| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "AArch64ErrataFix.h" |
| #include "ARMErrataFix.h" |
| #include "CallGraphSort.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "MapFile.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Filesystem.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "lld/Common/Threads.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/RandomNumberGenerator.h" |
| #include "llvm/Support/SHA1.h" |
| #include "llvm/Support/xxhash.h" |
| #include <climits> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| Writer() : buffer(errorHandler().outputBuffer) {} |
| using Elf_Shdr = typename ELFT::Shdr; |
| using Elf_Ehdr = typename ELFT::Ehdr; |
| using Elf_Phdr = typename ELFT::Phdr; |
| |
| void run(); |
| |
| private: |
| void copyLocalSymbols(); |
| void addSectionSymbols(); |
| void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); |
| void sortSections(); |
| void resolveShfLinkOrder(); |
| void finalizeAddressDependentContent(); |
| void sortInputSections(); |
| void finalizeSections(); |
| void checkExecuteOnly(); |
| void setReservedSymbolSections(); |
| |
| std::vector<PhdrEntry *> createPhdrs(Partition &part); |
| void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, |
| unsigned pFlags); |
| void assignFileOffsets(); |
| void assignFileOffsetsBinary(); |
| void setPhdrs(Partition &part); |
| void checkSections(); |
| void fixSectionAlignments(); |
| void openFile(); |
| void writeTrapInstr(); |
| void writeHeader(); |
| void writeSections(); |
| void writeSectionsBinary(); |
| void writeBuildId(); |
| |
| std::unique_ptr<FileOutputBuffer> &buffer; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSection *sec); |
| |
| uint64_t fileSize; |
| uint64_t sectionHeaderOff; |
| }; |
| } // anonymous namespace |
| |
| static bool isSectionPrefix(StringRef prefix, StringRef name) { |
| return name.startswith(prefix) || name == prefix.drop_back(); |
| } |
| |
| StringRef elf::getOutputSectionName(const InputSectionBase *s) { |
| if (config->relocatable) |
| return s->name; |
| |
| // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want |
| // to emit .rela.text.foo as .rela.text.bar for consistency (this is not |
| // technically required, but not doing it is odd). This code guarantees that. |
| if (auto *isec = dyn_cast<InputSection>(s)) { |
| if (InputSectionBase *rel = isec->getRelocatedSection()) { |
| OutputSection *out = rel->getOutputSection(); |
| if (s->type == SHT_RELA) |
| return saver.save(".rela" + out->name); |
| return saver.save(".rel" + out->name); |
| } |
| } |
| |
| // This check is for -z keep-text-section-prefix. This option separates text |
| // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or |
| // ".text.exit". |
| // When enabled, this allows identifying the hot code region (.text.hot) in |
| // the final binary which can be selectively mapped to huge pages or mlocked, |
| // for instance. |
| if (config->zKeepTextSectionPrefix) |
| for (StringRef v : |
| {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) |
| if (isSectionPrefix(v, s->name)) |
| return v.drop_back(); |
| |
| for (StringRef v : |
| {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", |
| ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", |
| ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) |
| if (isSectionPrefix(v, s->name)) |
| return v.drop_back(); |
| |
| // CommonSection is identified as "COMMON" in linker scripts. |
| // By default, it should go to .bss section. |
| if (s->name == "COMMON") |
| return ".bss"; |
| |
| return s->name; |
| } |
| |
| static bool needsInterpSection() { |
| return !sharedFiles.empty() && !config->dynamicLinker.empty() && |
| script->needsInterpSection(); |
| } |
| |
| template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } |
| |
| static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { |
| llvm::erase_if(phdrs, [&](const PhdrEntry *p) { |
| if (p->p_type != PT_LOAD) |
| return false; |
| if (!p->firstSec) |
| return true; |
| uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; |
| return size == 0; |
| }); |
| } |
| |
| void elf::copySectionsIntoPartitions() { |
| std::vector<InputSectionBase *> newSections; |
| for (unsigned part = 2; part != partitions.size() + 1; ++part) { |
| for (InputSectionBase *s : inputSections) { |
| if (!(s->flags & SHF_ALLOC) || !s->isLive()) |
| continue; |
| InputSectionBase *copy; |
| if (s->type == SHT_NOTE) |
| copy = make<InputSection>(cast<InputSection>(*s)); |
| else if (auto *es = dyn_cast<EhInputSection>(s)) |
| copy = make<EhInputSection>(*es); |
| else |
| continue; |
| copy->partition = part; |
| newSections.push_back(copy); |
| } |
| } |
| |
| inputSections.insert(inputSections.end(), newSections.begin(), |
| newSections.end()); |
| } |
| |
| void elf::combineEhSections() { |
| for (InputSectionBase *&s : inputSections) { |
| // Ignore dead sections and the partition end marker (.part.end), |
| // whose partition number is out of bounds. |
| if (!s->isLive() || s->partition == 255) |
| continue; |
| |
| Partition &part = s->getPartition(); |
| if (auto *es = dyn_cast<EhInputSection>(s)) { |
| part.ehFrame->addSection(es); |
| s = nullptr; |
| } else if (s->kind() == SectionBase::Regular && part.armExidx && |
| part.armExidx->addSection(cast<InputSection>(s))) { |
| s = nullptr; |
| } |
| } |
| |
| std::vector<InputSectionBase *> &v = inputSections; |
| v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); |
| } |
| |
| static Defined *addOptionalRegular(StringRef name, SectionBase *sec, |
| uint64_t val, uint8_t stOther = STV_HIDDEN, |
| uint8_t binding = STB_GLOBAL) { |
| Symbol *s = symtab->find(name); |
| if (!s || s->isDefined()) |
| return nullptr; |
| |
| s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, |
| /*size=*/0, sec}); |
| return cast<Defined>(s); |
| } |
| |
| static Defined *addAbsolute(StringRef name) { |
| Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, |
| STT_NOTYPE, 0, 0, nullptr}); |
| return cast<Defined>(sym); |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| void elf::addReservedSymbols() { |
| if (config->emachine == EM_MIPS) { |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which by default is relative |
| // to GOT. Default offset is 0x7ff0. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| ElfSym::mipsGp = addAbsolute("_gp"); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| if (symtab->find("_gp_disp")) |
| ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); |
| |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| if (symtab->find("__gnu_local_gp")) |
| ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); |
| } else if (config->emachine == EM_PPC) { |
| // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't |
| // support Small Data Area, define it arbitrarily as 0. |
| addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); |
| } |
| |
| // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which |
| // combines the typical ELF GOT with the small data sections. It commonly |
| // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both |
| // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to |
| // represent the TOC base which is offset by 0x8000 bytes from the start of |
| // the .got section. |
| // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the |
| // correctness of some relocations depends on its value. |
| StringRef gotSymName = |
| (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; |
| |
| if (Symbol *s = symtab->find(gotSymName)) { |
| if (s->isDefined()) { |
| error(toString(s->file) + " cannot redefine linker defined symbol '" + |
| gotSymName + "'"); |
| return; |
| } |
| |
| uint64_t gotOff = 0; |
| if (config->emachine == EM_PPC64) |
| gotOff = 0x8000; |
| |
| s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, |
| STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); |
| ElfSym::globalOffsetTable = cast<Defined>(s); |
| } |
| |
| // __ehdr_start is the location of ELF file headers. Note that we define |
| // this symbol unconditionally even when using a linker script, which |
| // differs from the behavior implemented by GNU linker which only define |
| // this symbol if ELF headers are in the memory mapped segment. |
| addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // __executable_start is not documented, but the expectation of at |
| // least the Android libc is that it points to the ELF header. |
| addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // __dso_handle symbol is passed to cxa_finalize as a marker to identify |
| // each DSO. The address of the symbol doesn't matter as long as they are |
| // different in different DSOs, so we chose the start address of the DSO. |
| addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // If linker script do layout we do not need to create any standart symbols. |
| if (script->hasSectionsCommand) |
| return; |
| |
| auto add = [](StringRef s, int64_t pos) { |
| return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); |
| }; |
| |
| ElfSym::bss = add("__bss_start", 0); |
| ElfSym::end1 = add("end", -1); |
| ElfSym::end2 = add("_end", -1); |
| ElfSym::etext1 = add("etext", -1); |
| ElfSym::etext2 = add("_etext", -1); |
| ElfSym::edata1 = add("edata", -1); |
| ElfSym::edata2 = add("_edata", -1); |
| } |
| |
| static OutputSection *findSection(StringRef name, unsigned partition = 1) { |
| for (BaseCommand *base : script->sectionCommands) |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| if (sec->name == name && sec->partition == partition) |
| return sec; |
| return nullptr; |
| } |
| |
| template <class ELFT> void elf::createSyntheticSections() { |
| // Initialize all pointers with NULL. This is needed because |
| // you can call lld::elf::main more than once as a library. |
| memset(&Out::first, 0, sizeof(Out)); |
| |
| auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); }; |
| |
| in.shStrTab = make<StringTableSection>(".shstrtab", false); |
| |
| Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); |
| Out::programHeaders->alignment = config->wordsize; |
| |
| if (config->strip != StripPolicy::All) { |
| in.strTab = make<StringTableSection>(".strtab", false); |
| in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); |
| in.symTabShndx = make<SymtabShndxSection>(); |
| } |
| |
| in.bss = make<BssSection>(".bss", 0, 1); |
| add(in.bss); |
| |
| // If there is a SECTIONS command and a .data.rel.ro section name use name |
| // .data.rel.ro.bss so that we match in the .data.rel.ro output section. |
| // This makes sure our relro is contiguous. |
| bool hasDataRelRo = |
| script->hasSectionsCommand && findSection(".data.rel.ro", 0); |
| in.bssRelRo = |
| make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); |
| add(in.bssRelRo); |
| |
| // Add MIPS-specific sections. |
| if (config->emachine == EM_MIPS) { |
| if (!config->shared && config->hasDynSymTab) { |
| in.mipsRldMap = make<MipsRldMapSection>(); |
| add(in.mipsRldMap); |
| } |
| if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) |
| add(sec); |
| if (auto *sec = MipsOptionsSection<ELFT>::create()) |
| add(sec); |
| if (auto *sec = MipsReginfoSection<ELFT>::create()) |
| add(sec); |
| } |
| |
| StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; |
| |
| for (Partition &part : partitions) { |
| auto add = [&](InputSectionBase *sec) { |
| sec->partition = part.getNumber(); |
| inputSections.push_back(sec); |
| }; |
| |
| if (!part.name.empty()) { |
| part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); |
| part.elfHeader->name = part.name; |
| add(part.elfHeader); |
| |
| part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); |
| add(part.programHeaders); |
| } |
| |
| if (config->buildId != BuildIdKind::None) { |
| part.buildId = make<BuildIdSection>(); |
| add(part.buildId); |
| } |
| |
| part.dynStrTab = make<StringTableSection>(".dynstr", true); |
| part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); |
| part.dynamic = make<DynamicSection<ELFT>>(); |
| if (config->androidPackDynRelocs) |
| part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); |
| else |
| part.relaDyn = |
| make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); |
| |
| if (needsInterpSection()) |
| add(createInterpSection()); |
| |
| if (config->hasDynSymTab) { |
| part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); |
| add(part.dynSymTab); |
| |
| part.verSym = make<VersionTableSection>(); |
| add(part.verSym); |
| |
| if (!namedVersionDefs().empty()) { |
| part.verDef = make<VersionDefinitionSection>(); |
| add(part.verDef); |
| } |
| |
| part.verNeed = make<VersionNeedSection<ELFT>>(); |
| add(part.verNeed); |
| |
| if (config->gnuHash) { |
| part.gnuHashTab = make<GnuHashTableSection>(); |
| add(part.gnuHashTab); |
| } |
| |
| if (config->sysvHash) { |
| part.hashTab = make<HashTableSection>(); |
| add(part.hashTab); |
| } |
| |
| add(part.dynamic); |
| add(part.dynStrTab); |
| add(part.relaDyn); |
| } |
| |
| if (config->relrPackDynRelocs) { |
| part.relrDyn = make<RelrSection<ELFT>>(); |
| add(part.relrDyn); |
| } |
| |
| if (!config->relocatable) { |
| if (config->ehFrameHdr) { |
| part.ehFrameHdr = make<EhFrameHeader>(); |
| add(part.ehFrameHdr); |
| } |
| part.ehFrame = make<EhFrameSection>(); |
| add(part.ehFrame); |
| } |
| |
| if (config->emachine == EM_ARM && !config->relocatable) { |
| // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx |
| // InputSections. |
| part.armExidx = make<ARMExidxSyntheticSection>(); |
| add(part.armExidx); |
| } |
| } |
| |
| if (partitions.size() != 1) { |
| // Create the partition end marker. This needs to be in partition number 255 |
| // so that it is sorted after all other partitions. It also has other |
| // special handling (see createPhdrs() and combineEhSections()). |
| in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); |
| in.partEnd->partition = 255; |
| add(in.partEnd); |
| |
| in.partIndex = make<PartitionIndexSection>(); |
| addOptionalRegular("__part_index_begin", in.partIndex, 0); |
| addOptionalRegular("__part_index_end", in.partIndex, |
| in.partIndex->getSize()); |
| add(in.partIndex); |
| } |
| |
| // Add .got. MIPS' .got is so different from the other archs, |
| // it has its own class. |
| if (config->emachine == EM_MIPS) { |
| in.mipsGot = make<MipsGotSection>(); |
| add(in.mipsGot); |
| } else { |
| in.got = make<GotSection>(); |
| add(in.got); |
| } |
| |
| if (config->emachine == EM_PPC) { |
| in.ppc32Got2 = make<PPC32Got2Section>(); |
| add(in.ppc32Got2); |
| } |
| |
| if (config->emachine == EM_PPC64) { |
| in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); |
| add(in.ppc64LongBranchTarget); |
| } |
| |
| in.gotPlt = make<GotPltSection>(); |
| add(in.gotPlt); |
| in.igotPlt = make<IgotPltSection>(); |
| add(in.igotPlt); |
| |
| // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat |
| // it as a relocation and ensure the referenced section is created. |
| if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { |
| if (target->gotBaseSymInGotPlt) |
| in.gotPlt->hasGotPltOffRel = true; |
| else |
| in.got->hasGotOffRel = true; |
| } |
| |
| if (config->gdbIndex) |
| add(GdbIndexSection::create<ELFT>()); |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| in.relaPlt = make<RelocationSection<ELFT>>( |
| config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); |
| add(in.relaPlt); |
| |
| // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative |
| // relocations are processed last by the dynamic loader. We cannot place the |
| // iplt section in .rel.dyn when Android relocation packing is enabled because |
| // that would cause a section type mismatch. However, because the Android |
| // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired |
| // behaviour by placing the iplt section in .rel.plt. |
| in.relaIplt = make<RelocationSection<ELFT>>( |
| config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, |
| /*sort=*/false); |
| add(in.relaIplt); |
| |
| in.plt = make<PltSection>(false); |
| add(in.plt); |
| in.iplt = make<PltSection>(true); |
| add(in.iplt); |
| |
| if (config->andFeatures) |
| add(make<GnuPropertySection>()); |
| |
| // .note.GNU-stack is always added when we are creating a re-linkable |
| // object file. Other linkers are using the presence of this marker |
| // section to control the executable-ness of the stack area, but that |
| // is irrelevant these days. Stack area should always be non-executable |
| // by default. So we emit this section unconditionally. |
| if (config->relocatable) |
| add(make<GnuStackSection>()); |
| |
| if (in.symTab) |
| add(in.symTab); |
| if (in.symTabShndx) |
| add(in.symTabShndx); |
| add(in.shStrTab); |
| if (in.strTab) |
| add(in.strTab); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| if (config->discard != DiscardPolicy::All) |
| copyLocalSymbols(); |
| |
| if (config->copyRelocs) |
| addSectionSymbols(); |
| |
| // Now that we have a complete set of output sections. This function |
| // completes section contents. For example, we need to add strings |
| // to the string table, and add entries to .got and .plt. |
| // finalizeSections does that. |
| finalizeSections(); |
| checkExecuteOnly(); |
| if (errorCount()) |
| return; |
| |
| // If -compressed-debug-sections is specified, we need to compress |
| // .debug_* sections. Do it right now because it changes the size of |
| // output sections. |
| for (OutputSection *sec : outputSections) |
| sec->maybeCompress<ELFT>(); |
| |
| if (script->hasSectionsCommand) |
| script->allocateHeaders(mainPart->phdrs); |
| |
| // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a |
| // 0 sized region. This has to be done late since only after assignAddresses |
| // we know the size of the sections. |
| for (Partition &part : partitions) |
| removeEmptyPTLoad(part.phdrs); |
| |
| if (!config->oFormatBinary) |
| assignFileOffsets(); |
| else |
| assignFileOffsetsBinary(); |
| |
| for (Partition &part : partitions) |
| setPhdrs(part); |
| |
| if (config->relocatable) |
| for (OutputSection *sec : outputSections) |
| sec->addr = 0; |
| |
| if (config->checkSections) |
| checkSections(); |
| |
| // It does not make sense try to open the file if we have error already. |
| if (errorCount()) |
| return; |
| // Write the result down to a file. |
| openFile(); |
| if (errorCount()) |
| return; |
| |
| if (!config->oFormatBinary) { |
| writeTrapInstr(); |
| writeHeader(); |
| writeSections(); |
| } else { |
| writeSectionsBinary(); |
| } |
| |
| // Backfill .note.gnu.build-id section content. This is done at last |
| // because the content is usually a hash value of the entire output file. |
| writeBuildId(); |
| if (errorCount()) |
| return; |
| |
| // Handle -Map and -cref options. |
| writeMapFile(); |
| writeCrossReferenceTable(); |
| if (errorCount()) |
| return; |
| |
| if (auto e = buffer->commit()) |
| error("failed to write to the output file: " + toString(std::move(e))); |
| } |
| |
| static bool shouldKeepInSymtab(const Defined &sym) { |
| if (sym.isSection()) |
| return false; |
| |
| if (config->discard == DiscardPolicy::None) |
| return true; |
| |
| // If -emit-reloc is given, all symbols including local ones need to be |
| // copied because they may be referenced by relocations. |
| if (config->emitRelocs) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| StringRef name = sym.getName(); |
| bool isLocal = name.startswith(".L") || name.empty(); |
| if (!isLocal) |
| return true; |
| |
| if (config->discard == DiscardPolicy::Locals) |
| return false; |
| |
| SectionBase *sec = sym.section; |
| return !sec || !(sec->flags & SHF_MERGE); |
| } |
| |
| static bool includeInSymtab(const Symbol &b) { |
| if (!b.isLocal() && !b.isUsedInRegularObj) |
| return false; |
| |
| if (auto *d = dyn_cast<Defined>(&b)) { |
| // Always include absolute symbols. |
| SectionBase *sec = d->section; |
| if (!sec) |
| return true; |
| sec = sec->repl; |
| |
| // Exclude symbols pointing to garbage-collected sections. |
| if (isa<InputSectionBase>(sec) && !sec->isLive()) |
| return false; |
| |
| if (auto *s = dyn_cast<MergeInputSection>(sec)) |
| if (!s->getSectionPiece(d->value)->live) |
| return false; |
| return true; |
| } |
| return b.used; |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| if (!in.symTab) |
| return; |
| for (InputFile *file : objectFiles) { |
| ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); |
| for (Symbol *b : f->getLocalSymbols()) { |
| if (!b->isLocal()) |
| fatal(toString(f) + |
| ": broken object: getLocalSymbols returns a non-local symbol"); |
| auto *dr = dyn_cast<Defined>(b); |
| |
| // No reason to keep local undefined symbol in symtab. |
| if (!dr) |
| continue; |
| if (!includeInSymtab(*b)) |
| continue; |
| if (!shouldKeepInSymtab(*dr)) |
| continue; |
| in.symTab->addSymbol(b); |
| } |
| } |
| } |
| |
| // Create a section symbol for each output section so that we can represent |
| // relocations that point to the section. If we know that no relocation is |
| // referring to a section (that happens if the section is a synthetic one), we |
| // don't create a section symbol for that section. |
| template <class ELFT> void Writer<ELFT>::addSectionSymbols() { |
| for (BaseCommand *base : script->sectionCommands) { |
| auto *sec = dyn_cast<OutputSection>(base); |
| if (!sec) |
| continue; |
| auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { |
| if (auto *isd = dyn_cast<InputSectionDescription>(base)) |
| return !isd->sections.empty(); |
| return false; |
| }); |
| if (i == sec->sectionCommands.end()) |
| continue; |
| InputSection *isec = cast<InputSectionDescription>(*i)->sections[0]; |
| |
| // Relocations are not using REL[A] section symbols. |
| if (isec->type == SHT_REL || isec->type == SHT_RELA) |
| continue; |
| |
| // Unlike other synthetic sections, mergeable output sections contain data |
| // copied from input sections, and there may be a relocation pointing to its |
| // contents if -r or -emit-reloc are given. |
| if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) |
| continue; |
| |
| auto *sym = |
| make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, |
| /*value=*/0, /*size=*/0, isec); |
| in.symTab->addSymbol(sym); |
| } |
| } |
| |
| // Today's loaders have a feature to make segments read-only after |
| // processing dynamic relocations to enhance security. PT_GNU_RELRO |
| // is defined for that. |
| // |
| // This function returns true if a section needs to be put into a |
| // PT_GNU_RELRO segment. |
| static bool isRelroSection(const OutputSection *sec) { |
| if (!config->zRelro) |
| return false; |
| |
| uint64_t flags = sec->flags; |
| |
| // Non-allocatable or non-writable sections don't need RELRO because |
| // they are not writable or not even mapped to memory in the first place. |
| // RELRO is for sections that are essentially read-only but need to |
| // be writable only at process startup to allow dynamic linker to |
| // apply relocations. |
| if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) |
| return false; |
| |
| // Once initialized, TLS data segments are used as data templates |
| // for a thread-local storage. For each new thread, runtime |
| // allocates memory for a TLS and copy templates there. No thread |
| // are supposed to use templates directly. Thus, it can be in RELRO. |
| if (flags & SHF_TLS) |
| return true; |
| |
| // .init_array, .preinit_array and .fini_array contain pointers to |
| // functions that are executed on process startup or exit. These |
| // pointers are set by the static linker, and they are not expected |
| // to change at runtime. But if you are an attacker, you could do |
| // interesting things by manipulating pointers in .fini_array, for |
| // example. So they are put into RELRO. |
| uint32_t type = sec->type; |
| if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || |
| type == SHT_PREINIT_ARRAY) |
| return true; |
| |
| // .got contains pointers to external symbols. They are resolved by |
| // the dynamic linker when a module is loaded into memory, and after |
| // that they are not expected to change. So, it can be in RELRO. |
| if (in.got && sec == in.got->getParent()) |
| return true; |
| |
| // .toc is a GOT-ish section for PowerPC64. Their contents are accessed |
| // through r2 register, which is reserved for that purpose. Since r2 is used |
| // for accessing .got as well, .got and .toc need to be close enough in the |
| // virtual address space. Usually, .toc comes just after .got. Since we place |
| // .got into RELRO, .toc needs to be placed into RELRO too. |
| if (sec->name.equals(".toc")) |
| return true; |
| |
| // .got.plt contains pointers to external function symbols. They are |
| // by default resolved lazily, so we usually cannot put it into RELRO. |
| // However, if "-z now" is given, the lazy symbol resolution is |
| // disabled, which enables us to put it into RELRO. |
| if (sec == in.gotPlt->getParent()) |
| return config->zNow; |
| |
| // .dynamic section contains data for the dynamic linker, and |
| // there's no need to write to it at runtime, so it's better to put |
| // it into RELRO. |
| if (sec->name == ".dynamic") |
| return true; |
| |
| // Sections with some special names are put into RELRO. This is a |
| // bit unfortunate because section names shouldn't be significant in |
| // ELF in spirit. But in reality many linker features depend on |
| // magic section names. |
| StringRef s = sec->name; |
| return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || |
| s == ".dtors" || s == ".jcr" || s == ".eh_frame" || |
| s == ".openbsd.randomdata"; |
| } |
| |
| // We compute a rank for each section. The rank indicates where the |
| // section should be placed in the file. Instead of using simple |
| // numbers (0,1,2...), we use a series of flags. One for each decision |
| // point when placing the section. |
| // Using flags has two key properties: |
| // * It is easy to check if a give branch was taken. |
| // * It is easy two see how similar two ranks are (see getRankProximity). |
| enum RankFlags { |
| RF_NOT_ADDR_SET = 1 << 27, |
| RF_NOT_ALLOC = 1 << 26, |
| RF_PARTITION = 1 << 18, // Partition number (8 bits) |
| RF_NOT_PART_EHDR = 1 << 17, |
| RF_NOT_PART_PHDR = 1 << 16, |
| RF_NOT_INTERP = 1 << 15, |
| RF_NOT_NOTE = 1 << 14, |
| RF_WRITE = 1 << 13, |
| RF_EXEC_WRITE = 1 << 12, |
| RF_EXEC = 1 << 11, |
| RF_RODATA = 1 << 10, |
| RF_NOT_RELRO = 1 << 9, |
| RF_NOT_TLS = 1 << 8, |
| RF_BSS = 1 << 7, |
| RF_PPC_NOT_TOCBSS = 1 << 6, |
| RF_PPC_TOCL = 1 << 5, |
| RF_PPC_TOC = 1 << 4, |
| RF_PPC_GOT = 1 << 3, |
| RF_PPC_BRANCH_LT = 1 << 2, |
| RF_MIPS_GPREL = 1 << 1, |
| RF_MIPS_NOT_GOT = 1 << 0 |
| }; |
| |
| static unsigned getSectionRank(const OutputSection *sec) { |
| unsigned rank = sec->partition * RF_PARTITION; |
| |
| // We want to put section specified by -T option first, so we |
| // can start assigning VA starting from them later. |
| if (config->sectionStartMap.count(sec->name)) |
| return rank; |
| rank |= RF_NOT_ADDR_SET; |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| if (!(sec->flags & SHF_ALLOC)) |
| return rank | RF_NOT_ALLOC; |
| |
| if (sec->type == SHT_LLVM_PART_EHDR) |
| return rank; |
| rank |= RF_NOT_PART_EHDR; |
| |
| if (sec->type == SHT_LLVM_PART_PHDR) |
| return rank; |
| rank |= RF_NOT_PART_PHDR; |
| |
| // Put .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| if (sec->name == ".interp") |
| return rank; |
| rank |= RF_NOT_INTERP; |
| |
| // Put .note sections (which make up one PT_NOTE) at the beginning so that |
| // they are likely to be included in a core file even if core file size is |
| // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be |
| // included in a core to match core files with executables. |
| if (sec->type == SHT_NOTE) |
| return rank; |
| rank |= RF_NOT_NOTE; |
| |
| // Sort sections based on their access permission in the following |
| // order: R, RX, RWX, RW. This order is based on the following |
| // considerations: |
| // * Read-only sections come first such that they go in the |
| // PT_LOAD covering the program headers at the start of the file. |
| // * Read-only, executable sections come next. |
| // * Writable, executable sections follow such that .plt on |
| // architectures where it needs to be writable will be placed |
| // between .text and .data. |
| // * Writable sections come last, such that .bss lands at the very |
| // end of the last PT_LOAD. |
| bool isExec = sec->flags & SHF_EXECINSTR; |
| bool isWrite = sec->flags & SHF_WRITE; |
| |
| if (isExec) { |
| if (isWrite) |
| rank |= RF_EXEC_WRITE; |
| else |
| rank |= RF_EXEC; |
| } else if (isWrite) { |
| rank |= RF_WRITE; |
| } else if (sec->type == SHT_PROGBITS) { |
| // Make non-executable and non-writable PROGBITS sections (e.g .rodata |
| // .eh_frame) closer to .text. They likely contain PC or GOT relative |
| // relocations and there could be relocation overflow if other huge sections |
| // (.dynstr .dynsym) were placed in between. |
| rank |= RF_RODATA; |
| } |
| |
| // Place RelRo sections first. After considering SHT_NOBITS below, the |
| // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), |
| // where | marks where page alignment happens. An alternative ordering is |
| // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may |
| // waste more bytes due to 2 alignment places. |
| if (!isRelroSection(sec)) |
| rank |= RF_NOT_RELRO; |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before the other RelRo R/W |
| // sections. Since p_filesz can be less than p_memsz, place NOBITS sections |
| // after PROGBITS. |
| if (!(sec->flags & SHF_TLS)) |
| rank |= RF_NOT_TLS; |
| |
| // Within TLS sections, or within other RelRo sections, or within non-RelRo |
| // sections, place non-NOBITS sections first. |
| if (sec->type == SHT_NOBITS) |
| rank |= RF_BSS; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (config->emachine == EM_PPC64) { |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections |
| // that we would like to make sure appear is a specific order to maximize |
| // their coverage by a single signed 16-bit offset from the TOC base |
| // pointer. Conversely, the special .tocbss section should be first among |
| // all SHT_NOBITS sections. This will put it next to the loaded special |
| // PPC64 sections (and, thus, within reach of the TOC base pointer). |
| StringRef name = sec->name; |
| if (name != ".tocbss") |
| rank |= RF_PPC_NOT_TOCBSS; |
| |
| if (name == ".toc1") |
| rank |= RF_PPC_TOCL; |
| |
| if (name == ".toc") |
| rank |= RF_PPC_TOC; |
| |
| if (name == ".got") |
| rank |= RF_PPC_GOT; |
| |
| if (name == ".branch_lt") |
| rank |= RF_PPC_BRANCH_LT; |
| } |
| |
| if (config->emachine == EM_MIPS) { |
| // All sections with SHF_MIPS_GPREL flag should be grouped together |
| // because data in these sections is addressable with a gp relative address. |
| if (sec->flags & SHF_MIPS_GPREL) |
| rank |= RF_MIPS_GPREL; |
| |
| if (sec->name != ".got") |
| rank |= RF_MIPS_NOT_GOT; |
| } |
| |
| return rank; |
| } |
| |
| static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { |
| const OutputSection *a = cast<OutputSection>(aCmd); |
| const OutputSection *b = cast<OutputSection>(bCmd); |
| |
| if (a->sortRank != b->sortRank) |
| return a->sortRank < b->sortRank; |
| |
| if (!(a->sortRank & RF_NOT_ADDR_SET)) |
| return config->sectionStartMap.lookup(a->name) < |
| config->sectionStartMap.lookup(b->name); |
| return false; |
| } |
| |
| void PhdrEntry::add(OutputSection *sec) { |
| lastSec = sec; |
| if (!firstSec) |
| firstSec = sec; |
| p_align = std::max(p_align, sec->alignment); |
| if (p_type == PT_LOAD) |
| sec->ptLoad = this; |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (config->relocatable || needsInterpSection()) |
| return; |
| |
| // By default, __rela_iplt_{start,end} belong to a dummy section 0 |
| // because .rela.plt might be empty and thus removed from output. |
| // We'll override Out::elfHeader with In.relaIplt later when we are |
| // sure that .rela.plt exists in output. |
| ElfSym::relaIpltStart = addOptionalRegular( |
| config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", |
| Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); |
| |
| ElfSym::relaIpltEnd = addOptionalRegular( |
| config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", |
| Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::forEachRelSec( |
| llvm::function_ref<void(InputSectionBase &)> fn) { |
| // Scan all relocations. Each relocation goes through a series |
| // of tests to determine if it needs special treatment, such as |
| // creating GOT, PLT, copy relocations, etc. |
| // Note that relocations for non-alloc sections are directly |
| // processed by InputSection::relocateNonAlloc. |
| for (InputSectionBase *isec : inputSections) |
| if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) |
| fn(*isec); |
| for (Partition &part : partitions) { |
| for (EhInputSection *es : part.ehFrame->sections) |
| fn(*es); |
| if (part.armExidx && part.armExidx->isLive()) |
| for (InputSection *ex : part.armExidx->exidxSections) |
| fn(*ex); |
| } |
| } |
| |
| // This function generates assignments for predefined symbols (e.g. _end or |
| // _etext) and inserts them into the commands sequence to be processed at the |
| // appropriate time. This ensures that the value is going to be correct by the |
| // time any references to these symbols are processed and is equivalent to |
| // defining these symbols explicitly in the linker script. |
| template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { |
| if (ElfSym::globalOffsetTable) { |
| // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually |
| // to the start of the .got or .got.plt section. |
| InputSection *gotSection = in.gotPlt; |
| if (!target->gotBaseSymInGotPlt) |
| gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) |
| : cast<InputSection>(in.got); |
| ElfSym::globalOffsetTable->section = gotSection; |
| } |
| |
| // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. |
| if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { |
| ElfSym::relaIpltStart->section = in.relaIplt; |
| ElfSym::relaIpltEnd->section = in.relaIplt; |
| ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); |
| } |
| |
| PhdrEntry *last = nullptr; |
| PhdrEntry *lastRO = nullptr; |
| |
| for (Partition &part : partitions) { |
| for (PhdrEntry *p : part.phdrs) { |
| if (p->p_type != PT_LOAD) |
| continue; |
| last = p; |
| if (!(p->p_flags & PF_W)) |
| lastRO = p; |
| } |
| } |
| |
| if (lastRO) { |
| // _etext is the first location after the last read-only loadable segment. |
| if (ElfSym::etext1) |
| ElfSym::etext1->section = lastRO->lastSec; |
| if (ElfSym::etext2) |
| ElfSym::etext2->section = lastRO->lastSec; |
| } |
| |
| if (last) { |
| // _edata points to the end of the last mapped initialized section. |
| OutputSection *edata = nullptr; |
| for (OutputSection *os : outputSections) { |
| if (os->type != SHT_NOBITS) |
| edata = os; |
| if (os == last->lastSec) |
| break; |
| } |
| |
| if (ElfSym::edata1) |
| ElfSym::edata1->section = edata; |
| if (ElfSym::edata2) |
| ElfSym::edata2->section = edata; |
| |
| // _end is the first location after the uninitialized data region. |
| if (ElfSym::end1) |
| ElfSym::end1->section = last->lastSec; |
| if (ElfSym::end2) |
| ElfSym::end2->section = last->lastSec; |
| } |
| |
| if (ElfSym::bss) |
| ElfSym::bss->section = findSection(".bss"); |
| |
| // Setup MIPS _gp_disp/__gnu_local_gp symbols which should |
| // be equal to the _gp symbol's value. |
| if (ElfSym::mipsGp) { |
| // Find GP-relative section with the lowest address |
| // and use this address to calculate default _gp value. |
| for (OutputSection *os : outputSections) { |
| if (os->flags & SHF_MIPS_GPREL) { |
| ElfSym::mipsGp->section = os; |
| ElfSym::mipsGp->value = 0x7ff0; |
| break; |
| } |
| } |
| } |
| } |
| |
| // We want to find how similar two ranks are. |
| // The more branches in getSectionRank that match, the more similar they are. |
| // Since each branch corresponds to a bit flag, we can just use |
| // countLeadingZeros. |
| static int getRankProximityAux(OutputSection *a, OutputSection *b) { |
| return countLeadingZeros(a->sortRank ^ b->sortRank); |
| } |
| |
| static int getRankProximity(OutputSection *a, BaseCommand *b) { |
| auto *sec = dyn_cast<OutputSection>(b); |
| return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; |
| } |
| |
| // When placing orphan sections, we want to place them after symbol assignments |
| // so that an orphan after |
| // begin_foo = .; |
| // foo : { *(foo) } |
| // end_foo = .; |
| // doesn't break the intended meaning of the begin/end symbols. |
| // We don't want to go over sections since findOrphanPos is the |
| // one in charge of deciding the order of the sections. |
| // We don't want to go over changes to '.', since doing so in |
| // rx_sec : { *(rx_sec) } |
| // . = ALIGN(0x1000); |
| // /* The RW PT_LOAD starts here*/ |
| // rw_sec : { *(rw_sec) } |
| // would mean that the RW PT_LOAD would become unaligned. |
| static bool shouldSkip(BaseCommand *cmd) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) |
| return assign->name != "."; |
| return false; |
| } |
| |
| // We want to place orphan sections so that they share as much |
| // characteristics with their neighbors as possible. For example, if |
| // both are rw, or both are tls. |
| static std::vector<BaseCommand *>::iterator |
| findOrphanPos(std::vector<BaseCommand *>::iterator b, |
| std::vector<BaseCommand *>::iterator e) { |
| OutputSection *sec = cast<OutputSection>(*e); |
| |
| // Find the first element that has as close a rank as possible. |
| auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { |
| return getRankProximity(sec, a) < getRankProximity(sec, b); |
| }); |
| if (i == e) |
| return e; |
| |
| // Consider all existing sections with the same proximity. |
| int proximity = getRankProximity(sec, *i); |
| for (; i != e; ++i) { |
| auto *curSec = dyn_cast<OutputSection>(*i); |
| if (!curSec || !curSec->hasInputSections) |
| continue; |
| if (getRankProximity(sec, curSec) != proximity || |
| sec->sortRank < curSec->sortRank) |
| break; |
| } |
| |
| auto isOutputSecWithInputSections = [](BaseCommand *cmd) { |
| auto *os = dyn_cast<OutputSection>(cmd); |
| return os && os->hasInputSections; |
| }; |
| auto j = std::find_if(llvm::make_reverse_iterator(i), |
| llvm::make_reverse_iterator(b), |
| isOutputSecWithInputSections); |
| i = j.base(); |
| |
| // As a special case, if the orphan section is the last section, put |
| // it at the very end, past any other commands. |
| // This matches bfd's behavior and is convenient when the linker script fully |
| // specifies the start of the file, but doesn't care about the end (the non |
| // alloc sections for example). |
| auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); |
| if (nextSec == e) |
| return e; |
| |
| while (i != e && shouldSkip(*i)) |
| ++i; |
| return i; |
| } |
| |
| // Builds section order for handling --symbol-ordering-file. |
| static DenseMap<const InputSectionBase *, int> buildSectionOrder() { |
| DenseMap<const InputSectionBase *, int> sectionOrder; |
| // Use the rarely used option -call-graph-ordering-file to sort sections. |
| if (!config->callGraphProfile.empty()) |
| return computeCallGraphProfileOrder(); |
| |
| if (config->symbolOrderingFile.empty()) |
| return sectionOrder; |
| |
| struct SymbolOrderEntry { |
| int priority; |
| bool present; |
| }; |
| |
| // Build a map from symbols to their priorities. Symbols that didn't |
| // appear in the symbol ordering file have the lowest priority 0. |
| // All explicitly mentioned symbols have negative (higher) priorities. |
| DenseMap<StringRef, SymbolOrderEntry> symbolOrder; |
| int priority = -config->symbolOrderingFile.size(); |
| for (StringRef s : config->symbolOrderingFile) |
| symbolOrder.insert({s, {priority++, false}}); |
| |
| // Build a map from sections to their priorities. |
| auto addSym = [&](Symbol &sym) { |
| auto it = symbolOrder.find(sym.getName()); |
| if (it == symbolOrder.end()) |
| return; |
| SymbolOrderEntry &ent = it->second; |
| ent.present = true; |
| |
| maybeWarnUnorderableSymbol(&sym); |
| |
| if (auto *d = dyn_cast<Defined>(&sym)) { |
| if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { |
| int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; |
| priority = std::min(priority, ent.priority); |
| } |
| } |
| }; |
| |
| // We want both global and local symbols. We get the global ones from the |
| // symbol table and iterate the object files for the local ones. |
| symtab->forEachSymbol([&](Symbol *sym) { |
| if (!sym->isLazy()) |
| addSym(*sym); |
| }); |
| |
| for (InputFile *file : objectFiles) |
| for (Symbol *sym : file->getSymbols()) |
| if (sym->isLocal()) |
| addSym(*sym); |
| |
| if (config->warnSymbolOrdering) |
| for (auto orderEntry : symbolOrder) |
| if (!orderEntry.second.present) |
| warn("symbol ordering file: no such symbol: " + orderEntry.first); |
| |
| return sectionOrder; |
| } |
| |
| // Sorts the sections in ISD according to the provided section order. |
| static void |
| sortISDBySectionOrder(InputSectionDescription *isd, |
| const DenseMap<const InputSectionBase *, int> &order) { |
| std::vector<InputSection *> unorderedSections; |
| std::vector<std::pair<InputSection *, int>> orderedSections; |
| uint64_t unorderedSize = 0; |
| |
| for (InputSection *isec : isd->sections) { |
| auto i = order.find(isec); |
| if (i == order.end()) { |
| unorderedSections.push_back(isec); |
| unorderedSize += isec->getSize(); |
| continue; |
| } |
| orderedSections.push_back({isec, i->second}); |
| } |
| llvm::sort(orderedSections, llvm::less_second()); |
| |
| // Find an insertion point for the ordered section list in the unordered |
| // section list. On targets with limited-range branches, this is the mid-point |
| // of the unordered section list. This decreases the likelihood that a range |
| // extension thunk will be needed to enter or exit the ordered region. If the |
| // ordered section list is a list of hot functions, we can generally expect |
| // the ordered functions to be called more often than the unordered functions, |
| // making it more likely that any particular call will be within range, and |
| // therefore reducing the number of thunks required. |
| // |
| // For example, imagine that you have 8MB of hot code and 32MB of cold code. |
| // If the layout is: |
| // |
| // 8MB hot |
| // 32MB cold |
| // |
| // only the first 8-16MB of the cold code (depending on which hot function it |
| // is actually calling) can call the hot code without a range extension thunk. |
| // However, if we use this layout: |
| // |
| // 16MB cold |
| // 8MB hot |
| // 16MB cold |
| // |
| // both the last 8-16MB of the first block of cold code and the first 8-16MB |
| // of the second block of cold code can call the hot code without a thunk. So |
| // we effectively double the amount of code that could potentially call into |
| // the hot code without a thunk. |
| size_t insPt = 0; |
| if (target->getThunkSectionSpacing() && !orderedSections.empty()) { |
| uint64_t unorderedPos = 0; |
| for (; insPt != unorderedSections.size(); ++insPt) { |
| unorderedPos += unorderedSections[insPt]->getSize(); |
| if (unorderedPos > unorderedSize / 2) |
| break; |
| } |
| } |
| |
| isd->sections.clear(); |
| for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) |
| isd->sections.push_back(isec); |
| for (std::pair<InputSection *, int> p : orderedSections) |
| isd->sections.push_back(p.first); |
| for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) |
| isd->sections.push_back(isec); |
| } |
| |
| static void sortSection(OutputSection *sec, |
| const DenseMap<const InputSectionBase *, int> &order) { |
| StringRef name = sec->name; |
| |
| // Sort input sections by section name suffixes for |
| // __attribute__((init_priority(N))). |
| if (name == ".init_array" || name == ".fini_array") { |
| if (!script->hasSectionsCommand) |
| sec->sortInitFini(); |
| return; |
| } |
| |
| // Sort input sections by the special rule for .ctors and .dtors. |
| if (name == ".ctors" || name == ".dtors") { |
| if (!script->hasSectionsCommand) |
| sec->sortCtorsDtors(); |
| return; |
| } |
| |
| // Never sort these. |
| if (name == ".init" || name == ".fini") |
| return; |
| |
| // .toc is allocated just after .got and is accessed using GOT-relative |
| // relocations. Object files compiled with small code model have an |
| // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. |
| // To reduce the risk of relocation overflow, .toc contents are sorted so that |
| // sections having smaller relocation offsets are at beginning of .toc |
| if (config->emachine == EM_PPC64 && name == ".toc") { |
| if (script->hasSectionsCommand) |
| return; |
| assert(sec->sectionCommands.size() == 1); |
| auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); |
| llvm::stable_sort(isd->sections, |
| [](const InputSection *a, const InputSection *b) -> bool { |
| return a->file->ppc64SmallCodeModelTocRelocs && |
| !b->file->ppc64SmallCodeModelTocRelocs; |
| }); |
| return; |
| } |
| |
| // Sort input sections by priority using the list provided |
| // by --symbol-ordering-file. |
| if (!order.empty()) |
| for (BaseCommand *b : sec->sectionCommands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(b)) |
| sortISDBySectionOrder(isd, order); |
| } |
| |
| // If no layout was provided by linker script, we want to apply default |
| // sorting for special input sections. This also handles --symbol-ordering-file. |
| template <class ELFT> void Writer<ELFT>::sortInputSections() { |
| // Build the order once since it is expensive. |
| DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); |
| for (BaseCommand *base : script->sectionCommands) |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| sortSection(sec, order); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortSections() { |
| script->adjustSectionsBeforeSorting(); |
| |
| // Don't sort if using -r. It is not necessary and we want to preserve the |
| // relative order for SHF_LINK_ORDER sections. |
| if (config->relocatable) |
| return; |
| |
| sortInputSections(); |
| |
| for (BaseCommand *base : script->sectionCommands) { |
| auto *os = dyn_cast<OutputSection>(base); |
| if (!os) |
| continue; |
| os->sortRank = getSectionRank(os); |
| |
| // We want to assign rude approximation values to outSecOff fields |
| // to know the relative order of the input sections. We use it for |
| // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). |
| uint64_t i = 0; |
| for (InputSection *sec : getInputSections(os)) |
| sec->outSecOff = i++; |
| } |
| |
| if (!script->hasSectionsCommand) { |
| // We know that all the OutputSections are contiguous in this case. |
| auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; |
| std::stable_sort( |
| llvm::find_if(script->sectionCommands, isSection), |
| llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), |
| compareSections); |
| return; |
| } |
| |
| // Orphan sections are sections present in the input files which are |
| // not explicitly placed into the output file by the linker script. |
| // |
| // The sections in the linker script are already in the correct |
| // order. We have to figuere out where to insert the orphan |
| // sections. |
| // |
| // The order of the sections in the script is arbitrary and may not agree with |
| // compareSections. This means that we cannot easily define a strict weak |
| // ordering. To see why, consider a comparison of a section in the script and |
| // one not in the script. We have a two simple options: |
| // * Make them equivalent (a is not less than b, and b is not less than a). |
| // The problem is then that equivalence has to be transitive and we can |
| // have sections a, b and c with only b in a script and a less than c |
| // which breaks this property. |
| // * Use compareSectionsNonScript. Given that the script order doesn't have |
| // to match, we can end up with sections a, b, c, d where b and c are in the |
| // script and c is compareSectionsNonScript less than b. In which case d |
| // can be equivalent to c, a to b and d < a. As a concrete example: |
| // .a (rx) # not in script |
| // .b (rx) # in script |
| // .c (ro) # in script |
| // .d (ro) # not in script |
| // |
| // The way we define an order then is: |
| // * Sort only the orphan sections. They are in the end right now. |
| // * Move each orphan section to its preferred position. We try |
| // to put each section in the last position where it can share |
| // a PT_LOAD. |
| // |
| // There is some ambiguity as to where exactly a new entry should be |
| // inserted, because Commands contains not only output section |
| // commands but also other types of commands such as symbol assignment |
| // expressions. There's no correct answer here due to the lack of the |
| // formal specification of the linker script. We use heuristics to |
| // determine whether a new output command should be added before or |
| // after another commands. For the details, look at shouldSkip |
| // function. |
| |
| auto i = script->sectionCommands.begin(); |
| auto e = script->sectionCommands.end(); |
| auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| return sec->sectionIndex == UINT32_MAX; |
| return false; |
| }); |
| |
| // Sort the orphan sections. |
| std::stable_sort(nonScriptI, e, compareSections); |
| |
| // As a horrible special case, skip the first . assignment if it is before any |
| // section. We do this because it is common to set a load address by starting |
| // the script with ". = 0xabcd" and the expectation is that every section is |
| // after that. |
| auto firstSectionOrDotAssignment = |
| std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); |
| if (firstSectionOrDotAssignment != e && |
| isa<SymbolAssignment>(**firstSectionOrDotAssignment)) |
| ++firstSectionOrDotAssignment; |
| i = firstSectionOrDotAssignment; |
| |
| while (nonScriptI != e) { |
| auto pos = findOrphanPos(i, nonScriptI); |
| OutputSection *orphan = cast<OutputSection>(*nonScriptI); |
| |
| // As an optimization, find all sections with the same sort rank |
| // and insert them with one rotate. |
| unsigned rank = orphan->sortRank; |
| auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { |
| return cast<OutputSection>(cmd)->sortRank != rank; |
| }); |
| std::rotate(pos, nonScriptI, end); |
| nonScriptI = end; |
| } |
| |
| script->adjustSectionsAfterSorting(); |
| } |
| |
| static bool compareByFilePosition(InputSection *a, InputSection *b) { |
| InputSection *la = a->getLinkOrderDep(); |
| InputSection *lb = b->getLinkOrderDep(); |
| OutputSection *aOut = la->getParent(); |
| OutputSection *bOut = lb->getParent(); |
| |
| if (aOut != bOut) |
| return aOut->sectionIndex < bOut->sectionIndex; |
| return la->outSecOff < lb->outSecOff; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { |
| for (OutputSection *sec : outputSections) { |
| if (!(sec->flags & SHF_LINK_ORDER)) |
| continue; |
| |
| // Link order may be distributed across several InputSectionDescriptions |
| // but sort must consider them all at once. |
| std::vector<InputSection **> scriptSections; |
| std::vector<InputSection *> sections; |
| for (BaseCommand *base : sec->sectionCommands) { |
| if (auto *isd = dyn_cast<InputSectionDescription>(base)) { |
| for (InputSection *&isec : isd->sections) { |
| scriptSections.push_back(&isec); |
| sections.push_back(isec); |
| } |
| } |
| } |
| |
| // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated |
| // this processing inside the ARMExidxsyntheticsection::finalizeContents(). |
| if (!config->relocatable && config->emachine == EM_ARM && |
| sec->type == SHT_ARM_EXIDX) |
| continue; |
| |
| llvm::stable_sort(sections, compareByFilePosition); |
| |
| for (int i = 0, n = sections.size(); i < n; ++i) |
| *scriptSections[i] = sections[i]; |
| } |
| } |
| |
| // We need to generate and finalize the content that depends on the address of |
| // InputSections. As the generation of the content may also alter InputSection |
| // addresses we must converge to a fixed point. We do that here. See the comment |
| // in Writer<ELFT>::finalizeSections(). |
| template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { |
| ThunkCreator tc; |
| AArch64Err843419Patcher a64p; |
| ARMErr657417Patcher a32p; |
| script->assignAddresses(); |
| |
| int assignPasses = 0; |
| for (;;) { |
| bool changed = target->needsThunks && tc.createThunks(outputSections); |
| |
| // With Thunk Size much smaller than branch range we expect to |
| // converge quickly; if we get to 10 something has gone wrong. |
| if (changed && tc.pass >= 10) { |
| error("thunk creation not converged"); |
| break; |
| } |
| |
| if (config->fixCortexA53Errata843419) { |
| if (changed) |
| script->assignAddresses(); |
| changed |= a64p.createFixes(); |
| } |
| if (config->fixCortexA8) { |
| if (changed) |
| script->assignAddresses(); |
| changed |= a32p.createFixes(); |
| } |
| |
| if (in.mipsGot) |
| in.mipsGot->updateAllocSize(); |
| |
| for (Partition &part : partitions) { |
| changed |= part.relaDyn->updateAllocSize(); |
| if (part.relrDyn) |
| changed |= part.relrDyn->updateAllocSize(); |
| } |
| |
| const Defined *changedSym = script->assignAddresses(); |
| if (!changed) { |
| // Some symbols may be dependent on section addresses. When we break the |
| // loop, the symbol values are finalized because a previous |
| // assignAddresses() finalized section addresses. |
| if (!changedSym) |
| break; |
| if (++assignPasses == 5) { |
| errorOrWarn("assignment to symbol " + toString(*changedSym) + |
| " does not converge"); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void finalizeSynthetic(SyntheticSection *sec) { |
| if (sec && sec->isNeeded() && sec->getParent()) |
| sec->finalizeContents(); |
| } |
| |
| // In order to allow users to manipulate linker-synthesized sections, |
| // we had to add synthetic sections to the input section list early, |
| // even before we make decisions whether they are needed. This allows |
| // users to write scripts like this: ".mygot : { .got }". |
| // |
| // Doing it has an unintended side effects. If it turns out that we |
| // don't need a .got (for example) at all because there's no |
| // relocation that needs a .got, we don't want to emit .got. |
| // |
| // To deal with the above problem, this function is called after |
| // scanRelocations is called to remove synthetic sections that turn |
| // out to be empty. |
| static void removeUnusedSyntheticSections() { |
| // All input synthetic sections that can be empty are placed after |
| // all regular ones. We iterate over them all and exit at first |
| // non-synthetic. |
| for (InputSectionBase *s : llvm::reverse(inputSections)) { |
| SyntheticSection *ss = dyn_cast<SyntheticSection>(s); |
| if (!ss) |
| return; |
| OutputSection *os = ss->getParent(); |
| if (!os || ss->isNeeded()) |
| continue; |
| |
| // If we reach here, then SS is an unused synthetic section and we want to |
| // remove it from corresponding input section description of output section. |
| for (BaseCommand *b : os->sectionCommands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(b)) |
| llvm::erase_if(isd->sections, |
| [=](InputSection *isec) { return isec == ss; }); |
| } |
| } |
| |
| // Returns true if a symbol can be replaced at load-time by a symbol |
| // with the same name defined in other ELF executable or DSO. |
| static bool computeIsPreemptible(const Symbol &b) { |
| assert(!b.isLocal()); |
| |
| // Only symbols that appear in dynsym can be preempted. |
| if (!b.includeInDynsym()) |
| return false; |
| |
| // Only default visibility symbols can be preempted. |
| if (b.visibility != STV_DEFAULT) |
| return false; |
| |
| // At this point copy relocations have not been created yet, so any |
| // symbol that is not defined locally is preemptible. |
| if (!b.isDefined()) |
| return true; |
| |
| if (!config->shared) |
| return false; |
| |
| // If the dynamic list is present, it specifies preemptable symbols in a DSO. |
| if (config->hasDynamicList) |
| return b.inDynamicList; |
| |
| // -Bsymbolic means that definitions are not preempted. |
| if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc())) |
| return false; |
| return true; |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::finalizeSections() { |
| Out::preinitArray = findSection(".preinit_array"); |
| Out::initArray = findSection(".init_array"); |
| Out::finiArray = findSection(".fini_array"); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| if (!config->relocatable) { |
| addStartEndSymbols(); |
| for (BaseCommand *base : script->sectionCommands) |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| addStartStopSymbols(sec); |
| } |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (mainPart->dynamic->parent) |
| symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, |
| STV_HIDDEN, STT_NOTYPE, |
| /*value=*/0, /*size=*/0, mainPart->dynamic}); |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol |
| // should only be defined in an executable. If .sdata does not exist, its |
| // value/section does not matter but it has to be relative, so set its |
| // st_shndx arbitrarily to 1 (Out::elfHeader). |
| if (config->emachine == EM_RISCV && !config->shared) { |
| OutputSection *sec = findSection(".sdata"); |
| ElfSym::riscvGlobalPointer = |
| addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, |
| 0x800, STV_DEFAULT, STB_GLOBAL); |
| } |
| |
| if (config->emachine == EM_X86_64) { |
| // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a |
| // way that: |
| // |
| // 1) Without relaxation: it produces a dynamic TLSDESC relocation that |
| // computes 0. |
| // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in |
| // the TLS block). |
| // |
| // 2) is special cased in @tpoff computation. To satisfy 1), we define it as |
| // an absolute symbol of zero. This is different from GNU linkers which |
| // define _TLS_MODULE_BASE_ relative to the first TLS section. |
| Symbol *s = symtab->find("_TLS_MODULE_BASE_"); |
| if (s && s->isUndefined()) { |
| s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, |
| STT_TLS, /*value=*/0, 0, |
| /*section=*/nullptr}); |
| ElfSym::tlsModuleBase = cast<Defined>(s); |
| } |
| } |
| |
| // This responsible for splitting up .eh_frame section into |
| // pieces. The relocation scan uses those pieces, so this has to be |
| // earlier. |
| for (Partition &part : partitions) |
| finalizeSynthetic(part.ehFrame); |
| |
| symtab->forEachSymbol( |
| [](Symbol *s) { s->isPreemptible = computeIsPreemptible(*s); }); |
| |
| // Change values of linker-script-defined symbols from placeholders (assigned |
| // by declareSymbols) to actual definitions. |
| script->processSymbolAssignments(); |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. This is called |
| // after processSymbolAssignments() because it needs to know whether a |
| // linker-script-defined symbol is absolute. |
| if (!config->relocatable) { |
| forEachRelSec(scanRelocations<ELFT>); |
| reportUndefinedSymbols<ELFT>(); |
| } |
| |
| if (in.plt && in.plt->isNeeded()) |
| in.plt->addSymbols(); |
| if (in.iplt && in.iplt->isNeeded()) |
| in.iplt->addSymbols(); |
| |
| if (!config->allowShlibUndefined) { |
| // Error on undefined symbols in a shared object, if all of its DT_NEEDED |
| // entires are seen. These cases would otherwise lead to runtime errors |
| // reported by the dynamic linker. |
| // |
| // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to |
| // catch more cases. That is too much for us. Our approach resembles the one |
| // used in ld.gold, achieves a good balance to be useful but not too smart. |
| for (SharedFile *file : sharedFiles) |
| file->allNeededIsKnown = |
| llvm::all_of(file->dtNeeded, [&](StringRef needed) { |
| return symtab->soNames.count(needed); |
| }); |
| |
| symtab->forEachSymbol([](Symbol *sym) { |
| if (sym->isUndefined() && !sym->isWeak()) |
| if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) |
| if (f->allNeededIsKnown) |
| error(toString(f) + ": undefined reference to " + toString(*sym)); |
| }); |
| } |
| |
| // Now that we have defined all possible global symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| symtab->forEachSymbol([](Symbol *sym) { |
| if (!includeInSymtab(*sym)) |
| return; |
| if (in.symTab) |
| in.symTab->addSymbol(sym); |
| |
| if (sym->includeInDynsym()) { |
| partitions[sym->partition - 1].dynSymTab->addSymbol(sym); |
| if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) |
| if (file->isNeeded && !sym->isUndefined()) |
| addVerneed(sym); |
| } |
| }); |
| |
| // We also need to scan the dynamic relocation tables of the other partitions |
| // and add any referenced symbols to the partition's dynsym. |
| for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { |
| DenseSet<Symbol *> syms; |
| for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) |
| syms.insert(e.sym); |
| for (DynamicReloc &reloc : part.relaDyn->relocs) |
| if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) |
| part.dynSymTab->addSymbol(reloc.sym); |
| } |
| |
| // Do not proceed if there was an undefined symbol. |
| if (errorCount()) |
| return; |
| |
| if (in.mipsGot) |
| in.mipsGot->build(); |
| |
| removeUnusedSyntheticSections(); |
| |
| sortSections(); |
| |
| // Now that we have the final list, create a list of all the |
| // OutputSections for convenience. |
| for (BaseCommand *base : script->sectionCommands) |
| if (auto *sec = dyn_cast<OutputSection>(base)) |
| outputSections.push_back(sec); |
| |
| // Prefer command line supplied address over other constraints. |
| for (OutputSection *sec : outputSections) { |
| auto i = config->sectionStartMap.find(sec->name); |
| if (i != config->sectionStartMap.end()) |
| sec->addrExpr = [=] { return i->second; }; |
| } |
| |
| // This is a bit of a hack. A value of 0 means undef, so we set it |
| // to 1 to make __ehdr_start defined. The section number is not |
| // particularly relevant. |
| Out::elfHeader->sectionIndex = 1; |
| |
| for (size_t i = 0, e = outputSections.size(); i != e; ++i) { |
| OutputSection *sec = outputSections[i]; |
| sec->sectionIndex = i + 1; |
| sec->shName = in.shStrTab->addString(sec->name); |
| } |
| |
| // Binary and relocatable output does not have PHDRS. |
| // The headers have to be created before finalize as that can influence the |
| // image base and the dynamic section on mips includes the image base. |
| if (!config->relocatable && !config->oFormatBinary) { |
| for (Partition &part : partitions) { |
| part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() |
| : createPhdrs(part); |
| if (config->emachine == EM_ARM) { |
| // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
| addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); |
| } |
| if (config->emachine == EM_MIPS) { |
| // Add separate segments for MIPS-specific sections. |
| addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); |
| addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); |
| addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); |
| } |
| } |
| Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); |
| |
| // Find the TLS segment. This happens before the section layout loop so that |
| // Android relocation packing can look up TLS symbol addresses. We only need |
| // to care about the main partition here because all TLS symbols were moved |
| // to the main partition (see MarkLive.cpp). |
| for (PhdrEntry *p : mainPart->phdrs) |
| if (p->p_type == PT_TLS) |
| Out::tlsPhdr = p; |
| } |
| |
| // Some symbols are defined in term of program headers. Now that we |
| // have the headers, we can find out which sections they point to. |
| setReservedSymbolSections(); |
| |
| finalizeSynthetic(in.bss); |
| finalizeSynthetic(in.bssRelRo); |
| finalizeSynthetic(in.symTabShndx); |
| finalizeSynthetic(in.shStrTab); |
| finalizeSynthetic(in.strTab); |
| finalizeSynthetic(in.got); |
| finalizeSynthetic(in.mipsGot); |
| finalizeSynthetic(in.igotPlt); |
| finalizeSynthetic(in.gotPlt); |
| finalizeSynthetic(in.relaIplt); |
| finalizeSynthetic(in.relaPlt); |
| finalizeSynthetic(in.plt); |
| finalizeSynthetic(in.iplt); |
| finalizeSynthetic(in.ppc32Got2); |
| finalizeSynthetic(in.partIndex); |
| |
| // Dynamic section must be the last one in this list and dynamic |
| // symbol table section (dynSymTab) must be the first one. |
| for (Partition &part : partitions) { |
| finalizeSynthetic(part.armExidx); |
| finalizeSynthetic(part.dynSymTab); |
| finalizeSynthetic(part.gnuHashTab); |
| finalizeSynthetic(part.hashTab); |
| finalizeSynthetic(part.verDef); |
| finalizeSynthetic(part.relaDyn); |
| finalizeSynthetic(part.relrDyn); |
| finalizeSynthetic(part.ehFrameHdr); |
| finalizeSynthetic(part.verSym); |
| finalizeSynthetic(part.verNeed); |
| finalizeSynthetic(part.dynamic); |
| } |
| |
| if (!script->hasSectionsCommand && !config->relocatable) |
| fixSectionAlignments(); |
| |
| // SHFLinkOrder processing must be processed after relative section placements are |
| // known but before addresses are allocated. |
| resolveShfLinkOrder(); |
| |
| // This is used to: |
| // 1) Create "thunks": |
| // Jump instructions in many ISAs have small displacements, and therefore |
| // they cannot jump to arbitrary addresses in memory. For example, RISC-V |
| // JAL instruction can target only +-1 MiB from PC. It is a linker's |
| // responsibility to create and insert small pieces of code between |
| // sections to extend the ranges if jump targets are out of range. Such |
| // code pieces are called "thunks". |
| // |
| // We add thunks at this stage. We couldn't do this before this point |
| // because this is the earliest point where we know sizes of sections and |
| // their layouts (that are needed to determine if jump targets are in |
| // range). |
| // |
| // 2) Update the sections. We need to generate content that depends on the |
| // address of InputSections. For example, MIPS GOT section content or |
| // android packed relocations sections content. |
| // |
| // 3) Assign the final values for the linker script symbols. Linker scripts |
| // sometimes using forward symbol declarations. We want to set the correct |
| // values. They also might change after adding the thunks. |
| finalizeAddressDependentContent(); |
| |
| // finalizeAddressDependentContent may have added local symbols to the static symbol table. |
| finalizeSynthetic(in.symTab); |
| finalizeSynthetic(in.ppc64LongBranchTarget); |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. |
| for (OutputSection *sec : outputSections) |
| sec->finalize(); |
| } |
| |
| // Ensure data sections are not mixed with executable sections when |
| // -execute-only is used. -execute-only is a feature to make pages executable |
| // but not readable, and the feature is currently supported only on AArch64. |
| template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { |
| if (!config->executeOnly) |
| return; |
| |
| for (OutputSection *os : outputSections) |
| if (os->flags & SHF_EXECINSTR) |
| for (InputSection *isec : getInputSections(os)) |
| if (!(isec->flags & SHF_EXECINSTR)) |
| error("cannot place " + toString(isec) + " into " + toString(os->name) + |
| ": -execute-only does not support intermingling data and code"); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| // If a section does not exist, there's ambiguity as to how we |
| // define _start and _end symbols for an init/fini section. Since |
| // the loader assume that the symbols are always defined, we need to |
| // always define them. But what value? The loader iterates over all |
| // pointers between _start and _end to run global ctors/dtors, so if |
| // the section is empty, their symbol values don't actually matter |
| // as long as _start and _end point to the same location. |
| // |
| // That said, we don't want to set the symbols to 0 (which is |
| // probably the simplest value) because that could cause some |
| // program to fail to link due to relocation overflow, if their |
| // program text is above 2 GiB. We use the address of the .text |
| // section instead to prevent that failure. |
| // |
| // In a rare sitaution, .text section may not exist. If that's the |
| // case, use the image base address as a last resort. |
| OutputSection *Default = findSection(".text"); |
| if (!Default) |
| Default = Out::elfHeader; |
| |
| auto define = [=](StringRef start, StringRef end, OutputSection *os) { |
| if (os) { |
| addOptionalRegular(start, os, 0); |
| addOptionalRegular(end, os, -1); |
| } else { |
| addOptionalRegular(start, Default, 0); |
| addOptionalRegular(end, Default, 0); |
| } |
| }; |
| |
| define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); |
| define("__init_array_start", "__init_array_end", Out::initArray); |
| define("__fini_array_start", "__fini_array_end", Out::finiArray); |
| |
| if (OutputSection *sec = findSection(".ARM.exidx")) |
| define("__exidx_start", "__exidx_end", sec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { |
| StringRef s = sec->name; |
| if (!isValidCIdentifier(s)) |
| return; |
| addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); |
| addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); |
| } |
| |
| static bool needsPtLoad(OutputSection *sec) { |
| if (!(sec->flags & SHF_ALLOC) || sec->noload) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| // Linker scripts are responsible for aligning addresses. Unfortunately, most |
| // linker scripts are designed for creating two PT_LOADs only, one RX and one |
| // RW. This means that there is no alignment in the RO to RX transition and we |
| // cannot create a PT_LOAD there. |
| static uint64_t computeFlags(uint64_t flags) { |
| if (config->omagic) |
| return PF_R | PF_W | PF_X; |
| if (config->executeOnly && (flags & PF_X)) |
| return flags & ~PF_R; |
| if (config->singleRoRx && !(flags & PF_W)) |
| return flags | PF_X; |
| return flags; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> |
| std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { |
| std::vector<PhdrEntry *> ret; |
| auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { |
| ret.push_back(make<PhdrEntry>(type, flags)); |
| return ret.back(); |
| }; |
| |
| unsigned partNo = part.getNumber(); |
| bool isMain = partNo == 1; |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uint64_t flags = computeFlags(PF_R); |
| PhdrEntry *load = nullptr; |
| |
| // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly |
| // PT_LOAD. |
| if (!config->nmagic && !config->omagic) { |
| // The first phdr entry is PT_PHDR which describes the program header |
| // itself. |
| if (isMain) |
| addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); |
| else |
| addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (OutputSection *cmd = findSection(".interp", partNo)) |
| addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); |
| |
| // Add the headers. We will remove them if they don't fit. |
| // In the other partitions the headers are ordinary sections, so they don't |
| // need to be added here. |
| if (isMain) { |
| load = addHdr(PT_LOAD, flags); |
| load->add(Out::elfHeader); |
| load->add(Out::programHeaders); |
| } |
| } |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after proccessing relocations. |
| // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give |
| // an error message if more than one PT_GNU_RELRO PHDR is required. |
| PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); |
| bool inRelroPhdr = false; |
| OutputSection *relroEnd = nullptr; |
| for (OutputSection *sec : outputSections) { |
| if (sec->partition != partNo || !needsPtLoad(sec)) |
| continue; |
| if (isRelroSection(sec)) { |
| inRelroPhdr = true; |
| if (!relroEnd) |
| relRo->add(sec); |
| else |
| error("section: " + sec->name + " is not contiguous with other relro" + |
| " sections"); |
| } else if (inRelroPhdr) { |
| inRelroPhdr = false; |
| relroEnd = sec; |
| } |
| } |
| |
| for (OutputSection *sec : outputSections) { |
| if (!(sec->flags & SHF_ALLOC)) |
| break; |
| if (!needsPtLoad(sec)) |
| continue; |
| |
| // Normally, sections in partitions other than the current partition are |
| // ignored. But partition number 255 is a special case: it contains the |
| // partition end marker (.part.end). It needs to be added to the main |
| // partition so that a segment is created for it in the main partition, |
| // which will cause the dynamic loader to reserve space for the other |
| // partitions. |
| if (sec->partition != partNo) { |
| if (isMain && sec->partition == 255) |
| addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); |
| continue; |
| } |
| |
| // Segments are contiguous memory regions that has the same attributes |
| // (e.g. executable or writable). There is one phdr for each segment. |
| // Therefore, we need to create a new phdr when the next section has |
| // different flags or is loaded at a discontiguous address or memory |
| // region using AT or AT> linker script command, respectively. At the same |
| // time, we don't want to create a separate load segment for the headers, |
| // even if the first output section has an AT or AT> attribute. |
| uint64_t newFlags = computeFlags(sec->getPhdrFlags()); |
| if (!load || |
| ((sec->lmaExpr || |
| (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && |
| load->lastSec != Out::programHeaders) || |
| sec->memRegion != load->firstSec->memRegion || flags != newFlags || |
| sec == relroEnd) { |
| load = addHdr(PT_LOAD, newFlags); |
| flags = newFlags; |
| } |
| |
| load->add(sec); |
| } |
| |
| // Add a TLS segment if any. |
| PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); |
| for (OutputSection *sec : outputSections) |
| if (sec->partition == partNo && sec->flags & SHF_TLS) |
| tlsHdr->add(sec); |
| if (tlsHdr->firstSec) |
| ret.push_back(tlsHdr); |
| |
| // Add an entry for .dynamic. |
| if (OutputSection *sec = part.dynamic->getParent()) |
| addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); |
| |
| if (relRo->firstSec) |
| ret.push_back(relRo); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (part.ehFrame->isNeeded() && part.ehFrameHdr && |
| part.ehFrame->getParent() && part.ehFrameHdr->getParent()) |
| addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) |
| ->add(part.ehFrameHdr->getParent()); |
| |
| // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes |
| // the dynamic linker fill the segment with random data. |
| if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) |
| addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); |
| |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. If you really want an executable |
| // stack, you can pass -z execstack, but that's not recommended for |
| // security reasons. |
| unsigned perm = PF_R | PF_W; |
| if (config->zExecstack) |
| perm |= PF_X; |
| addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; |
| |
| // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
| // is expected to perform W^X violations, such as calling mprotect(2) or |
| // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
| // OpenBSD. |
| if (config->zWxneeded) |
| addHdr(PT_OPENBSD_WXNEEDED, PF_X); |
| |
| // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the |
| // same alignment. |
| PhdrEntry *note = nullptr; |
| for (OutputSection *sec : outputSections) { |
| if (sec->partition != partNo) |
| continue; |
| if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { |
| if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) |
| note = addHdr(PT_NOTE, PF_R); |
| note->add(sec); |
| } else { |
| note = nullptr; |
| } |
| } |
| return ret; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, |
| unsigned pType, unsigned pFlags) { |
| unsigned partNo = part.getNumber(); |
| auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { |
| return cmd->partition == partNo && cmd->type == shType; |
| }); |
| if (i == outputSections.end()) |
| return; |
| |
| PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); |
| entry->add(*i); |
| part.phdrs.push_back(entry); |
| } |
| |
| // Place the first section of each PT_LOAD to a different page (of maxPageSize). |
| // This is achieved by assigning an alignment expression to addrExpr of each |
| // such section. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| const PhdrEntry *prev; |
| auto pageAlign = [&](const PhdrEntry *p) { |
| OutputSection *cmd = p->firstSec; |
| if (cmd && !cmd->addrExpr) { |
| // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid |
| // padding in the file contents. |
| // |
| // When -z separate-code is used we must not have any overlap in pages |
| // between an executable segment and a non-executable segment. We align to |
| // the next maximum page size boundary on transitions between executable |
| // and non-executable segments. |
| // |
| // SHT_LLVM_PART_EHDR marks the start of a partition. The partition |
| // sections will be extracted to a separate file. Align to the next |
| // maximum page size boundary so that we can find the ELF header at the |
| // start. We cannot benefit from overlapping p_offset ranges with the |
| // previous segment anyway. |
| // |
| // TODO Enable this technique on all targets. |
| bool enable = config->emachine != EM_HEXAGON; |
| |
| if (!enable || |
| (config->zSeparateCode && prev && |
| (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || |
| cmd->type == SHT_LLVM_PART_EHDR) |
| cmd->addrExpr = [] { |
| return alignTo(script->getDot(), config->maxPageSize); |
| }; |
| // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, |
| // it must be the RW. Align to p_align(PT_TLS) to make sure |
| // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if |
| // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) |
| // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not |
| // be congruent to 0 modulo p_align(PT_TLS). |
| // |
| // Technically this is not required, but as of 2019, some dynamic loaders |
| // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and |
| // x86-64) doesn't make runtime address congruent to p_vaddr modulo |
| // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same |
| // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS |
| // blocks correctly. We need to keep the workaround for a while. |
| else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) |
| cmd->addrExpr = [] { |
| return alignTo(script->getDot(), config->maxPageSize) + |
| alignTo(script->getDot() % config->maxPageSize, |
| Out::tlsPhdr->p_align); |
| }; |
| else |
| cmd->addrExpr = [] { |
| return alignTo(script->getDot(), config->maxPageSize) + |
| script->getDot() % config->maxPageSize; |
| }; |
| } |
| }; |
| |
| for (Partition &part : partitions) { |
| prev = nullptr; |
| for (const PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD && p->firstSec) { |
| pageAlign(p); |
| prev = p; |
| } |
| } |
| } |
| |
| // Compute an in-file position for a given section. The file offset must be the |
| // same with its virtual address modulo the page size, so that the loader can |
| // load executables without any address adjustment. |
| static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { |
| // The first section in a PT_LOAD has to have congruent offset and address |
| // modulo the maximum page size. |
| if (os->ptLoad && os->ptLoad->firstSec == os) |
| return alignTo(off, os->ptLoad->p_align, os->addr); |
| |
| // File offsets are not significant for .bss sections other than the first one |
| // in a PT_LOAD. By convention, we keep section offsets monotonically |
| // increasing rather than setting to zero. |
| if (os->type == SHT_NOBITS) |
| return off; |
| |
| // If the section is not in a PT_LOAD, we just have to align it. |
| if (!os->ptLoad) |
| return alignTo(off, os->alignment); |
| |
| // If two sections share the same PT_LOAD the file offset is calculated |
| // using this formula: Off2 = Off1 + (VA2 - VA1). |
| OutputSection *first = os->ptLoad->firstSec; |
| return first->offset + os->addr - first->addr; |
| } |
| |
| // Set an in-file position to a given section and returns the end position of |
| // the section. |
| static uint64_t setFileOffset(OutputSection *os, uint64_t off) { |
| off = computeFileOffset(os, off); |
| os->offset = off; |
| |
| if (os->type == SHT_NOBITS) |
| return off; |
| return off + os->size; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
| uint64_t off = 0; |
| for (OutputSection *sec : outputSections) |
| if (sec->flags & SHF_ALLOC) |
| off = setFileOffset(sec, off); |
| fileSize = alignTo(off, config->wordsize); |
| } |
| |
| static std::string rangeToString(uint64_t addr, uint64_t len) { |
| return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| uint64_t off = 0; |
| off = setFileOffset(Out::elfHeader, off); |
| off = setFileOffset(Out::programHeaders, off); |
| |
| PhdrEntry *lastRX = nullptr; |
| for (Partition &part : partitions) |
| for (PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) |
| lastRX = p; |
| |
| for (OutputSection *sec : outputSections) { |
| off = setFileOffset(sec, off); |
| |
| // If this is a last section of the last executable segment and that |
| // segment is the last loadable segment, align the offset of the |
| // following section to avoid loading non-segments parts of the file. |
| if (config->zSeparateCode && lastRX && lastRX->lastSec == sec) |
| off = alignTo(off, config->commonPageSize); |
| } |
| |
| sectionHeaderOff = alignTo(off, config->wordsize); |
| fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); |
| |
| // Our logic assumes that sections have rising VA within the same segment. |
| // With use of linker scripts it is possible to violate this rule and get file |
| // offset overlaps or overflows. That should never happen with a valid script |
| // which does not move the location counter backwards and usually scripts do |
| // not do that. Unfortunately, there are apps in the wild, for example, Linux |
| // kernel, which control segment distribution explicitly and move the counter |
| // backwards, so we have to allow doing that to support linking them. We |
| // perform non-critical checks for overlaps in checkSectionOverlap(), but here |
| // we want to prevent file size overflows because it would crash the linker. |
| for (OutputSection *sec : outputSections) { |
| if (sec->type == SHT_NOBITS) |
| continue; |
| if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) |
| error("unable to place section " + sec->name + " at file offset " + |
| rangeToString(sec->offset, sec->size) + |
| "; check your linker script for overflows"); |
| } |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { |
| for (PhdrEntry *p : part.phdrs) { |
| OutputSection *first = p->firstSec; |
| OutputSection *last = p->lastSec; |
| |
| if (first) { |
| p->p_filesz = last->offset - first->offset; |
| if (last->type != SHT_NOBITS) |
| p->p_filesz += last->size; |
| |
| p->p_memsz = last->addr + last->size - first->addr; |
| p->p_offset = first->offset; |
| p->p_vaddr = first->addr; |
| |
| // File offsets in partitions other than the main partition are relative |
| // to the offset of the ELF headers. Perform that adjustment now. |
| if (part.elfHeader) |
| p->p_offset -= part.elfHeader->getParent()->offset; |
| |
| if (!p->hasLMA) |
| p->p_paddr = first->getLMA(); |
| } |
| |
| if (p->p_type == PT_GNU_RELRO) { |
| p->p_align = 1; |
| // musl/glibc ld.so rounds the size down, so we need to round up |
| // to protect the last page. This is a no-op on FreeBSD which always |
| // rounds up. |
| p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - |
| p->p_offset; |
| } |
| } |
| } |
| |
| // A helper struct for checkSectionOverlap. |
| namespace { |
| struct SectionOffset { |
| OutputSection *sec; |
| uint64_t offset; |
| }; |
| } // namespace |
| |
| // Check whether sections overlap for a specific address range (file offsets, |
| // load and virtual adresses). |
| static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, |
| bool isVirtualAddr) { |
| llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { |
| return a.offset < b.offset; |
| }); |
| |
| // Finding overlap is easy given a vector is sorted by start position. |
| // If an element starts before the end of the previous element, they overlap. |
| for (size_t i = 1, end = sections.size(); i < end; ++i) { |
| SectionOffset a = sections[i - 1]; |
| SectionOffset b = sections[i]; |
| if (b.offset >= a.offset + a.sec->size) |
| continue; |
| |
| // If both sections are in OVERLAY we allow the overlapping of virtual |
| // addresses, because it is what OVERLAY was designed for. |
| if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) |
| continue; |
| |
| errorOrWarn("section " + a.sec->name + " " + name + |
| " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + |
| " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + |
| b.sec->name + " range is " + |
| rangeToString(b.offset, b.sec->size)); |
| } |
| } |
| |
| // Check for overlapping sections and address overflows. |
| // |
| // In this function we check that none of the output sections have overlapping |
| // file offsets. For SHF_ALLOC sections we also check that the load address |
| // ranges and the virtual address ranges don't overlap |
| template <class ELFT> void Writer<ELFT>::checkSections() { |
| // First, check that section's VAs fit in available address space for target. |
| for (OutputSection *os : outputSections) |
| if ((os->addr + os->size < os->addr) || |
| (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) |
| errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + |
| " of size 0x" + utohexstr(os->size) + |
| " exceeds available address space"); |
| |
| // Check for overlapping file offsets. In this case we need to skip any |
| // section marked as SHT_NOBITS. These sections don't actually occupy space in |
| // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat |
| // binary is specified only add SHF_ALLOC sections are added to the output |
| // file so we skip any non-allocated sections in that case. |
| std::vector<SectionOffset> fileOffs; |
| for (OutputSection *sec : outputSections) |
| if (sec->size > 0 && sec->type != SHT_NOBITS && |
| (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) |
| fileOffs.push_back({sec, sec->offset}); |
| checkOverlap("file", fileOffs, false); |
| |
| // When linking with -r there is no need to check for overlapping virtual/load |
| // addresses since those addresses will only be assigned when the final |
| // executable/shared object is created. |
| if (config->relocatable) |
| return; |
| |
| // Checking for overlapping virtual and load addresses only needs to take |
| // into account SHF_ALLOC sections since others will not be loaded. |
| // Furthermore, we also need to skip SHF_TLS sections since these will be |
| // mapped to other addresses at runtime and can therefore have overlapping |
| // ranges in the file. |
| std::vector<SectionOffset> vmas; |
| for (OutputSection *sec : outputSections) |
| if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) |
| vmas.push_back({sec, sec->addr}); |
| checkOverlap("virtual address", vmas, true); |
| |
| // Finally, check that the load addresses don't overlap. This will usually be |
| // the same as the virtual addresses but can be different when using a linker |
| // script with AT(). |
| std::vector<SectionOffset> lmas; |
| for (OutputSection *sec : outputSections) |
| if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) |
| lmas.push_back({sec, sec->getLMA()}); |
| checkOverlap("load address", lmas, false); |
| } |
| |
| // The entry point address is chosen in the following ways. |
| // |
| // 1. the '-e' entry command-line option; |
| // 2. the ENTRY(symbol) command in a linker control script; |
| // 3. the value of the symbol _start, if present; |
| // 4. the number represented by the entry symbol, if it is a number; |
| // 5. the address of the first byte of the .text section, if present; |
| // 6. the address 0. |
| static uint64_t getEntryAddr() { |
| // Case 1, 2 or 3 |
| if (Symbol *b = symtab->find(config->entry)) |
| return b->getVA(); |
| |
| // Case 4 |
| uint64_t addr; |
| if (to_integer(config->entry, addr)) |
| return addr; |
| |
| // Case 5 |
| if (OutputSection *sec = findSection(".text")) { |
| if (config->warnMissingEntry) |
| warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + |
| utohexstr(sec->addr)); |
| return sec->addr; |
| } |
| |
| // Case 6 |
| if (config->warnMissingEntry) |
| warn("cannot find entry symbol " + config->entry + |
| "; not setting start address"); |
| return 0; |
| } |
| |
| static uint16_t getELFType() { |
| if (config->isPic) |
| return ET_DYN; |
| if (config->relocatable) |
| return ET_REL; |
| return ET_EXEC; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| writeEhdr<ELFT>(Out::bufferStart, *mainPart); |
| writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); |
| |
| auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); |
| eHdr->e_type = getELFType(); |
| eHdr->e_entry = getEntryAddr(); |
| eHdr->e_shoff = sectionHeaderOff; |
| |
| // Write the section header table. |
| // |
| // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum |
| // and e_shstrndx fields. When the value of one of these fields exceeds |
| // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and |
| // use fields in the section header at index 0 to store |
| // the value. The sentinel values and fields are: |
| // e_shnum = 0, SHdrs[0].sh_size = number of sections. |
| // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. |
| auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); |
| size_t num = outputSections.size() + 1; |
| if (num >= SHN_LORESERVE) |
| sHdrs->sh_size = num; |
| else |
| eHdr->e_shnum = num; |
| |
| uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; |
| if (strTabIndex >= SHN_LORESERVE) { |
| sHdrs->sh_link = strTabIndex; |
| eHdr->e_shstrndx = SHN_XINDEX; |
| } else { |
| eHdr->e_shstrndx = strTabIndex; |
| } |
| |
| for (OutputSection *sec : outputSections) |
| sec->writeHeaderTo<ELFT>(++sHdrs); |
| } |
| |
| // Open a result file. |
| template <class ELFT> void Writer<ELFT>::openFile() { |
| uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; |
| if (fileSize != size_t(fileSize) || maxSize < fileSize) { |
| error("output file too large: " + Twine(fileSize) + " bytes"); |
| return; |
| } |
| |
| unlinkAsync(config->outputFile); |
| unsigned flags = 0; |
| if (!config->relocatable) |
| flags = FileOutputBuffer::F_executable; |
| Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = |
| FileOutputBuffer::create(config->outputFile, fileSize, flags); |
| |
| if (!bufferOrErr) { |
| error("failed to open " + config->outputFile + ": " + |
| llvm::toString(bufferOrErr.takeError())); |
| return; |
| } |
| buffer = std::move(*bufferOrErr); |
| Out::bufferStart = buffer->getBufferStart(); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { |
| for (OutputSection *sec : outputSections) |
| if (sec->flags & SHF_ALLOC) |
| sec->writeTo<ELFT>(Out::bufferStart + sec->offset); |
| } |
| |
| static void fillTrap(uint8_t *i, uint8_t *end) { |
| for (; i + 4 <= end; i += 4) |
| memcpy(i, &target->trapInstr, 4); |
| } |
| |
| // Fill the last page of executable segments with trap instructions |
| // instead of leaving them as zero. Even though it is not required by any |
| // standard, it is in general a good thing to do for security reasons. |
| // |
| // We'll leave other pages in segments as-is because the rest will be |
| // overwritten by output sections. |
| template <class ELFT> void Writer<ELFT>::writeTrapInstr() { |
| if (!config->zSeparateCode) |
| return; |
| |
| for (Partition &part : partitions) { |
| // Fill the last page. |
| for (PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) |
| fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, |
| config->commonPageSize), |
| Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, |
| config->commonPageSize)); |
| |
| // Round up the file size of the last segment to the page boundary iff it is |
| // an executable segment to ensure that other tools don't accidentally |
| // trim the instruction padding (e.g. when stripping the file). |
| PhdrEntry *last = nullptr; |
| for (PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD) |
| last = p; |
| |
| if (last && (last->p_flags & PF_X)) |
| last->p_memsz = last->p_filesz = |
| alignTo(last->p_filesz, config->commonPageSize); |
| } |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| // In -r or -emit-relocs mode, write the relocation sections first as in |
| // ELf_Rel targets we might find out that we need to modify the relocated |
| // section while doing it. |
| for (OutputSection *sec : outputSections) |
| if (sec->type == SHT_REL || sec->type == SHT_RELA) |
| sec->writeTo<ELFT>(Out::bufferStart + sec->offset); |
| |
| for (OutputSection *sec : outputSections) |
| if (sec->type != SHT_REL && sec->type != SHT_RELA) |
| sec->writeTo<ELFT>(Out::bufferStart + sec->offset); |
| } |
| |
| // Split one uint8 array into small pieces of uint8 arrays. |
| static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, |
| size_t chunkSize) { |
| std::vector<ArrayRef<uint8_t>> ret; |
| while (arr.size() > chunkSize) { |
| ret.push_back(arr.take_front(chunkSize)); |
| arr = arr.drop_front(chunkSize); |
| } |
| if (!arr.empty()) |
| ret.push_back(arr); |
| return ret; |
| } |
| |
| // Computes a hash value of Data using a given hash function. |
| // In order to utilize multiple cores, we first split data into 1MB |
| // chunks, compute a hash for each chunk, and then compute a hash value |
| // of the hash values. |
| static void |
| computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, |
| llvm::ArrayRef<uint8_t> data, |
| std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { |
| std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); |
| std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); |
| |
| // Compute hash values. |
| parallelForEachN(0, chunks.size(), [&](size_t i) { |
| hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); |
| }); |
| |
| // Write to the final output buffer. |
| hashFn(hashBuf.data(), hashes); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeBuildId() { |
| if (!mainPart->buildId || !mainPart->buildId->getParent()) |
| return; |
| |
| if (config->buildId == BuildIdKind::Hexstring) { |
| for (Partition &part : partitions) |
| part.buildId->writeBuildId(config->buildIdVector); |
| return; |
| } |
| |
| // Compute a hash of all sections of the output file. |
| size_t hashSize = mainPart->buildId->hashSize; |
| std::vector<uint8_t> buildId(hashSize); |
| llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; |
| |
| switch (config->buildId) { |
| case BuildIdKind::Fast: |
| computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { |
| write64le(dest, xxHash64(arr)); |
| }); |
| break; |
| case BuildIdKind::Md5: |
| computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { |
| memcpy(dest, MD5::hash(arr).data(), hashSize); |
| }); |
| break; |
| case BuildIdKind::Sha1: |
| computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { |
| memcpy(dest, SHA1::hash(arr).data(), hashSize); |
| }); |
| break; |
| case BuildIdKind::Uuid: |
| if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) |
| error("entropy source failure: " + ec.message()); |
| break; |
| default: |
| llvm_unreachable("unknown BuildIdKind"); |
| } |
| for (Partition &part : partitions) |
| part.buildId->writeBuildId(buildId); |
| } |
| |
| template void elf::createSyntheticSections<ELF32LE>(); |
| template void elf::createSyntheticSections<ELF32BE>(); |
| template void elf::createSyntheticSections<ELF64LE>(); |
| template void elf::createSyntheticSections<ELF64BE>(); |
| |
| template void elf::writeResult<ELF32LE>(); |
| template void elf::writeResult<ELF32BE>(); |
| template void elf::writeResult<ELF64LE>(); |
| template void elf::writeResult<ELF64BE>(); |