdr &phdr : |
| check(file.template getObj<ELFT>().program_headers())) |
| if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && |
| !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && |
| ss.value < phdr.p_vaddr + phdr.p_memsz) |
| return true; |
| return false; |
| } |
| |
| // Returns symbols at the same offset as a given symbol, including SS itself. |
| // |
| // If two or more symbols are at the same offset, and at least one of |
| // them are copied by a copy relocation, all of them need to be copied. |
| // Otherwise, they would refer to different places at runtime. |
| template <class ELFT> |
| static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { |
| using Elf_Sym = typename ELFT::Sym; |
| |
| SharedFile &file = ss.getFile(); |
| |
| SmallSet<SharedSymbol *, 4> ret; |
| for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { |
| if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || |
| s.getType() == STT_TLS || s.st_value != ss.value) |
| continue; |
| StringRef name = check(s.getName(file.getStringTable())); |
| Symbol *sym = symtab->find(name); |
| if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) |
| ret.insert(alias); |
| } |
| return ret; |
| } |
| |
| // When a symbol is copy relocated or we create a canonical plt entry, it is |
| // effectively a defined symbol. In the case of copy relocation the symbol is |
| // in .bss and in the case of a canonical plt entry it is in .plt. This function |
| // replaces the existing symbol with a Defined pointing to the appropriate |
| // location. |
| static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value, |
| uint64_t size) { |
| Symbol old = sym; |
| |
| sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther, |
| sym.type, value, size, sec}); |
| |
| sym.pltIndex = old.pltIndex; |
| sym.gotIndex = old.gotIndex; |
| sym.verdefIndex = old.verdefIndex; |
| sym.ppc64BranchltIndex = old.ppc64BranchltIndex; |
| sym.exportDynamic = true; |
| sym.isUsedInRegularObj = true; |
| } |
| |
| // Reserve space in .bss or .bss.rel.ro for copy relocation. |
| // |
| // The copy relocation is pretty much a hack. If you use a copy relocation |
| // in your program, not only the symbol name but the symbol's size, RW/RO |
| // bit and alignment become part of the ABI. In addition to that, if the |
| // symbol has aliases, the aliases become part of the ABI. That's subtle, |
| // but if you violate that implicit ABI, that can cause very counter- |
| // intuitive consequences. |
| // |
| // So, what is the copy relocation? It's for linking non-position |
| // independent code to DSOs. In an ideal world, all references to data |
| // exported by DSOs should go indirectly through GOT. But if object files |
| // are compiled as non-PIC, all data references are direct. There is no |
| // way for the linker to transform the code to use GOT, as machine |
| // instructions are already set in stone in object files. This is where |
| // the copy relocation takes a role. |
| // |
| // A copy relocation instructs the dynamic linker to copy data from a DSO |
| // to a specified address (which is usually in .bss) at load-time. If the |
| // static linker (that's us) finds a direct data reference to a DSO |
| // symbol, it creates a copy relocation, so that the symbol can be |
| // resolved as if it were in .bss rather than in a DSO. |
| // |
| // As you can see in this function, we create a copy relocation for the |
| // dynamic linker, and the relocation contains not only symbol name but |
| // various other informtion about the symbol. So, such attributes become a |
| // part of the ABI. |
| // |
| // Note for application developers: I can give you a piece of advice if |
| // you are writing a shared library. You probably should export only |
| // functions from your library. You shouldn't export variables. |
| // |
| // As an example what can happen when you export variables without knowing |
| // the semantics of copy relocations, assume that you have an exported |
| // variable of type T. It is an ABI-breaking change to add new members at |
| // end of T even though doing that doesn't change the layout of the |
| // existing members. That's because the space for the new members are not |
| // reserved in .bss unless you recompile the main program. That means they |
| // are likely to overlap with other data that happens to be laid out next |
| // to the variable in .bss. This kind of issue is sometimes very hard to |
| // debug. What's a solution? Instead of exporting a varaible V from a DSO, |
| // define an accessor getV(). |
| template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { |
| // Copy relocation against zero-sized symbol doesn't make sense. |
| uint64_t symSize = ss.getSize(); |
| if (symSize == 0 || ss.alignment == 0) |
| fatal("cannot create a copy relocation for symbol " + toString(ss)); |
| |
| // See if this symbol is in a read-only segment. If so, preserve the symbol's |
| // memory protection by reserving space in the .bss.rel.ro section. |
| bool isRO = isReadOnly<ELFT>(ss); |
| BssSection *sec = |
| make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); |
| if (isRO) |
| in.bssRelRo->getParent()->addSection(sec); |
| else |
| in.bss->getParent()->addSection(sec); |
| |
| // Look through the DSO's dynamic symbol table for aliases and create a |
| // dynamic symbol for each one. This causes the copy relocation to correctly |
| // interpose any aliases. |
| for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) |
| replaceWithDefined(*sym, sec, 0, sym->size); |
| |
| mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss); |
| } |
| |
| // MIPS has an odd notion of "paired" relocations to calculate addends. |
| // For example, if a relocation is of R_MIPS_HI16, there must be a |
| // R_MIPS_LO16 relocation after that, and an addend is calculated using |
| // the two relocations. |
| template <class ELFT, class RelTy> |
| static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end, |
| InputSectionBase &sec, RelExpr expr, |
| bool isLocal) { |
| if (expr == R_MIPS_GOTREL && isLocal) |
| return sec.getFile<ELFT>()->mipsGp0; |
| |
| // The ABI says that the paired relocation is used only for REL. |
| // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (RelTy::IsRela) |
| return 0; |
| |
| RelType type = rel.getType(config->isMips64EL); |
| uint32_t pairTy = getMipsPairType(type, isLocal); |
| if (pairTy == R_MIPS_NONE) |
| return 0; |
| |
| const uint8_t *buf = sec.data().data(); |
| uint32_t symIndex = rel.getSymbol(config->isMips64EL); |
| |
| // To make things worse, paired relocations might not be contiguous in |
| // the relocation table, so we need to do linear search. *sigh* |
| for (const RelTy *ri = &rel; ri != end; ++ri) |
| if (ri->getType(config->isMips64EL) == pairTy && |
| ri->getSymbol(config->isMips64EL) == symIndex) |
| return target->getImplicitAddend(buf + ri->r_offset, pairTy); |
| |
| warn("can't find matching " + toString(pairTy) + " relocation for " + |
| toString(type)); |
| return 0; |
| } |
| |
| // Returns an addend of a given relocation. If it is RELA, an addend |
| // is in a relocation itself. If it is REL, we need to read it from an |
| // input section. |
| template <class ELFT, class RelTy> |
| static int64_t computeAddend(const RelTy &rel, const RelTy *end, |
| InputSectionBase &sec, RelExpr expr, |
| bool isLocal) { |
| int64_t addend; |
| RelType type = rel.getType(config->isMips64EL); |
| |
| if (RelTy::IsRela) { |
| addend = getAddend<ELFT>(rel); |
| } else { |
| const uint8_t *buf = sec.data().data(); |
| addend = target->getImplicitAddend(buf + rel.r_offset, type); |
| } |
| |
| if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) |
| addend += getPPC64TocBase(); |
| if (config->emachine == EM_MIPS) |
| addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal); |
| |
| return addend; |
| } |
| |
| // Custom error message if Sym is defined in a discarded section. |
| template <class ELFT> |
| static std::string maybeReportDiscarded(Undefined &sym) { |
| auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); |
| if (!file || !sym.discardedSecIdx || |
| file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) |
| return ""; |
| ArrayRef<Elf_Shdr_Impl<ELFT>> objSections = |
| CHECK(file->getObj().sections(), file); |
| |
| std::string msg; |
| if (sym.type == ELF::STT_SECTION) { |
| msg = "relocation refers to a discarded section: "; |
| msg += CHECK( |
| file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file); |
| } else { |
| msg = "relocation refers to a symbol in a discarded section: " + |
| toString(sym); |
| } |
| msg += "\n>>> defined in " + toString(file); |
| |
| Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; |
| if (elfSec.sh_type != SHT_GROUP) |
| return msg; |
| |
| // If the discarded section is a COMDAT. |
| StringRef signature = file->getShtGroupSignature(objSections, elfSec); |
| if (const InputFile *prevailing = |
| symtab->comdatGroups.lookup(CachedHashStringRef(signature))) |
| msg += "\n>>> section group signature: " + signature.str() + |
| "\n>>> prevailing definition is in " + toString(prevailing); |
| return msg; |
| } |
| |
| // Undefined diagnostics are collected in a vector and emitted once all of |
| // them are known, so that some postprocessing on the list of undefined symbols |
| // can happen before lld emits diagnostics. |
| struct UndefinedDiag { |
| Symbol *sym; |
| struct Loc { |
| InputSectionBase *sec; |
| uint64_t offset; |
| }; |
| std::vector<Loc> locs; |
| bool isWarning; |
| }; |
| |
| static std::vector<UndefinedDiag> undefs; |
| |
| // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns |
| // the suggested symbol, which is either in the symbol table, or in the same |
| // file of sym. |
| static const Symbol *getAlternativeSpelling(const Undefined &sym) { |
| // Build a map of local defined symbols. |
| DenseMap<StringRef, const Symbol *> map; |
| if (sym.file && !isa<SharedFile>(sym.file)) { |
| for (const Symbol *s : sym.file->getSymbols()) |
| if (s->isLocal() && s->isDefined()) |
| map.try_emplace(s->getName(), s); |
| } |
| |
| auto suggest = [&](StringRef newName) -> const Symbol * { |
| // If defined locally. |
| if (const Symbol *s = map.lookup(newName)) |
| return s; |
| |
| // If in the symbol table and not undefined. |
| if (const Symbol *s = symtab->find(newName)) |
| if (!s->isUndefined()) |
| return s; |
| |
| return nullptr; |
| }; |
| |
| // This loop enumerates all strings of Levenshtein distance 1 as typo |
| // correction candidates and suggests the one that exists as a non-undefined |
| // symbol. |
| StringRef name = sym.getName(); |
| for (size_t i = 0, e = name.size(); i != e + 1; ++i) { |
| // Insert a character before name[i]. |
| std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); |
| for (char c = '0'; c <= 'z'; ++c) { |
| newName[i] = c; |
| if (const Symbol *s = suggest(newName)) |
| return s; |
| } |
| if (i == e) |
| break; |
| |
| // Substitute name[i]. |
| newName = name; |
| for (char c = '0'; c <= 'z'; ++c) { |
| newName[i] = c; |
| if (const Symbol *s = suggest(newName)) |
| return s; |
| } |
| |
| // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is |
| // common. |
| if (i + 1 < e) { |
| newName[i] = name[i + 1]; |
| newName[i + 1] = name[i]; |
| if (const Symbol *s = suggest(newName)) |
| return s; |
| } |
| |
| // Delete name[i]. |
| newName = (name.substr(0, i) + name.substr(i + 1)).str(); |
| if (const Symbol *s = suggest(newName)) |
| return s; |
| } |
| |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| static void reportUndefinedSymbol(const UndefinedDiag &undef, |
| bool correctSpelling) { |
| Symbol &sym = *undef.sym; |
| |
| auto visibility = [&]() -> std::string { |
| switch (sym.visibility) { |
| case STV_INTERNAL: |
| return "internal "; |
| case STV_HIDDEN: |
| return "hidden "; |
| case STV_PROTECTED: |
| return "protected "; |
| default: |
| return ""; |
| } |
| }; |
| |
| std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym)); |
| if (msg.empty()) |
| msg = "undefined " + visibility() + "symbol: " + toString(sym); |
| |
| const size_t maxUndefReferences = 10; |
| size_t i = 0; |
| for (UndefinedDiag::Loc l : undef.locs) { |
| if (i >= maxUndefReferences) |
| break; |
| InputSectionBase &sec = *l.sec; |
| uint64_t offset = l.offset; |
| |
| msg += "\n>>> referenced by "; |
| std::string src = sec.getSrcMsg(sym, offset); |
| if (!src.empty()) |
| msg += src + "\n>>> "; |
| msg += sec.getObjMsg(offset); |
| i++; |
| } |
| |
| if (i < undef.locs.size()) |
| msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") |
| .str(); |
| |
| if (correctSpelling) |
| if (const Symbol *corrected = |
| getAlternativeSpelling(cast<Undefined>(sym))) { |
| msg += "\n>>> did you mean: " + toString(*corrected); |
| if (corrected->file) |
| msg += "\n>>> defined in: " + toString(corrected->file); |
| } |
| |
| if (sym.getName().startswith("_ZTV")) |
| msg += "\nthe vtable symbol may be undefined because the class is missing " |
| "its key function (see https://lld.llvm.org/missingkeyfunction)"; |
| |
| if (undef.isWarning) |
| warn(msg); |
| else |
| error(msg); |
| } |
| |
| template <class ELFT> void elf::reportUndefinedSymbols() { |
| // Find the first "undefined symbol" diagnostic for each diagnostic, and |
| // collect all "referenced from" lines at the first diagnostic. |
| DenseMap<Symbol *, UndefinedDiag *> firstRef; |
| for (UndefinedDiag &undef : undefs) { |
| assert(undef.locs.size() == 1); |
| if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { |
| canon->locs.push_back(undef.locs[0]); |
| undef.locs.clear(); |
| } else |
| firstRef[undef.sym] = &undef; |
| } |
| |
| // Enable spell corrector for the first 2 diagnostics. |
| for (auto it : enumerate(undefs)) |
| if (!it.value().locs.empty()) |
| reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2); |
| undefs.clear(); |
| } |
| |
| // Report an undefined symbol if necessary. |
| // Returns true if the undefined symbol will produce an error message. |
| static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec, |
| uint64_t offset) { |
| if (!sym.isUndefined() || sym.isWeak()) |
| return false; |
| |
| bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT; |
| if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) |
| return false; |
| |
| // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc |
| // which references a switch table in a discarded .rodata/.text section. The |
| // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF |
| // spec says references from outside the group to a STB_LOCAL symbol are not |
| // allowed. Work around the bug. |
| if (config->emachine == EM_PPC64 && |
| cast<Undefined>(sym).discardedSecIdx != 0 && sec.name == ".toc") |
| return false; |
| |
| bool isWarning = |
| (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || |
| config->noinhibitExec; |
| undefs.push_back({&sym, {{&sec, offset}}, isWarning}); |
| return !isWarning; |
| } |
| |
| // MIPS N32 ABI treats series of successive relocations with the same offset |
| // as a single relocation. The similar approach used by N64 ABI, but this ABI |
| // packs all relocations into the single relocation record. Here we emulate |
| // this for the N32 ABI. Iterate over relocation with the same offset and put |
| // theirs types into the single bit-set. |
| template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) { |
| RelType type = 0; |
| uint64_t offset = rel->r_offset; |
| |
| int n = 0; |
| while (rel != end && rel->r_offset == offset) |
| type |= (rel++)->getType(config->isMips64EL) << (8 * n++); |
| return type; |
| } |
| |
| // .eh_frame sections are mergeable input sections, so their input |
| // offsets are not linearly mapped to output section. For each input |
| // offset, we need to find a section piece containing the offset and |
| // add the piece's base address to the input offset to compute the |
| // output offset. That isn't cheap. |
| // |
| // This class is to speed up the offset computation. When we process |
| // relocations, we access offsets in the monotonically increasing |
| // order. So we can optimize for that access pattern. |
| // |
| // For sections other than .eh_frame, this class doesn't do anything. |
| namespace { |
| class OffsetGetter { |
| public: |
| explicit OffsetGetter(InputSectionBase &sec) { |
| if (auto *eh = dyn_cast<EhInputSection>(&sec)) |
| pieces = eh->pieces; |
| } |
| |
| // Translates offsets in input sections to offsets in output sections. |
| // Given offset must increase monotonically. We assume that Piece is |
| // sorted by inputOff. |
| uint64_t get(uint64_t off) { |
| if (pieces.empty()) |
| return off; |
| |
| while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off) |
| ++i; |
| if (i == pieces.size()) |
| fatal(".eh_frame: relocation is not in any piece"); |
| |
| // Pieces must be contiguous, so there must be no holes in between. |
| assert(pieces[i].inputOff <= off && "Relocation not in any piece"); |
| |
| // Offset -1 means that the piece is dead (i.e. garbage collected). |
| if (pieces[i].outputOff == -1) |
| return -1; |
| return pieces[i].outputOff + off - pieces[i].inputOff; |
| } |
| |
| private: |
| ArrayRef<EhSectionPiece> pieces; |
| size_t i = 0; |
| }; |
| } // namespace |
| |
| static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec, |
| Symbol *sym, int64_t addend, RelExpr expr, |
| RelType type) { |
| Partition &part = isec->getPartition(); |
| |
| // Add a relative relocation. If relrDyn section is enabled, and the |
| // relocation offset is guaranteed to be even, add the relocation to |
| // the relrDyn section, otherwise add it to the relaDyn section. |
| // relrDyn sections don't support odd offsets. Also, relrDyn sections |
| // don't store the addend values, so we must write it to the relocated |
| // address. |
| if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) { |
| isec->relocations.push_back({expr, type, offsetInSec, addend, sym}); |
| part.relrDyn->relocs.push_back({isec, offsetInSec}); |
| return; |
| } |
| part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend, |
| expr, type); |
| } |
| |
| template <class ELFT, class GotPltSection> |
| static void addPltEntry(PltSection *plt, GotPltSection *gotPlt, |
| RelocationBaseSection *rel, RelType type, Symbol &sym) { |
| plt->addEntry<ELFT>(sym); |
| gotPlt->addEntry(sym); |
| rel->addReloc( |
| {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0}); |
| } |
| |
| static void addGotEntry(Symbol &sym) { |
| in.got->addEntry(sym); |
| |
| RelExpr expr = sym.isTls() ? R_TLS : R_ABS; |
| uint64_t off = sym.getGotOffset(); |
| |
| // If a GOT slot value can be calculated at link-time, which is now, |
| // we can just fill that out. |
| // |
| // (We don't actually write a value to a GOT slot right now, but we |
| // add a static relocation to a Relocations vector so that |
| // InputSection::relocate will do the work for us. We may be able |
| // to just write a value now, but it is a TODO.) |
| bool isLinkTimeConstant = |
| !sym.isPreemptible && (!config->isPic || isAbsolute(sym)); |
| if (isLinkTimeConstant) { |
| in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym}); |
| return; |
| } |
| |
| // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that |
| // the GOT slot will be fixed at load-time. |
| if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) { |
| addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel); |
| return; |
| } |
| mainPart->relaDyn->addReloc( |
| sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0, |
| sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel); |
| } |
| |
| // Return true if we can define a symbol in the executable that |
| // contains the value/function of a symbol defined in a shared |
| // library. |
| static bool canDefineSymbolInExecutable(Symbol &sym) { |
| // If the symbol has default visibility the symbol defined in the |
| // executable will preempt it. |
| // Note that we want the visibility of the shared symbol itself, not |
| // the visibility of the symbol in the output file we are producing. That is |
| // why we use Sym.stOther. |
| if ((sym.stOther & 0x3) == STV_DEFAULT) |
| return true; |
| |
| // If we are allowed to break address equality of functions, defining |
| // a plt entry will allow the program to call the function in the |
| // .so, but the .so and the executable will no agree on the address |
| // of the function. Similar logic for objects. |
| return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || |
| (sym.isObject() && config->ignoreDataAddressEquality)); |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| // This would have some drawbacks. For example, we would only know if .rela.dyn |
| // is needed after applying relocations. If it is, it will go after rw and rx |
| // sections. Given that it is ro, we will need an extra PT_LOAD. This |
| // complicates things for the dynamic linker and means we would have to reserve |
| // space for the extra PT_LOAD even if we end up not using it. |
| template <class ELFT, class RelTy> |
| static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type, |
| uint64_t offset, Symbol &sym, const RelTy &rel, |
| int64_t addend) { |
| // If the relocation is known to be a link-time constant, we know no dynamic |
| // relocation will be created, pass the control to relocateAlloc() or |
| // relocateNonAlloc() to resolve it. |
| // |
| // The behavior of an undefined weak reference is implementation defined. If |
| // the relocation is to a weak undef, and we are producing an executable, let |
| // relocate{,Non}Alloc() resolve it. |
| if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) || |
| (!config->shared && sym.isUndefWeak())) { |
| sec.relocations.push_back({expr, type, offset, addend, &sym}); |
| return; |
| } |
| |
| bool canWrite = (sec.flags & SHF_WRITE) || !config->zText; |
| if (canWrite) { |
| RelType rel = target->getDynRel(type); |
| if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { |
| addRelativeReloc(&sec, offset, &sym, addend, expr, type); |
| return; |
| } else if (rel != 0) { |
| if (config->emachine == EM_MIPS && rel == target->symbolicRel) |
| rel = target->relativeRel; |
| sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend, |
| R_ADDEND, type); |
| |
| // MIPS ABI turns using of GOT and dynamic relocations inside out. |
| // While regular ABI uses dynamic relocations to fill up GOT entries |
| // MIPS ABI requires dynamic linker to fills up GOT entries using |
| // specially sorted dynamic symbol table. This affects even dynamic |
| // relocations against symbols which do not require GOT entries |
| // creation explicitly, i.e. do not have any GOT-relocations. So if |
| // a preemptible symbol has a dynamic relocation we anyway have |
| // to create a GOT entry for it. |
| // If a non-preemptible symbol has a dynamic relocation against it, |
| // dynamic linker takes it st_value, adds offset and writes down |
| // result of the dynamic relocation. In case of preemptible symbol |
| // dynamic linker performs symbol resolution, writes the symbol value |
| // to the GOT entry and reads the GOT entry when it needs to perform |
| // a dynamic relocation. |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
| if (config->emachine == EM_MIPS) |
| in.mipsGot->addEntry(*sec.file, sym, addend, expr); |
| return; |
| } |
| } |
| |
| // When producing an executable, we can perform copy relocations (for |
| // STT_OBJECT) and canonical PLT (for STT_FUNC). |
| if (!config->shared) { |
| if (!canDefineSymbolInExecutable(sym)) { |
| errorOrWarn("cannot preempt symbol: " + toString(sym) + |
| getLocation(sec, sym, offset)); |
| return; |
| } |
| |
| if (sym.isObject()) { |
| // Produce a copy relocation. |
| if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { |
| if (!config->zCopyreloc) |
| error("unresolvable relocation " + toString(type) + |
| " against symbol '" + toString(*ss) + |
| "'; recompile with -fPIC or remove '-z nocopyreloc'" + |
| getLocation(sec, sym, offset)); |
| addCopyRelSymbol<ELFT>(*ss); |
| } |
| sec.relocations.push_back({expr, type, offset, addend, &sym}); |
| return; |
| } |
| |
| // This handles a non PIC program call to function in a shared library. In |
| // an ideal world, we could just report an error saying the relocation can |
| // overflow at runtime. In the real world with glibc, crt1.o has a |
| // R_X86_64_PC32 pointing to libc.so. |
| // |
| // The general idea on how to handle such cases is to create a PLT entry and |
| // use that as the function value. |
| // |
| // For the static linking part, we just return a plt expr and everything |
| // else will use the PLT entry as the address. |
| // |
| // The remaining problem is making sure pointer equality still works. We |
| // need the help of the dynamic linker for that. We let it know that we have |
| // a direct reference to a so symbol by creating an undefined symbol with a |
| // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
| // the value of the symbol we created. This is true even for got entries, so |
| // pointer equality is maintained. To avoid an infinite loop, the only entry |
| // that points to the real function is a dedicated got entry used by the |
| // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
| // R_386_JMP_SLOT, etc). |
| |
| // For position independent executable on i386, the plt entry requires ebx |
| // to be set. This causes two problems: |
| // * If some code has a direct reference to a function, it was probably |
| // compiled without -fPIE/-fPIC and doesn't maintain ebx. |
| // * If a library definition gets preempted to the executable, it will have |
| // the wrong ebx value. |
| if (sym.isFunc()) { |
| if (config->pie && config->emachine == EM_386) |
| errorOrWarn("symbol '" + toString(sym) + |
| "' cannot be preempted; recompile with -fPIE" + |
| getLocation(sec, sym, offset)); |
| if (!sym.isInPlt()) |
| addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); |
| if (!sym.isDefined()) |
| replaceWithDefined( |
| sym, in.plt, |
| target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0); |
| sym.needsPltAddr = true; |
| sec.relocations.push_back({expr, type, offset, addend, &sym}); |
| return; |
| } |
| } |
| |
| if (config->isPic) { |
| if (!canWrite && !isRelExpr(expr)) |
| errorOrWarn( |
| "can't create dynamic relocation " + toString(type) + " against " + |
| (sym.getName().empty() ? "local symbol" |
| : "symbol: " + toString(sym)) + |
| " in readonly segment; recompile object files with -fPIC " |
| "or pass '-Wl,-z,notext' to allow text relocations in the output" + |
| getLocation(sec, sym, offset)); |
| else |
| errorOrWarn( |
| "relocation " + toString(type) + " cannot be used against " + |
| (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) + |
| "; recompile with -fPIC" + getLocation(sec, sym, offset)); |
| return; |
| } |
| |
| errorOrWarn("symbol '" + toString(sym) + "' has no type" + |
| getLocation(sec, sym, offset)); |
| } |
| |
| template <class ELFT, class RelTy> |
| static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i, |
| RelTy *end) { |
| const RelTy &rel = *i; |
| uint32_t symIndex = rel.getSymbol(config->isMips64EL); |
| Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex); |
| RelType type; |
| |
| // Deal with MIPS oddity. |
| if (config->mipsN32Abi) { |
| type = getMipsN32RelType(i, end); |
| } else { |
| type = rel.getType(config->isMips64EL); |
| ++i; |
| } |
| |
| // Get an offset in an output section this relocation is applied to. |
| uint64_t offset = getOffset.get(rel.r_offset); |
| if (offset == uint64_t(-1)) |
| return; |
| |
| // Error if the target symbol is undefined. Symbol index 0 may be used by |
| // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. |
| if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset)) |
| return; |
| |
| const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset; |
| RelExpr expr = target->getRelExpr(type, sym, relocatedAddr); |
| |
| // Ignore "hint" relocations because they are only markers for relaxation. |
| if (oneof<R_HINT, R_NONE>(expr)) |
| return; |
| |
| // We can separate the small code model relocations into 2 categories: |
| // 1) Those that access the compiler generated .toc sections. |
| // 2) Those that access the linker allocated got entries. |
| // lld allocates got entries to symbols on demand. Since we don't try to sort |
| // the got entries in any way, we don't have to track which objects have |
| // got-based small code model relocs. The .toc sections get placed after the |
| // end of the linker allocated .got section and we do sort those so sections |
| // addressed with small code model relocations come first. |
| if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type)) |
| sec.file->ppc64SmallCodeModelTocRelocs = true; |
| |
| if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) { |
| warn("using ifunc symbols when text relocations are allowed may produce " |
| "a binary that will segfault, if the object file is linked with " |
| "old version of glibc (glibc 2.28 and earlier). If this applies to " |
| "you, consider recompiling the object files without -fPIC and " |
| "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to " |
| "turn off this warning." + |
| getLocation(sec, sym, offset)); |
| } |
| |
| // Read an addend. |
| int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal()); |
| |
| // Relax relocations. |
| // |
| // If we know that a PLT entry will be resolved within the same ELF module, we |
| // can skip PLT access and directly jump to the destination function. For |
| // example, if we are linking a main exectuable, all dynamic symbols that can |
| // be resolved within the executable will actually be resolved that way at |
| // runtime, because the main exectuable is always at the beginning of a search |
| // list. We can leverage that fact. |
| if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) { |
| if (expr == R_GOT_PC && !isAbsoluteValue(sym)) { |
| expr = target->adjustRelaxExpr(type, relocatedAddr, expr); |
| } else { |
| // Addend of R_PPC_PLTREL24 is used to choose call stub type. It should be |
| // ignored if optimized to R_PC. |
| if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) |
| addend = 0; |
| expr = fromPlt(expr); |
| } |
| } |
| |
| // If the relocation does not emit a GOT or GOTPLT entry but its computation |
| // uses their addresses, we need GOT or GOTPLT to be created. |
| // |
| // The 4 types that relative GOTPLT are all x86 and x86-64 specific. |
| if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) { |
| in.gotPlt->hasGotPltOffRel = true; |
| } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>( |
| expr)) { |
| in.got->hasGotOffRel = true; |
| } |
| |
| // Process some TLS relocations, including relaxing TLS relocations. |
| // Note that this function does not handle all TLS relocations. |
| if (unsigned processed = |
| handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) { |
| i += (processed - 1); |
| return; |
| } |
| |
| // We were asked not to generate PLT entries for ifuncs. Instead, pass the |
| // direct relocation on through. |
| if (sym.isGnuIFunc() && config->zIfuncNoplt) { |
| sym.exportDynamic = true; |
| mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type); |
| return; |
| } |
| |
| // Non-preemptible ifuncs require special handling. First, handle the usual |
| // case where the symbol isn't one of these. |
| if (!sym.isGnuIFunc() || sym.isPreemptible) { |
| // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. |
| if (needsPlt(expr) && !sym.isInPlt()) |
| addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym); |
| |
| // Create a GOT slot if a relocation needs GOT. |
| if (needsGot(expr)) { |
| if (config->emachine == EM_MIPS) { |
| // MIPS ABI has special rules to process GOT entries and doesn't |
| // require relocation entries for them. A special case is TLS |
| // relocations. In that case dynamic loader applies dynamic |
| // relocations to initialize TLS GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| in.mipsGot->addEntry(*sec.file, sym, addend, expr); |
| } else if (!sym.isInGot()) { |
| addGotEntry(sym); |
| } |
| } |
| } else { |
| // Handle a reference to a non-preemptible ifunc. These are special in a |
| // few ways: |
| // |
| // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have |
| // a fixed value. But assuming that all references to the ifunc are |
| // GOT-generating or PLT-generating, the handling of an ifunc is |
| // relatively straightforward. We create a PLT entry in Iplt, which is |
| // usually at the end of .plt, which makes an indirect call using a |
| // matching GOT entry in igotPlt, which is usually at the end of .got.plt. |
| // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, |
| // which is usually at the end of .rela.plt. Unlike most relocations in |
| // .rela.plt, which may be evaluated lazily without -z now, dynamic |
| // loaders evaluate IRELATIVE relocs eagerly, which means that for |
| // IRELATIVE relocs only, GOT-generating relocations can point directly to |
| // .got.plt without requiring a separate GOT entry. |
| // |
| // - Despite the fact that an ifunc does not have a fixed value, compilers |
| // that are not passed -fPIC will assume that they do, and will emit |
| // direct (non-GOT-generating, non-PLT-generating) relocations to the |
| // symbol. This means that if a direct relocation to the symbol is |
| // seen, the linker must set a value for the symbol, and this value must |
| // be consistent no matter what type of reference is made to the symbol. |
| // This can be done by creating a PLT entry for the symbol in the way |
| // described above and making it canonical, that is, making all references |
| // point to the PLT entry instead of the resolver. In lld we also store |
| // the address of the PLT entry in the dynamic symbol table, which means |
| // that the symbol will also have the same value in other modules. |
| // Because the value loaded from the GOT needs to be consistent with |
| // the value computed using a direct relocation, a non-preemptible ifunc |
| // may end up with two GOT entries, one in .got.plt that points to the |
| // address returned by the resolver and is used only by the PLT entry, |
| // and another in .got that points to the PLT entry and is used by |
| // GOT-generating relocations. |
| // |
| // - The fact that these symbols do not have a fixed value makes them an |
| // exception to the general rule that a statically linked executable does |
| // not require any form of dynamic relocation. To handle these relocations |
| // correctly, the IRELATIVE relocations are stored in an array which a |
| // statically linked executable's startup code must enumerate using the |
| // linker-defined symbols __rela?_iplt_{start,end}. |
| if (!sym.isInPlt()) { |
| // Create PLT and GOTPLT slots for the symbol. |
| sym.isInIplt = true; |
| |
| // Create a copy of the symbol to use as the target of the IRELATIVE |
| // relocation in the igotPlt. This is in case we make the PLT canonical |
| // later, which would overwrite the original symbol. |
| // |
| // FIXME: Creating a copy of the symbol here is a bit of a hack. All |
| // that's really needed to create the IRELATIVE is the section and value, |
| // so ideally we should just need to copy those. |
| auto *directSym = make<Defined>(cast<Defined>(sym)); |
| addPltEntry<ELFT>(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel, |
| *directSym); |
| sym.pltIndex = directSym->pltIndex; |
| } |
| if (needsGot(expr)) { |
| // Redirect GOT accesses to point to the Igot. |
| // |
| // This field is also used to keep track of whether we ever needed a GOT |
| // entry. If we did and we make the PLT canonical later, we'll need to |
| // create a GOT entry pointing to the PLT entry for Sym. |
| sym.gotInIgot = true; |
| } else if (!needsPlt(expr)) { |
| // Make the ifunc's PLT entry canonical by changing the value of its |
| // symbol to redirect all references to point to it. |
| unsigned entryOffset = sym.pltIndex * target->pltEntrySize; |
| if (config->zRetpolineplt) |
| entryOffset += target->pltHeaderSize; |
| |
| auto &d = cast<Defined>(sym); |
| d.section = in.iplt; |
| d.value = entryOffset; |
| d.size = 0; |
| // It's important to set the symbol type here so that dynamic loaders |
| // don't try to call the PLT as if it were an ifunc resolver. |
| d.type = STT_FUNC; |
| |
| if (sym.gotInIgot) { |
| // We previously encountered a GOT generating reference that we |
| // redirected to the Igot. Now that the PLT entry is canonical we must |
| // clear the redirection to the Igot and add a GOT entry. As we've |
| // changed the symbol type to STT_FUNC future GOT generating references |
| // will naturally use this GOT entry. |
| // |
| // We don't need to worry about creating a MIPS GOT here because ifuncs |
| // aren't a thing on MIPS. |
| sym.gotInIgot = false; |
| addGotEntry(sym); |
| } |
| } |
| } |
| |
| processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend); |
| } |
| |
| template <class ELFT, class RelTy> |
| static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) { |
| OffsetGetter getOffset(sec); |
| |
| // Not all relocations end up in Sec.Relocations, but a lot do. |
| sec.relocations.reserve(rels.size()); |
| |
| for (auto i = rels.begin(), end = rels.end(); i != end;) |
| scanReloc<ELFT>(sec, getOffset, i, end); |
| |
| // Sort relocations by offset for more efficient searching for |
| // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. |
| if (config->emachine == EM_RISCV || |
| (config->emachine == EM_PPC64 && sec.name == ".toc")) |
| llvm::stable_sort(sec.relocations, |
| [](const Relocation &lhs, const Relocation &rhs) { |
| return lhs.offset < rhs.offset; |
| }); |
| } |
| |
| template <class ELFT> void elf::scanRelocations(InputSectionBase &s) { |
| if (s.areRelocsRela) |
| scanRelocs<ELFT>(s, s.relas<ELFT>()); |
| else |
| scanRelocs<ELFT>(s, s.rels<ELFT>()); |
| } |
| |
| static bool mergeCmp(const InputSection *a, const InputSection *b) { |
| // std::merge requires a strict weak ordering. |
| if (a->outSecOff < b->outSecOff) |
| return true; |
| |
| if (a->outSecOff == b->outSecOff) { |
| auto *ta = dyn_cast<ThunkSection>(a); |
| auto *tb = dyn_cast<ThunkSection>(b); |
| |
| // Check if Thunk is immediately before any specific Target |
| // InputSection for example Mips LA25 Thunks. |
| if (ta && ta->getTargetInputSection() == b) |
| return true; |
| |
| // Place Thunk Sections without specific targets before |
| // non-Thunk Sections. |
| if (ta && !tb && !ta->getTargetInputSection()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Call Fn on every executable InputSection accessed via the linker script |
| // InputSectionDescription::Sections. |
| static void forEachInputSectionDescription( |
| ArrayRef<OutputSection *> outputSections, |
| llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { |
| for (OutputSection *os : outputSections) { |
| if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
| continue; |
| for (BaseCommand *bc : os->sectionCommands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(bc)) |
| fn(os, isd); |
| } |
| } |
| |
| // Thunk Implementation |
| // |
| // Thunks (sometimes called stubs, veneers or branch islands) are small pieces |
| // of code that the linker inserts inbetween a caller and a callee. The thunks |
| // are added at link time rather than compile time as the decision on whether |
| // a thunk is needed, such as the caller and callee being out of range, can only |
| // be made at link time. |
| // |
| // It is straightforward to tell given the current state of the program when a |
| // thunk is needed for a particular call. The more difficult part is that |
| // the thunk needs to be placed in the program such that the caller can reach |
| // the thunk and the thunk can reach the callee; furthermore, adding thunks to |
| // the program alters addresses, which can mean more thunks etc. |
| // |
| // In lld we have a synthetic ThunkSection that can hold many Thunks. |
| // The decision to have a ThunkSection act as a container means that we can |
| // more easily handle the most common case of a single block of contiguous |
| // Thunks by inserting just a single ThunkSection. |
| // |
| // The implementation of Thunks in lld is split across these areas |
| // Relocations.cpp : Framework for creating and placing thunks |
| // Thunks.cpp : The code generated for each supported thunk |
| // Target.cpp : Target specific hooks that the framework uses to decide when |
| // a thunk is used |
| // Synthetic.cpp : Implementation of ThunkSection |
| // Writer.cpp : Iteratively call framework until no more Thunks added |
| // |
| // Thunk placement requirements: |
| // Mips LA25 thunks. These must be placed immediately before the callee section |
| // We can assume that the caller is in range of the Thunk. These are modelled |
| // by Thunks that return the section they must precede with |
| // getTargetInputSection(). |
| // |
| // ARM interworking and range extension thunks. These thunks must be placed |
| // within range of the caller. All implemented ARM thunks can always reach the |
| // callee as they use an indirect jump via a register that has no range |
| // restrictions. |
| // |
| // Thunk placement algorithm: |
| // For Mips LA25 ThunkSections; the placement is explicit, it has to be before |
| // getTargetInputSection(). |
| // |
| // For thunks that must be placed within range of the caller there are many |
| // possible choices given that the maximum range from the caller is usually |
| // much larger than the average InputSection size. Desirable properties include: |
| // - Maximize reuse of thunks by multiple callers |
| // - Minimize number of ThunkSections to simplify insertion |
| // - Handle impact of already added Thunks on addresses |
| // - Simple to understand and implement |
| // |
| // In lld for the first pass, we pre-create one or more ThunkSections per |
| // InputSectionDescription at Target specific intervals. A ThunkSection is |
| // placed so that the estimated end of the ThunkSection is within range of the |
| // start of the InputSectionDescription or the previous ThunkSection. For |
| // example: |
| // InputSectionDescription |
| // Section 0 |
| // ... |
| // Section N |
| // ThunkSection 0 |
| // Section N + 1 |
| // ... |
| // Section N + K |
| // Thunk Section 1 |
| // |
| // The intention is that we can add a Thunk to a ThunkSection that is well |
| // spaced enough to service a number of callers without having to do a lot |
| // of work. An important principle is that it is not an error if a Thunk cannot |
| // be placed in a pre-created ThunkSection; when this happens we create a new |
| // ThunkSection placed next to the caller. This allows us to handle the vast |
| // majority of thunks simply, but also handle rare cases where the branch range |
| // is smaller than the target specific spacing. |
| // |
| // The algorithm is expected to create all the thunks that are needed in a |
| // single pass, with a small number of programs needing a second pass due to |
| // the insertion of thunks in the first pass increasing the offset between |
| // callers and callees that were only just in range. |
| // |
| // A consequence of allowing new ThunkSections to be created outside of the |
| // pre-created ThunkSections is that in rare cases calls to Thunks that were in |
| // range in pass K, are out of range in some pass > K due to the insertion of |
| // more Thunks in between the caller and callee. When this happens we retarget |
| // the relocation back to the original target and create another Thunk. |
| |
| // Remove ThunkSections that are empty, this should only be the initial set |
| // precreated on pass 0. |
| |
| // Insert the Thunks for OutputSection OS into their designated place |
| // in the Sections vector, and recalculate the InputSection output section |
| // offsets. |
| // This may invalidate any output section offsets stored outside of InputSection |
| void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { |
| forEachInputSectionDescription( |
| outputSections, [&](OutputSection *os, InputSectionDescription *isd) { |
| if (isd->thunkSections.empty()) |
| return; |
| |
| // Remove any zero sized precreated Thunks. |
| llvm::erase_if(isd->thunkSections, |
| [](const std::pair<ThunkSection *, uint32_t> &ts) { |
| return ts.first->getSize() == 0; |
| }); |
| |
| // ISD->ThunkSections contains all created ThunkSections, including |
| // those inserted in previous passes. Extract the Thunks created this |
| // pass and order them in ascending outSecOff. |
| std::vector<ThunkSection *> newThunks; |
| for (const std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) |
| if (ts.second == pass) |
| newThunks.push_back(ts.first); |
| llvm::stable_sort(newThunks, |
| [](const ThunkSection *a, const ThunkSection *b) { |
| return a->outSecOff < b->outSecOff; |
| }); |
| |
| // Merge sorted vectors of Thunks and InputSections by outSecOff |
| std::vector<InputSection *> tmp; |
| tmp.reserve(isd->sections.size() + newThunks.size()); |
| |
| std::merge(isd->sections.begin(), isd->sections.end(), |
| newThunks.begin(), newThunks.end(), std::back_inserter(tmp), |
| mergeCmp); |
| |
| isd->sections = std::move(tmp); |
| }); |
| } |
| |
| // Find or create a ThunkSection within the InputSectionDescription (ISD) that |
| // is in range of Src. An ISD maps to a range of InputSections described by a |
| // linker script section pattern such as { .text .text.* }. |
| ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec, |
| InputSectionDescription *isd, |
| uint32_t type, uint64_t src) { |
| for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { |
| ThunkSection *ts = tp.first; |
| uint64_t tsBase = os->addr + ts->outSecOff; |
| uint64_t tsLimit = tsBase + ts->getSize(); |
| if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit)) |
| return ts; |
| } |
| |
| // No suitable ThunkSection exists. This can happen when there is a branch |
| // with lower range than the ThunkSection spacing or when there are too |
| // many Thunks. Create a new ThunkSection as close to the InputSection as |
| // possible. Error if InputSection is so large we cannot place ThunkSection |
| // anywhere in Range. |
| uint64_t thunkSecOff = isec->outSecOff; |
| if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) { |
| thunkSecOff = isec->outSecOff + isec->getSize(); |
| if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) |
| fatal("InputSection too large for range extension thunk " + |
| isec->getObjMsg(src - (os->addr + isec->outSecOff))); |
| } |
| return addThunkSection(os, isd, thunkSecOff); |
| } |
| |
| // Add a Thunk that needs to be placed in a ThunkSection that immediately |
| // precedes its Target. |
| ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { |
| ThunkSection *ts = thunkedSections.lookup(isec); |
| if (ts) |
| return ts; |
| |
| // Find InputSectionRange within Target Output Section (TOS) that the |
| // InputSection (IS) that we need to precede is in. |
| OutputSection *tos = isec->getParent(); |
| for (BaseCommand *bc : tos->sectionCommands) { |
| auto *isd = dyn_cast<InputSectionDescription>(bc); |
| if (!isd || isd->sections.empty()) |
| continue; |
| |
| InputSection *first = isd->sections.front(); |
| InputSection *last = isd->sections.back(); |
| |
| if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) |
| continue; |
| |
| ts = addThunkSection(tos, isd, isec->outSecOff); |
| thunkedSections[isec] = ts; |
| return ts; |
| } |
| |
| return nullptr; |
| } |
| |
| // Create one or more ThunkSections per OS that can be used to place Thunks. |
| // We attempt to place the ThunkSections using the following desirable |
| // properties: |
| // - Within range of the maximum number of callers |
| // - Minimise the number of ThunkSections |
| // |
| // We follow a simple but conservative heuristic to place ThunkSections at |
| // offsets that are multiples of a Target specific branch range. |
| // For an InputSectionDescription that is smaller than the range, a single |
| // ThunkSection at the end of the range will do. |
| // |
| // For an InputSectionDescription that is more than twice the size of the range, |
| // we place the last ThunkSection at range bytes from the end of the |
| // InputSectionDescription in order to increase the likelihood that the |
| // distance from a thunk to its target will be sufficiently small to |
| // allow for the creation of a short thunk. |
| void ThunkCreator::createInitialThunkSections( |
| ArrayRef<OutputSection *> outputSections) { |
| uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); |
| |
| forEachInputSectionDescription( |
| outputSections, [&](OutputSection *os, InputSectionDescription *isd) { |
| if (isd->sections.empty()) |
| return; |
| |
| uint32_t isdBegin = isd->sections.front()->outSecOff; |
| uint32_t isdEnd = |
| isd->sections.back()->outSecOff + isd->sections.back()->getSize(); |
| uint32_t lastThunkLowerBound = -1; |
| if (isdEnd - isdBegin > thunkSectionSpacing * 2) |
| lastThunkLowerBound = isdEnd - thunkSectionSpacing; |
| |
| uint32_t isecLimit; |
| uint32_t prevIsecLimit = isdBegin; |
| uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; |
| |
| for (const InputSection *isec : isd->sections) { |
| isecLimit = isec->outSecOff + isec->getSize(); |
| if (isecLimit > thunkUpperBound) { |
| addThunkSection(os, isd, prevIsecLimit); |
| thunkUpperBound = prevIsecLimit + thunkSectionSpacing; |
| } |
| if (isecLimit > lastThunkLowerBound) |
| break; |
| prevIsecLimit = isecLimit; |
| } |
| addThunkSection(os, isd, isecLimit); |
| }); |
| } |
| |
| ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, |
| InputSectionDescription *isd, |
| uint64_t off) { |
| auto *ts = make<ThunkSection>(os, off); |
| ts->partition = os->partition; |
| isd->thunkSections.push_back({ts, pass}); |
| return ts; |
| } |
| |
| static bool isThunkSectionCompatible(InputSection *source, |
| SectionBase *target) { |
| // We can't reuse thunks in different loadable partitions because they might |
| // not be loaded. But partition 1 (the main partition) will always be loaded. |
| if (source->partition != target->partition) |
| return target->partition == 1; |
| return true; |
| } |
| |
| std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, |
| Relocation &rel, uint64_t src) { |
| std::vector<Thunk *> *thunkVec = nullptr; |
| |
| // We use (section, offset) pair to find the thunk position if possible so |
| // that we create only one thunk for aliased symbols or ICFed sections. |
| if (auto *d = dyn_cast<Defined>(rel.sym)) |
| if (!d->isInPlt() && d->section) |
| thunkVec = &thunkedSymbolsBySection[{d->section->repl, d->value}]; |
| if (!thunkVec) |
| thunkVec = &thunkedSymbols[rel.sym]; |
| |
| // Check existing Thunks for Sym to see if they can be reused |
| for (Thunk *t : *thunkVec) |
| if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && |
| t->isCompatibleWith(*isec, rel) && |
| target->inBranchRange(rel.type, src, t->getThunkTargetSym()->getVA())) |
| return std::make_pair(t, false); |
| |
| // No existing compatible Thunk in range, create a new one |
| Thunk *t = addThunk(*isec, rel); |
| thunkVec->push_back(t); |
| return std::make_pair(t, true); |
| } |
| |
| // Return true if the relocation target is an in range Thunk. |
| // Return false if the relocation is not to a Thunk. If the relocation target |
| // was originally to a Thunk, but is no longer in range we revert the |
| // relocation back to its original non-Thunk target. |
| bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { |
| if (Thunk *t = thunks.lookup(rel.sym)) { |
| if (target->inBranchRange(rel.type, src, rel.sym->getVA())) |
| return true; |
| rel.sym = &t->destination; |
| if (rel.sym->isInPlt()) |
| rel.expr = toPlt(rel.expr); |
| } |
| return false; |
| } |
| |
| // Process all relocations from the InputSections that have been assigned |
| // to InputSectionDescriptions and redirect through Thunks if needed. The |
| // function should be called iteratively until it returns false. |
| // |
| // PreConditions: |
| // All InputSections that may need a Thunk are reachable from |
| // OutputSectionCommands. |
| // |
| // All OutputSections have an address and all InputSections have an offset |
| // within the OutputSection. |
| // |
| // The offsets between caller (relocation place) and callee |
| // (relocation target) will not be modified outside of createThunks(). |
| // |
| // PostConditions: |
| // If return value is true then ThunkSections have been inserted into |
| // OutputSections. All relocations that needed a Thunk based on the information |
| // available to createThunks() on entry have been redirected to a Thunk. Note |
| // that adding Thunks changes offsets between caller and callee so more Thunks |
| // may be required. |
| // |
| // If return value is false then no more Thunks are needed, and createThunks has |
| // made no changes. If the target requires range extension thunks, currently |
| // ARM, then any future change in offset between caller and callee risks a |
| // relocation out of range error. |
| bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) { |
| bool addressesChanged = false; |
| |
| if (pass == 0 && target->getThunkSectionSpacing()) |
| createInitialThunkSections(outputSections); |
| |
| // Create all the Thunks and insert them into synthetic ThunkSections. The |
| // ThunkSections are later inserted back into InputSectionDescriptions. |
| // We separate the creation of ThunkSections from the insertion of the |
| // ThunkSections as ThunkSections are not always inserted into the same |
| // InputSectionDescription as the caller. |
| forEachInputSectionDescription( |
| outputSections, [&](OutputSection *os, InputSectionDescription *isd) { |
| for (InputSection *isec : isd->sections) |
| for (Relocation &rel : isec->relocations) { |
| uint64_t src = isec->getVA(rel.offset); |
| |
| // If we are a relocation to an existing Thunk, check if it is |
| // still in range. If not then Rel will be altered to point to its |
| // original target so another Thunk can be generated. |
| if (pass > 0 && normalizeExistingThunk(rel, src)) |
| continue; |
| |
| if (!target->needsThunk(rel.expr, rel.type, isec->file, src, |
| *rel.sym)) |
| continue; |
| |
| Thunk *t; |
| bool isNew; |
| std::tie(t, isNew) = getThunk(isec, rel, src); |
| |
| if (isNew) { |
| // Find or create a ThunkSection for the new Thunk |
| ThunkSection *ts; |
| if (auto *tis = t->getTargetInputSection()) |
| ts = getISThunkSec(tis); |
| else |
| ts = getISDThunkSec(os, isec, isd, rel.type, src); |
| ts->addThunk(t); |
| thunks[t->getThunkTargetSym()] = t; |
| } |
| |
| // Redirect relocation to Thunk, we never go via the PLT to a Thunk |
| rel.sym = t->getThunkTargetSym(); |
| rel.expr = fromPlt(rel.expr); |
| |
| // The addend of R_PPC_PLTREL24 should be ignored after changing to |
| // R_PC. |
| if (config->emachine == EM_PPC && rel.type == R_PPC_PLTREL24) |
| rel.addend = 0; |
| } |
| |
| for (auto &p : isd->thunkSections) |
| addressesChanged |= p.first->assignOffsets(); |
| }); |
| |
| for (auto &p : thunkedSections) |
| addressesChanged |= p.second->assignOffsets(); |
| |
| // Merge all created synthetic ThunkSections back into OutputSection |
| mergeThunks(outputSections); |
| ++pass; |
| return addressesChanged; |
| } |
| |
| template void elf::scanRelocations<ELF32LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF32BE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64BE>(InputSectionBase &); |
| template void elf::reportUndefinedSymbols<ELF32LE>(); |
| template void elf::reportUndefinedSymbols<ELF32BE>(); |
| template void elf::reportUndefinedSymbols<ELF64LE>(); |
| template void elf::reportUndefinedSymbols<ELF64BE>(); |