| //===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LayoutPass.h" |
| #include "lld/Core/Instrumentation.h" |
| #include "lld/Core/PassManager.h" |
| #include "lld/ReaderWriter/MachOLinkingContext.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Parallel.h" |
| #include <algorithm> |
| #include <set> |
| #include <utility> |
| |
| using namespace lld; |
| |
| #define DEBUG_TYPE "LayoutPass" |
| |
| namespace lld { |
| namespace mach_o { |
| |
| static bool compareAtoms(const LayoutPass::SortKey &, |
| const LayoutPass::SortKey &, |
| LayoutPass::SortOverride customSorter); |
| |
| #ifndef NDEBUG |
| // Return "reason (leftval, rightval)" |
| static std::string formatReason(StringRef reason, int leftVal, int rightVal) { |
| return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")") |
| .str(); |
| } |
| |
| // Less-than relationship of two atoms must be transitive, which is, if a < b |
| // and b < c, a < c must be true. This function checks the transitivity by |
| // checking the sort results. |
| static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec, |
| LayoutPass::SortOverride customSorter) { |
| for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) { |
| for (auto j = i + 1; j != e; ++j) { |
| assert(compareAtoms(*i, *j, customSorter)); |
| assert(!compareAtoms(*j, *i, customSorter)); |
| } |
| } |
| } |
| |
| // Helper functions to check follow-on graph. |
| typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT; |
| |
| static std::string atomToDebugString(const Atom *atom) { |
| const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom); |
| std::string str; |
| llvm::raw_string_ostream s(str); |
| if (definedAtom->name().empty()) |
| s << "<anonymous " << definedAtom << ">"; |
| else |
| s << definedAtom->name(); |
| s << " in "; |
| if (definedAtom->customSectionName().empty()) |
| s << "<anonymous>"; |
| else |
| s << definedAtom->customSectionName(); |
| s.flush(); |
| return str; |
| } |
| |
| static void showCycleDetectedError(const Registry ®istry, |
| AtomToAtomT &followOnNexts, |
| const DefinedAtom *atom) { |
| const DefinedAtom *start = atom; |
| llvm::dbgs() << "There's a cycle in a follow-on chain!\n"; |
| do { |
| llvm::dbgs() << " " << atomToDebugString(atom) << "\n"; |
| for (const Reference *ref : *atom) { |
| StringRef kindValStr; |
| if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(), |
| ref->kindValue(), kindValStr)) { |
| kindValStr = "<unknown>"; |
| } |
| llvm::dbgs() << " " << kindValStr |
| << ": " << atomToDebugString(ref->target()) << "\n"; |
| } |
| atom = followOnNexts[atom]; |
| } while (atom != start); |
| llvm::report_fatal_error("Cycle detected"); |
| } |
| |
| /// Exit if there's a cycle in a followon chain reachable from the |
| /// given root atom. Uses the tortoise and hare algorithm to detect a |
| /// cycle. |
| static void checkNoCycleInFollowonChain(const Registry ®istry, |
| AtomToAtomT &followOnNexts, |
| const DefinedAtom *root) { |
| const DefinedAtom *tortoise = root; |
| const DefinedAtom *hare = followOnNexts[root]; |
| while (true) { |
| if (!tortoise || !hare) |
| return; |
| if (tortoise == hare) |
| showCycleDetectedError(registry, followOnNexts, tortoise); |
| tortoise = followOnNexts[tortoise]; |
| hare = followOnNexts[followOnNexts[hare]]; |
| } |
| } |
| |
| static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots, |
| const DefinedAtom *atom) { |
| if (!atom) return; |
| auto i = followOnRoots.find(atom); |
| if (i == followOnRoots.end()) { |
| llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) + |
| "> has no follow-on root!")) |
| .str() |
| .c_str()); |
| } |
| const DefinedAtom *ap = i->second; |
| while (true) { |
| const DefinedAtom *next = followOnRoots[ap]; |
| if (!next) { |
| llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) + |
| "> is not reachable from its root!")) |
| .str() |
| .c_str()); |
| } |
| if (next == ap) |
| return; |
| ap = next; |
| } |
| } |
| |
| static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) { |
| for (const DefinedAtom *atom : atomRange) { |
| llvm::dbgs() << " file=" << atom->file().path() |
| << ", name=" << atom->name() |
| << ", size=" << atom->size() |
| << ", type=" << atom->contentType() |
| << ", ordinal=" << atom->ordinal() |
| << "\n"; |
| } |
| } |
| |
| /// Verify that the followon chain is sane. Should not be called in |
| /// release binary. |
| void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain"); |
| |
| // Verify that there's no cycle in follow-on chain. |
| std::set<const DefinedAtom *> roots; |
| for (const auto &ai : _followOnRoots) |
| roots.insert(ai.second); |
| for (const DefinedAtom *root : roots) |
| checkNoCycleInFollowonChain(_registry, _followOnNexts, root); |
| |
| // Verify that all the atoms in followOnNexts have references to |
| // their roots. |
| for (const auto &ai : _followOnNexts) { |
| checkReachabilityFromRoot(_followOnRoots, ai.first); |
| checkReachabilityFromRoot(_followOnRoots, ai.second); |
| } |
| } |
| #endif // #ifndef NDEBUG |
| |
| /// The function compares atoms by sorting atoms in the following order |
| /// a) Sorts atoms by their ordinal overrides (layout-after/ingroup) |
| /// b) Sorts atoms by their permissions |
| /// c) Sorts atoms by their content |
| /// d) Sorts atoms by custom sorter |
| /// e) Sorts atoms on how they appear using File Ordinality |
| /// f) Sorts atoms on how they appear within the File |
| static bool compareAtomsSub(const LayoutPass::SortKey &lc, |
| const LayoutPass::SortKey &rc, |
| LayoutPass::SortOverride customSorter, |
| std::string &reason) { |
| const DefinedAtom *left = lc._atom.get(); |
| const DefinedAtom *right = rc._atom.get(); |
| if (left == right) { |
| reason = "same"; |
| return false; |
| } |
| |
| // Find the root of the chain if it is a part of a follow-on chain. |
| const DefinedAtom *leftRoot = lc._root; |
| const DefinedAtom *rightRoot = rc._root; |
| |
| // Sort atoms by their ordinal overrides only if they fall in the same |
| // chain. |
| if (leftRoot == rightRoot) { |
| DEBUG(reason = formatReason("override", lc._override, rc._override)); |
| return lc._override < rc._override; |
| } |
| |
| // Sort same permissions together. |
| DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions(); |
| DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions(); |
| |
| if (leftPerms != rightPerms) { |
| DEBUG(reason = |
| formatReason("contentPerms", (int)leftPerms, (int)rightPerms)); |
| return leftPerms < rightPerms; |
| } |
| |
| // Sort same content types together. |
| DefinedAtom::ContentType leftType = leftRoot->contentType(); |
| DefinedAtom::ContentType rightType = rightRoot->contentType(); |
| |
| if (leftType != rightType) { |
| DEBUG(reason = formatReason("contentType", (int)leftType, (int)rightType)); |
| return leftType < rightType; |
| } |
| |
| // Use custom sorter if supplied. |
| if (customSorter) { |
| bool leftBeforeRight; |
| if (customSorter(leftRoot, rightRoot, leftBeforeRight)) |
| return leftBeforeRight; |
| } |
| |
| // Sort by .o order. |
| const File *leftFile = &leftRoot->file(); |
| const File *rightFile = &rightRoot->file(); |
| |
| if (leftFile != rightFile) { |
| DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(), |
| (int)rightFile->ordinal())); |
| return leftFile->ordinal() < rightFile->ordinal(); |
| } |
| |
| // Sort by atom order with .o file. |
| uint64_t leftOrdinal = leftRoot->ordinal(); |
| uint64_t rightOrdinal = rightRoot->ordinal(); |
| |
| if (leftOrdinal != rightOrdinal) { |
| DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(), |
| (int)rightRoot->ordinal())); |
| return leftOrdinal < rightOrdinal; |
| } |
| |
| llvm::errs() << "Unordered: <" << left->name() << "> <" |
| << right->name() << ">\n"; |
| llvm_unreachable("Atoms with Same Ordinal!"); |
| } |
| |
| static bool compareAtoms(const LayoutPass::SortKey &lc, |
| const LayoutPass::SortKey &rc, |
| LayoutPass::SortOverride customSorter) { |
| std::string reason; |
| bool result = compareAtomsSub(lc, rc, customSorter, reason); |
| DEBUG({ |
| StringRef comp = result ? "<" : ">="; |
| llvm::dbgs() << "Layout: '" << lc._atom.get()->name() |
| << "' " << comp << " '" |
| << rc._atom.get()->name() << "' (" << reason << ")\n"; |
| }); |
| return result; |
| } |
| |
| LayoutPass::LayoutPass(const Registry ®istry, SortOverride sorter) |
| : _registry(registry), _customSorter(std::move(sorter)) {} |
| |
| // Returns the atom immediately followed by the given atom in the followon |
| // chain. |
| const DefinedAtom *LayoutPass::findAtomFollowedBy( |
| const DefinedAtom *targetAtom) { |
| // Start from the beginning of the chain and follow the chain until |
| // we find the targetChain. |
| const DefinedAtom *atom = _followOnRoots[targetAtom]; |
| while (true) { |
| const DefinedAtom *prevAtom = atom; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); |
| // The target atom must be in the chain of its root. |
| assert(targetFollowOnAtomsIter != _followOnNexts.end()); |
| atom = targetFollowOnAtomsIter->second; |
| if (atom == targetAtom) |
| return prevAtom; |
| } |
| } |
| |
| // Check if all the atoms followed by the given target atom are of size zero. |
| // When this method is called, an atom being added is not of size zero and |
| // will be added to the head of the followon chain. All the atoms between the |
| // atom and the targetAtom (specified by layout-after) need to be of size zero |
| // in this case. Otherwise the desired layout is impossible. |
| bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) { |
| const DefinedAtom *atom = _followOnRoots[targetAtom]; |
| while (true) { |
| if (atom == targetAtom) |
| return true; |
| if (atom->size() != 0) |
| // TODO: print warning that an impossible layout is being desired by the |
| // user. |
| return false; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); |
| // The target atom must be in the chain of its root. |
| assert(targetFollowOnAtomsIter != _followOnNexts.end()); |
| atom = targetFollowOnAtomsIter->second; |
| } |
| } |
| |
| // Set the root of all atoms in targetAtom's chain to the given root. |
| void LayoutPass::setChainRoot(const DefinedAtom *targetAtom, |
| const DefinedAtom *root) { |
| // Walk through the followon chain and override each node's root. |
| while (true) { |
| _followOnRoots[targetAtom] = root; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = |
| _followOnNexts.find(targetAtom); |
| if (targetFollowOnAtomsIter == _followOnNexts.end()) |
| return; |
| targetAtom = targetFollowOnAtomsIter->second; |
| } |
| } |
| |
| /// This pass builds the followon tables described by two DenseMaps |
| /// followOnRoots and followonNexts. |
| /// The followOnRoots map contains a mapping of a DefinedAtom to its root |
| /// The followOnNexts map contains a mapping of what DefinedAtom follows the |
| /// current Atom |
| /// The algorithm follows a very simple approach |
| /// a) If the atom is first seen, then make that as the root atom |
| /// b) The targetAtom which this Atom contains, has the root thats set to the |
| /// root of the current atom |
| /// c) If the targetAtom is part of a different tree and the root of the |
| /// targetAtom is itself, Chain all the atoms that are contained in the tree |
| /// to the current Tree |
| /// d) If the targetAtom is part of a different chain and the root of the |
| /// targetAtom until the targetAtom has all atoms of size 0, then chain the |
| /// targetAtoms and its tree to the current chain |
| void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable"); |
| // Set the initial size of the followon and the followonNext hash to the |
| // number of atoms that we have. |
| _followOnRoots.reserve(range.size()); |
| _followOnNexts.reserve(range.size()); |
| for (const DefinedAtom *ai : range) { |
| for (const Reference *r : *ai) { |
| if (r->kindNamespace() != lld::Reference::KindNamespace::all || |
| r->kindValue() != lld::Reference::kindLayoutAfter) |
| continue; |
| const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target()); |
| _followOnNexts[ai] = targetAtom; |
| |
| // If we find a followon for the first time, let's make that atom as the |
| // root atom. |
| if (_followOnRoots.count(ai) == 0) |
| _followOnRoots[ai] = ai; |
| |
| auto iter = _followOnRoots.find(targetAtom); |
| if (iter == _followOnRoots.end()) { |
| // If the targetAtom is not a root of any chain, let's make the root of |
| // the targetAtom to the root of the current chain. |
| |
| // The expression m[i] = m[j] where m is a DenseMap and i != j is not |
| // safe. m[j] returns a reference, which would be invalidated when a |
| // rehashing occurs. If rehashing occurs to make room for m[i], m[j] |
| // becomes invalid, and that invalid reference would be used as the RHS |
| // value of the expression. |
| // Copy the value to workaround. |
| const DefinedAtom *tmp = _followOnRoots[ai]; |
| _followOnRoots[targetAtom] = tmp; |
| continue; |
| } |
| if (iter->second == targetAtom) { |
| // If the targetAtom is the root of a chain, the chain becomes part of |
| // the current chain. Rewrite the subchain's root to the current |
| // chain's root. |
| setChainRoot(targetAtom, _followOnRoots[ai]); |
| continue; |
| } |
| // The targetAtom is already a part of a chain. If the current atom is |
| // of size zero, we can insert it in the middle of the chain just |
| // before the target atom, while not breaking other atom's followon |
| // relationships. If it's not, we can only insert the current atom at |
| // the beginning of the chain. All the atoms followed by the target |
| // atom must be of size zero in that case to satisfy the followon |
| // relationships. |
| size_t currentAtomSize = ai->size(); |
| if (currentAtomSize == 0) { |
| const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom); |
| _followOnNexts[targetPrevAtom] = ai; |
| const DefinedAtom *tmp = _followOnRoots[targetPrevAtom]; |
| _followOnRoots[ai] = tmp; |
| continue; |
| } |
| if (!checkAllPrevAtomsZeroSize(targetAtom)) |
| break; |
| _followOnNexts[ai] = _followOnRoots[targetAtom]; |
| setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); |
| } |
| } |
| } |
| |
| /// Build an ordinal override map by traversing the followon chain, and |
| /// assigning ordinals to each atom, if the atoms have their ordinals |
| /// already assigned skip the atom and move to the next. This is the |
| /// main map thats used to sort the atoms while comparing two atoms together |
| void |
| LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap"); |
| uint64_t index = 0; |
| for (const DefinedAtom *ai : range) { |
| const DefinedAtom *atom = ai; |
| if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end()) |
| continue; |
| AtomToAtomT::iterator start = _followOnRoots.find(atom); |
| if (start == _followOnRoots.end()) |
| continue; |
| for (const DefinedAtom *nextAtom = start->second; nextAtom; |
| nextAtom = _followOnNexts[nextAtom]) { |
| AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom); |
| if (pos == _ordinalOverrideMap.end()) |
| _ordinalOverrideMap[nextAtom] = index++; |
| } |
| } |
| } |
| |
| std::vector<LayoutPass::SortKey> |
| LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const { |
| std::vector<SortKey> ret; |
| for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) { |
| auto ri = _followOnRoots.find(atom.get()); |
| auto oi = _ordinalOverrideMap.find(atom.get()); |
| const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second; |
| uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second; |
| ret.push_back(SortKey(std::move(atom), root, override)); |
| } |
| return ret; |
| } |
| |
| void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange, |
| std::vector<SortKey> &keys) const { |
| size_t i = 0; |
| for (SortKey &k : keys) |
| atomRange[i++] = std::move(k._atom); |
| } |
| |
| /// Perform the actual pass |
| llvm::Error LayoutPass::perform(SimpleFile &mergedFile) { |
| DEBUG(llvm::dbgs() << "******** Laying out atoms:\n"); |
| // sort the atoms |
| ScopedTask task(getDefaultDomain(), "LayoutPass"); |
| File::AtomRange<DefinedAtom> atomRange = mergedFile.defined(); |
| |
| // Build follow on tables |
| buildFollowOnTable(atomRange); |
| |
| // Check the structure of followon graph if running in debug mode. |
| DEBUG(checkFollowonChain(atomRange)); |
| |
| // Build override maps |
| buildOrdinalOverrideMap(atomRange); |
| |
| DEBUG({ |
| llvm::dbgs() << "unsorted atoms:\n"; |
| printDefinedAtoms(atomRange); |
| }); |
| |
| std::vector<LayoutPass::SortKey> vec = decorate(atomRange); |
| sort(llvm::parallel::par, vec.begin(), vec.end(), |
| [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool { |
| return compareAtoms(l, r, _customSorter); |
| }); |
| DEBUG(checkTransitivity(vec, _customSorter)); |
| undecorate(atomRange, vec); |
| |
| DEBUG({ |
| llvm::dbgs() << "sorted atoms:\n"; |
| printDefinedAtoms(atomRange); |
| }); |
| |
| DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n"); |
| return llvm::Error::success(); |
| } |
| |
| void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) { |
| pm.add(llvm::make_unique<LayoutPass>( |
| ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right, |
| bool & leftBeforeRight) ->bool { |
| return ctx.customAtomOrderer(left, right, leftBeforeRight); |
| })); |
| } |
| |
| } // namespace mach_o |
| } // namespace lld |