blob: 3f87c286f1d147ae44c4a4a6f1f76860082eaf3f [file] [log] [blame]
//=== JSONExpr.cpp - JSON expressions, parsing and serialization - C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
#include "JSONExpr.h"
#include "llvm/Support/Format.h"
#include <cctype>
using namespace llvm;
namespace clang {
namespace clangd {
namespace json {
void Expr::copyFrom(const Expr &M) {
Type = M.Type;
switch (Type) {
case T_Null:
case T_Boolean:
case T_Number:
memcpy(Union.buffer, M.Union.buffer, sizeof(Union.buffer));
break;
case T_StringRef:
create<StringRef>(M.as<StringRef>());
break;
case T_String:
create<std::string>(M.as<std::string>());
break;
case T_Object:
create<ObjectExpr>(M.as<ObjectExpr>());
break;
case T_Array:
create<ArrayExpr>(M.as<ArrayExpr>());
break;
}
}
void Expr::moveFrom(const Expr &&M) {
Type = M.Type;
switch (Type) {
case T_Null:
case T_Boolean:
case T_Number:
memcpy(Union.buffer, M.Union.buffer, sizeof(Union.buffer));
break;
case T_StringRef:
create<StringRef>(M.as<StringRef>());
break;
case T_String:
create<std::string>(std::move(M.as<std::string>()));
M.Type = T_Null;
break;
case T_Object:
create<ObjectExpr>(std::move(M.as<ObjectExpr>()));
M.Type = T_Null;
break;
case T_Array:
create<ArrayExpr>(std::move(M.as<ArrayExpr>()));
M.Type = T_Null;
break;
}
}
void Expr::destroy() {
switch (Type) {
case T_Null:
case T_Boolean:
case T_Number:
break;
case T_StringRef:
as<StringRef>().~StringRef();
break;
case T_String:
as<std::string>().~basic_string();
break;
case T_Object:
as<ObjectExpr>().~ObjectExpr();
break;
case T_Array:
as<ArrayExpr>().~ArrayExpr();
break;
}
}
namespace {
// Simple recursive-descent JSON parser.
class Parser {
public:
Parser(StringRef JSON)
: Start(JSON.begin()), P(JSON.begin()), End(JSON.end()) {}
bool parseExpr(Expr &Out);
bool assertEnd() {
eatWhitespace();
if (P == End)
return true;
return parseError("Text after end of document");
}
Error takeError() {
assert(Err);
return std::move(*Err);
}
private:
void eatWhitespace() {
while (P != End && (*P == ' ' || *P == '\r' || *P == '\n' || *P == '\t'))
++P;
}
// On invalid syntax, parseX() functions return false and set Err.
bool parseNumber(char First, double &Out);
bool parseString(std::string &Out);
bool parseUnicode(std::string &Out);
bool parseError(const char *Msg); // always returns false
char next() { return P == End ? 0 : *P++; }
char peek() { return P == End ? 0 : *P; }
static bool isNumber(char C) {
return C == '0' || C == '1' || C == '2' || C == '3' || C == '4' ||
C == '5' || C == '6' || C == '7' || C == '8' || C == '9' ||
C == 'e' || C == 'E' || C == '+' || C == '-' || C == '.';
}
static void encodeUtf8(uint32_t Rune, std::string &Out);
Optional<Error> Err;
const char *Start, *P, *End;
};
bool Parser::parseExpr(Expr &Out) {
eatWhitespace();
if (P == End)
return parseError("Unexpected EOF");
switch (char C = next()) {
// Bare null/true/false are easy - first char identifies them.
case 'n':
Out = nullptr;
return (next() == 'u' && next() == 'l' && next() == 'l') ||
parseError("Invalid bareword");
case 't':
Out = true;
return (next() == 'r' && next() == 'u' && next() == 'e') ||
parseError("Invalid bareword");
case 'f':
Out = false;
return (next() == 'a' && next() == 'l' && next() == 's' && next() == 'e') ||
parseError("Invalid bareword");
case '"': {
std::string S;
if (parseString(S)) {
Out = std::move(S);
return true;
}
return false;
}
case '[': {
Out = json::ary{};
json::ary &A = *Out.asArray();
eatWhitespace();
if (peek() == ']') {
++P;
return true;
}
for (;;) {
A.emplace_back(nullptr);
if (!parseExpr(A.back()))
return false;
eatWhitespace();
switch (next()) {
case ',':
eatWhitespace();
continue;
case ']':
return true;
default:
return parseError("Expected , or ] after array element");
}
}
}
case '{': {
Out = json::obj{};
json::obj &O = *Out.asObject();
eatWhitespace();
if (peek() == '}') {
++P;
return true;
}
for (;;) {
if (next() != '"')
return parseError("Expected object key");
std::string K;
if (!parseString(K))
return false;
eatWhitespace();
if (next() != ':')
return parseError("Expected : after object key");
eatWhitespace();
if (!parseExpr(O[std::move(K)]))
return false;
eatWhitespace();
switch (next()) {
case ',':
eatWhitespace();
continue;
case '}':
return true;
default:
return parseError("Expected , or } after object property");
}
}
}
default:
if (isNumber(C)) {
double Num;
if (parseNumber(C, Num)) {
Out = Num;
return true;
} else {
return false;
}
}
return parseError("Expected JSON value");
}
}
bool Parser::parseNumber(char First, double &Out) {
SmallString<24> S;
S.push_back(First);
while (isNumber(peek()))
S.push_back(next());
char *End;
Out = std::strtod(S.c_str(), &End);
return End == S.end() || parseError("Invalid number");
}
bool Parser::parseString(std::string &Out) {
// leading quote was already consumed.
for (char C = next(); C != '"'; C = next()) {
if (LLVM_UNLIKELY(P == End))
return parseError("Unterminated string");
if (LLVM_UNLIKELY((C & 0x1f) == C))
return parseError("Control character in string");
if (LLVM_LIKELY(C != '\\')) {
Out.push_back(C);
continue;
}
// Handle escape sequence.
switch (C = next()) {
case '"':
case '\\':
case '/':
Out.push_back(C);
break;
case 'b':
Out.push_back('\b');
break;
case 'f':
Out.push_back('\f');
break;
case 'n':
Out.push_back('\n');
break;
case 'r':
Out.push_back('\r');
break;
case 't':
Out.push_back('\t');
break;
case 'u':
if (!parseUnicode(Out))
return false;
break;
default:
return parseError("Invalid escape sequence");
}
}
return true;
}
void Parser::encodeUtf8(uint32_t Rune, std::string &Out) {
if (Rune <= 0x7F) {
Out.push_back(Rune & 0x7F);
} else if (Rune <= 0x7FF) {
uint8_t FirstByte = 0xC0 | ((Rune & 0x7C0) >> 6);
uint8_t SecondByte = 0x80 | (Rune & 0x3F);
Out.push_back(FirstByte);
Out.push_back(SecondByte);
} else if (Rune <= 0xFFFF) {
uint8_t FirstByte = 0xE0 | ((Rune & 0xF000) >> 12);
uint8_t SecondByte = 0x80 | ((Rune & 0xFC0) >> 6);
uint8_t ThirdByte = 0x80 | (Rune & 0x3F);
Out.push_back(FirstByte);
Out.push_back(SecondByte);
Out.push_back(ThirdByte);
} else if (Rune <= 0x10FFFF) {
uint8_t FirstByte = 0xF0 | ((Rune & 0x1F0000) >> 18);
uint8_t SecondByte = 0x80 | ((Rune & 0x3F000) >> 12);
uint8_t ThirdByte = 0x80 | ((Rune & 0xFC0) >> 6);
uint8_t FourthByte = 0x80 | (Rune & 0x3F);
Out.push_back(FirstByte);
Out.push_back(SecondByte);
Out.push_back(ThirdByte);
Out.push_back(FourthByte);
} else {
llvm_unreachable("Invalid codepoint");
}
}
// Parse a \uNNNN escape sequence, the \u have already been consumed.
// May parse multiple escapes in the presence of surrogate pairs.
bool Parser::parseUnicode(std::string &Out) {
// Note that invalid unicode is not a JSON error. It gets replaced by U+FFFD.
auto Invalid = [&] { Out.append(/* UTF-8 */ {'\xef', '\xbf', '\xbd'}); };
auto Parse4Hex = [this](uint16_t &Out) {
Out = 0;
char Bytes[] = {next(), next(), next(), next()};
for (unsigned char C : Bytes) {
if (!std::isxdigit(C))
return parseError("Invalid \\u escape sequence");
Out <<= 4;
Out |= (C > '9') ? (C & ~0x20) - 'A' + 10 : (C - '0');
}
return true;
};
uint16_t First;
if (!Parse4Hex(First))
return false;
// We loop to allow proper surrogate-pair error handling.
while (true) {
if (LLVM_LIKELY(First < 0xD800 || First >= 0xE000)) { // BMP.
encodeUtf8(First, Out);
return true;
}
if (First >= 0xDC00) {
Invalid(); // Lone trailing surrogate.
return true;
}
// We have a leading surrogate, and need a trailing one.
// Don't advance P: a lone surrogate is valid JSON (but invalid unicode)
if (P + 2 > End || *P != '\\' || *(P + 1) != 'u') {
Invalid(); // Lone leading not followed by \u...
return true;
}
P += 2;
uint16_t Second;
if (!Parse4Hex(Second))
return false;
if (Second < 0xDC00 || Second >= 0xE000) {
Invalid(); // Leading surrogate not followed by trailing.
First = Second; // Second escape still needs to be processed.
continue;
}
// Valid surrogate pair.
encodeUtf8(0x10000 | ((First - 0xD800) << 10) | (Second - 0xDC00), Out);
return true;
}
}
bool Parser::parseError(const char *Msg) {
int Line = 1;
const char *StartOfLine = Start;
for (const char *X = Start; X < P; ++X) {
if (*X == 0x0A) {
++Line;
StartOfLine = X + 1;
}
}
Err.emplace(
llvm::make_unique<ParseError>(Msg, Line, P - StartOfLine, P - Start));
return false;
}
} // namespace
Expected<Expr> parse(StringRef JSON) {
Parser P(JSON);
json::Expr E = nullptr;
if (P.parseExpr(E))
if (P.assertEnd())
return std::move(E);
return P.takeError();
}
char ParseError::ID = 0;
} // namespace json
} // namespace clangd
} // namespace clang
namespace {
void quote(llvm::raw_ostream &OS, llvm::StringRef S) {
OS << '\"';
for (unsigned char C : S) {
if (C == 0x22 || C == 0x5C)
OS << '\\';
if (C >= 0x20) {
OS << C;
continue;
}
OS << '\\';
switch (C) {
// A few characters are common enough to make short escapes worthwhile.
case '\t':
OS << 't';
break;
case '\n':
OS << 'n';
break;
case '\r':
OS << 'r';
break;
default:
OS << 'u';
llvm::write_hex(OS, C, llvm::HexPrintStyle::Lower, 4);
break;
}
}
OS << '\"';
}
enum IndenterAction {
Indent,
Outdent,
Newline,
Space,
};
} // namespace
// Prints JSON. The indenter can be used to control formatting.
template <typename Indenter>
void clang::clangd::json::Expr::print(raw_ostream &OS,
const Indenter &I) const {
switch (Type) {
case T_Null:
OS << "null";
break;
case T_Boolean:
OS << (as<bool>() ? "true" : "false");
break;
case T_Number:
OS << format("%g", as<double>());
break;
case T_StringRef:
quote(OS, as<StringRef>());
break;
case T_String:
quote(OS, as<std::string>());
break;
case T_Object: {
bool Comma = false;
OS << '{';
I(Indent);
for (const auto &P : as<Expr::ObjectExpr>()) {
if (Comma)
OS << ',';
Comma = true;
I(Newline);
quote(OS, P.first);
OS << ':';
I(Space);
P.second.print(OS, I);
}
I(Outdent);
if (Comma)
I(Newline);
OS << '}';
break;
}
case T_Array: {
bool Comma = false;
OS << '[';
I(Indent);
for (const auto &E : as<Expr::ArrayExpr>()) {
if (Comma)
OS << ',';
Comma = true;
I(Newline);
E.print(OS, I);
}
I(Outdent);
if (Comma)
I(Newline);
OS << ']';
break;
}
}
}
namespace clang {
namespace clangd {
namespace json {
llvm::raw_ostream &operator<<(raw_ostream &OS, const Expr &E) {
E.print(OS, [](IndenterAction A) { /*ignore*/ });
return OS;
}
bool operator==(const Expr &L, const Expr &R) {
if (L.kind() != R.kind())
return false;
switch (L.kind()) {
case Expr::Null:
return *L.asNull() == *R.asNull();
case Expr::Boolean:
return *L.asBoolean() == *R.asBoolean();
case Expr::Number:
return *L.asNumber() == *R.asNumber();
case Expr::String:
return *L.asString() == *R.asString();
case Expr::Array:
return *L.asArray() == *R.asArray();
case Expr::Object:
return *L.asObject() == *R.asObject();
}
llvm_unreachable("Unknown expression kind");
}
} // namespace json
} // namespace clangd
} // namespace clang
void llvm::format_provider<clang::clangd::json::Expr>::format(
const clang::clangd::json::Expr &E, raw_ostream &OS, StringRef Options) {
if (Options.empty()) {
OS << E;
return;
}
unsigned IndentAmount = 0;
if (Options.getAsInteger(/*Radix=*/10, IndentAmount))
assert(false && "json::Expr format options should be an integer");
unsigned IndentLevel = 0;
E.print(OS, [&](IndenterAction A) {
switch (A) {
case Newline:
OS << '\n';
OS.indent(IndentLevel);
break;
case Space:
OS << ' ';
break;
case Indent:
IndentLevel += IndentAmount;
break;
case Outdent:
IndentLevel -= IndentAmount;
break;
};
});
}