blob: 3982ed4ecec700fa4d1eff86fa5121d8c260047c [file] [log] [blame]
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/space.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> LatencyVectorFma(
"polly-target-latency-vector-fma",
cl::desc("The minimal number of cycles between issuing two "
"dependent consecutive vector fused multiply-add "
"instructions."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> ThroughputVectorFma(
"polly-target-throughput-vector-fma",
cl::desc("A throughput of the processor floating-point arithmetic units "
"expressed in the number of vector fused multiply-add "
"instructions per clock cycle."),
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified. Such an approach helps
// also to attain the high-performance on IBM POWER System S822 and IBM Power
// 730 Express server.
static cl::opt<int> FirstCacheLevelAssociativity(
"polly-target-1st-cache-level-associativity",
cl::desc("The associativity of the first cache level."), cl::Hidden,
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelAssociativity(
"polly-target-2nd-cache-level-associativity",
cl::desc("The associativity of the second cache level."), cl::Hidden,
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelSize(
"polly-target-1st-cache-level-size",
cl::desc("The size of the first cache level specified in bytes."),
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelSize(
"polly-target-2nd-cache-level-size",
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> VectorRegisterBitwidth(
"polly-target-vector-register-bitwidth",
cl::desc("The size in bits of a vector register (if not set, this "
"information is taken from LLVM's target information."),
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PollyPatternMatchingNcQuotient(
"polly-pattern-matching-nc-quotient",
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
"macro-kernel, by Nr, the parameter of the micro-kernel"),
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
/// Create an isl::union_set, which describes the isolate option based on
/// IsolateDomain.
///
/// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
/// belong to the current band node.
/// @param OutDimsNum A number of dimensions that should belong to
/// the current band node.
static isl::union_set getIsolateOptions(isl::set IsolateDomain,
unsigned OutDimsNum) {
unsigned Dims = IsolateDomain.dim(isl::dim::set);
assert(OutDimsNum <= Dims &&
"The isl::set IsolateDomain is used to describe the range of schedule "
"dimensions values, which should be isolated. Consequently, the "
"number of its dimensions should be greater than or equal to the "
"number of the schedule dimensions.");
isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
Dims - OutDimsNum, OutDimsNum);
isl::set IsolateOption = IsolateRelation.wrap();
isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
IsolateOption = IsolateOption.set_tuple_id(Id);
return isl::union_set(IsolateOption);
}
/// Create an isl::union_set, which describes the atomic option for the
/// dimension of the current node.
///
/// It may help to reduce the size of generated code.
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getAtomicOptions(isl::ctx Ctx) {
isl::space Space(Ctx, 0, 1);
isl::set AtomicOption = isl::set::universe(Space);
isl::id Id = isl::id::alloc(Ctx, "atomic", nullptr);
AtomicOption = AtomicOption.set_tuple_id(Id);
return isl::union_set(AtomicOption);
}
/// Create an isl::union_set, which describes the option of the form
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
isl::space Space = isl::space(Ctx, 0, 0, 1);
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
return UnrollIsolatedSetOption.wrap();
}
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
///
/// @param Set A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
unsigned Dims = Set.dim(isl::dim::set);
isl::space Space = Set.get_space();
isl::local_space LocalSpace = isl::local_space(Space);
isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(0);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
Set = Set.add_constraint(ExtConstr);
ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
return Set.add_constraint(ExtConstr);
}
/// Build the desired set of partial tile prefixes.
///
/// We build a set of partial tile prefixes, which are prefixes of the vector
/// loop that have exactly VectorWidth iterations.
///
/// 1. Get all prefixes of the vector loop.
/// 2. Extend it to a set, which has exactly VectorWidth iterations for
/// any prefix from the set that was built on the previous step.
/// 3. Subtract loop domain from it, project out the vector loop dimension and
/// get a set of prefixes, which don't have exactly VectorWidth iterations.
/// 4. Subtract it from all prefixes of the vector loop and get the desired
/// set.
///
/// @param ScheduleRange A range of a map, which describes a prefix schedule
/// relation.
static isl::set getPartialTilePrefixes(isl::set ScheduleRange,
int VectorWidth) {
unsigned Dims = ScheduleRange.dim(isl::dim::set);
isl::set LoopPrefixes = ScheduleRange.project_out(isl::dim::set, Dims - 1, 1);
isl::set ExtentPrefixes = LoopPrefixes.add_dims(isl::dim::set, 1);
ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
return LoopPrefixes.subtract(BadPrefixes);
}
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
isl::set ScheduleRange = ScheduleRelation.range();
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
isl::union_set AtomicOption = getAtomicOptions(IsolateDomain.get_ctx());
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
Node = Node.band_set_ast_build_options(Options);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
unsigned DimToVectorize,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
auto Space = isl_schedule_node_band_get_space(Node);
auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl_schedule_node_band_split(Node, DimToVectorize);
Node = isl_schedule_node_child(Node, 0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl_schedule_node_band_split(Node, 1);
Space = isl_schedule_node_band_get_space(Node);
auto Sizes = isl_multi_val_zero(Space);
auto Ctx = isl_schedule_node_get_ctx(Node);
Sizes =
isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
Node = isl_schedule_node_band_tile(Node, Sizes);
Node = isolateFullPartialTiles(give(Node), VectorWidth).release();
Node = isl_schedule_node_child(Node, 0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = isl_schedule_node_band_set_ast_build_options(
Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
Node = isl_schedule_node_band_sink(Node);
Node = isl_schedule_node_child(Node, 0);
if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
Node = isl_schedule_node_parent(Node);
isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
Node = isl_schedule_node_insert_mark(Node, LoopMarker);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
const char *Identifier, ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto Ctx = isl_schedule_node_get_ctx(Node);
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
auto Sizes = isl_multi_val_zero(Space);
std::string IdentifierString(Identifier);
for (unsigned i = 0; i < Dims; i++) {
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
}
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
isl_id *TileLoopMarker =
isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
Node = isl_schedule_node_child(Node, 0);
Node = isl_schedule_node_band_tile(Node, Sizes);
Node = isl_schedule_node_child(Node, 0);
auto PointLoopMarkerStr = IdentifierString + " - Points";
isl_id *PointLoopMarker =
isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
Node = isl_schedule_node_child(Node, 0);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
llvm::ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto *Ctx = isl_schedule_node_get_ctx(Node);
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
Node = isl_schedule_node_band_set_ast_build_options(
Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
return Node;
}
namespace {
bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.keep()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.keep()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).keep());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.keep()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.keep()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).keep()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
} // namespace
bool ScheduleTreeOptimizer::isTileableBandNode(
__isl_keep isl_schedule_node *Node) {
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node))
return false;
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
if (Dims <= 1)
return false;
auto ManagedNode = isl::manage(isl_schedule_node_copy(Node));
return isSimpleInnermostBand(ManagedNode);
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
void *User) {
if (FirstLevelTiling)
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
if (SecondLevelTiling)
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
if (RegisterTiling)
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Node;
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
for (int i = Dims - 1; i >= 0; i--)
if (isl_schedule_node_band_member_get_coincident(Node, i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
/// Get the position of a dimension with a non-zero coefficient.
///
/// Check that isl constraint @p Constraint has only one non-zero
/// coefficient for dimensions that have type @p DimType. If this is true,
/// return the position of the dimension corresponding to the non-zero
/// coefficient and negative value, otherwise.
///
/// @param Constraint The isl constraint to be checked.
/// @param DimType The type of the dimensions.
/// @return The position of the dimension in case the isl
/// constraint satisfies the requirements, a negative
/// value, otherwise.
static int getMatMulConstraintDim(__isl_keep isl_constraint *Constraint,
enum isl_dim_type DimType) {
int DimPos = -1;
auto *LocalSpace = isl_constraint_get_local_space(Constraint);
int LocalSpaceDimNum = isl_local_space_dim(LocalSpace, DimType);
for (int i = 0; i < LocalSpaceDimNum; i++) {
auto *Val = isl_constraint_get_coefficient_val(Constraint, DimType, i);
if (isl_val_is_zero(Val)) {
isl_val_free(Val);
continue;
}
if (DimPos >= 0 || (DimType == isl_dim_out && !isl_val_is_one(Val)) ||
(DimType == isl_dim_in && !isl_val_is_negone(Val))) {
isl_val_free(Val);
isl_local_space_free(LocalSpace);
return -1;
}
DimPos = i;
isl_val_free(Val);
}
isl_local_space_free(LocalSpace);
return DimPos;
}
/// Check the form of the isl constraint.
///
/// Check that the @p DimInPos input dimension of the isl constraint
/// @p Constraint has a coefficient that is equal to negative one, the @p
/// DimOutPos has a coefficient that is equal to one and others
/// have coefficients equal to zero.
///
/// @param Constraint The isl constraint to be checked.
/// @param DimInPos The input dimension of the isl constraint.
/// @param DimOutPos The output dimension of the isl constraint.
/// @return isl_stat_ok in case the isl constraint satisfies
/// the requirements, isl_stat_error otherwise.
static isl_stat isMatMulOperandConstraint(__isl_keep isl_constraint *Constraint,
int &DimInPos, int &DimOutPos) {
auto *Val = isl_constraint_get_constant_val(Constraint);
if (!isl_constraint_is_equality(Constraint) || !isl_val_is_zero(Val)) {
isl_val_free(Val);
return isl_stat_error;
}
isl_val_free(Val);
DimInPos = getMatMulConstraintDim(Constraint, isl_dim_in);
if (DimInPos < 0)
return isl_stat_error;
DimOutPos = getMatMulConstraintDim(Constraint, isl_dim_out);
if (DimOutPos < 0)
return isl_stat_error;
return isl_stat_ok;
}
/// Check that the access relation corresponds to a non-constant operand
/// of the matrix multiplication.
///
/// Access relations that correspond to non-constant operands of the matrix
/// multiplication depend only on two input dimensions and have two output
/// dimensions. The function checks that the isl basic map @p bmap satisfies
/// the requirements. The two input dimensions can be specified via @p user
/// array.
///
/// @param bmap The isl basic map to be checked.
/// @param user The input dimensions of @p bmap.
/// @return isl_stat_ok in case isl basic map satisfies the requirements,
/// isl_stat_error otherwise.
static isl_stat isMatMulOperandBasicMap(__isl_take isl_basic_map *bmap,
void *user) {
auto *Constraints = isl_basic_map_get_constraint_list(bmap);
isl_basic_map_free(bmap);
if (isl_constraint_list_n_constraint(Constraints) != 2) {
isl_constraint_list_free(Constraints);
return isl_stat_error;
}
int InPosPair[] = {-1, -1};
auto DimInPos = user ? static_cast<int *>(user) : InPosPair;
for (int i = 0; i < 2; i++) {
auto *Constraint = isl_constraint_list_get_constraint(Constraints, i);
int InPos, OutPos;
if (isMatMulOperandConstraint(Constraint, InPos, OutPos) ==
isl_stat_error ||
OutPos > 1 || (DimInPos[OutPos] >= 0 && DimInPos[OutPos] != InPos)) {
isl_constraint_free(Constraint);
isl_constraint_list_free(Constraints);
return isl_stat_error;
}
DimInPos[OutPos] = InPos;
isl_constraint_free(Constraint);
}
isl_constraint_list_free(Constraints);
return isl_stat_ok;
}
/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos The first dimension.
/// @param SrcPos The second dimension.
/// @return The modified map.
__isl_give isl_map *permuteDimensions(__isl_take isl_map *Map,
enum isl_dim_type DimType,
unsigned DstPos, unsigned SrcPos) {
assert(DstPos < isl_map_dim(Map, DimType) &&
SrcPos < isl_map_dim(Map, DimType));
if (DstPos == SrcPos)
return Map;
isl_id *DimId = nullptr;
if (isl_map_has_tuple_id(Map, DimType))
DimId = isl_map_get_tuple_id(Map, DimType);
auto FreeDim = DimType == isl_dim_in ? isl_dim_out : isl_dim_in;
isl_id *FreeDimId = nullptr;
if (isl_map_has_tuple_id(Map, FreeDim))
FreeDimId = isl_map_get_tuple_id(Map, FreeDim);
auto MaxDim = std::max(DstPos, SrcPos);
auto MinDim = std::min(DstPos, SrcPos);
Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MaxDim, 1);
Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MinDim, 1);
Map = isl_map_move_dims(Map, DimType, MinDim, FreeDim, 1, 1);
Map = isl_map_move_dims(Map, DimType, MaxDim, FreeDim, 0, 1);
if (DimId)
Map = isl_map_set_tuple_id(Map, DimType, DimId);
if (FreeDimId)
Map = isl_map_set_tuple_id(Map, FreeDim, FreeDimId);
return Map;
}
/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap The access relation to be checked.
/// @param FirstPos The index of the input dimension that is mapped to
/// the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
/// second output dimension.
/// @return True in case @p AccMap has the expected form and false,
/// otherwise.
static bool isMatMulOperandAcc(__isl_keep isl_map *AccMap, int &FirstPos,
int &SecondPos) {
int DimInPos[] = {FirstPos, SecondPos};
if (isl_map_foreach_basic_map(AccMap, isMatMulOperandBasicMap,
static_cast<void *>(DimInPos)) != isl_stat_ok ||
DimInPos[0] < 0 || DimInPos[1] < 0)
return false;
FirstPos = DimInPos[0];
SecondPos = DimInPos[1];
return true;
}
/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the memory access represents the read access
/// to a non-scalar operand of the matrix multiplication and
/// false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
MatMulInfoTy &MMI) {
if (!MemAccess->isArrayKind() || !MemAccess->isRead())
return false;
isl_map *AccMap = MemAccess->getAccessRelation();
if (isMatMulOperandAcc(AccMap, MMI.i, MMI.j) && !MMI.ReadFromC &&
isl_map_n_basic_map(AccMap) == 1) {
MMI.ReadFromC = MemAccess;
isl_map_free(AccMap);
return true;
}
if (isMatMulOperandAcc(AccMap, MMI.i, MMI.k) && !MMI.A &&
isl_map_n_basic_map(AccMap) == 1) {
MMI.A = MemAccess;
isl_map_free(AccMap);
return true;
}
if (isMatMulOperandAcc(AccMap, MMI.k, MMI.j) && !MMI.B &&
isl_map_n_basic_map(AccMap) == 1) {
MMI.B = MemAccess;
isl_map_free(AccMap);
return true;
}
isl_map_free(AccMap);
return false;
}
/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param PartialSchedule The partial schedule of the SCoP statement.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the corresponding SCoP statement
/// represents matrix multiplication and false,
/// otherwise.
static bool containsOnlyMatrMultAcc(__isl_keep isl_map *PartialSchedule,
MatMulInfoTy &MMI) {
auto *InputDimId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimId));
isl_id_free(InputDimId);
unsigned OutDimNum = isl_map_dim(PartialSchedule, isl_dim_out);
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
auto *MapI = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
MMI.i, OutDimNum - 1);
auto *MapJ = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
MMI.j, OutDimNum - 1);
auto *MapK = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
MMI.k, OutDimNum - 1);
for (auto *MemA = Stmt->begin(); MemA != Stmt->end() - 1; MemA++) {
auto *MemAccessPtr = *MemA;
if (MemAccessPtr->isArrayKind() && MemAccessPtr != MMI.WriteToC &&
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
!(MemAccessPtr->isStrideZero(isl_map_copy(MapI)) &&
MemAccessPtr->isStrideZero(isl_map_copy(MapJ)) &&
MemAccessPtr->isStrideZero(isl_map_copy(MapK)))) {
isl_map_free(MapI);
isl_map_free(MapJ);
isl_map_free(MapK);
return false;
}
}
isl_map_free(MapI);
isl_map_free(MapJ);
isl_map_free(MapK);
return true;
}
/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param Schedule The schedule of the SCoP statement.
/// @param D The SCoP dependencies.
/// @param Pos The parameter to describe an acceptable true dependence.
/// In case it has a negative value, try to determine its
/// acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
/// and false, otherwise.
static bool containsOnlyMatMulDep(__isl_keep isl_map *Schedule,
const Dependences *D, int &Pos) {
auto *Dep = D->getDependences(Dependences::TYPE_RAW);
auto *Red = D->getDependences(Dependences::TYPE_RED);
if (Red)
Dep = isl_union_map_union(Dep, Red);
auto *DomainSpace = isl_space_domain(isl_map_get_space(Schedule));
auto *Space = isl_space_map_from_domain_and_range(isl_space_copy(DomainSpace),
DomainSpace);
auto *Deltas = isl_map_deltas(isl_union_map_extract_map(Dep, Space));
isl_union_map_free(Dep);
int DeltasDimNum = isl_set_dim(Deltas, isl_dim_set);
for (int i = 0; i < DeltasDimNum; i++) {
auto *Val = isl_set_plain_get_val_if_fixed(Deltas, isl_dim_set, i);
Pos = Pos < 0 && isl_val_is_one(Val) ? i : Pos;
if (isl_val_is_nan(Val) ||
!(isl_val_is_zero(Val) || (i == Pos && isl_val_is_one(Val)))) {
isl_val_free(Val);
isl_set_free(Deltas);
return false;
}
isl_val_free(Val);
}
isl_set_free(Deltas);
if (DeltasDimNum == 0 || Pos < 0)
return false;
return true;
}
/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
/// under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
/// loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
/// and all memory accesses of the SCoP that are different from MA1, MA2,
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
/// of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
/// @D The SCoP dependencies.
/// @MMI Parameters of the matrix multiplication operands.
static bool containsMatrMult(__isl_keep isl_map *PartialSchedule,
const Dependences *D, MatMulInfoTy &MMI) {
auto *InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
isl_id_free(InputDimsId);
if (Stmt->size() <= 1)
return false;
for (auto *MemA = Stmt->end() - 1; MemA != Stmt->begin(); MemA--) {
auto *MemAccessPtr = *MemA;
if (!MemAccessPtr->isArrayKind())
continue;
if (!MemAccessPtr->isWrite())
return false;
auto *AccMap = MemAccessPtr->getAccessRelation();
if (isl_map_n_basic_map(AccMap) != 1 ||
!isMatMulOperandAcc(AccMap, MMI.i, MMI.j)) {
isl_map_free(AccMap);
return false;
}
isl_map_free(AccMap);
MMI.WriteToC = MemAccessPtr;
break;
}
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
return false;
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
return false;
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
return false;
return true;
}
/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static __isl_give isl_schedule_node *
permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim,
unsigned SecondDim) {
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band &&
isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim));
auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node);
auto PartialScheduleFirstDim =
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim);
auto PartialScheduleSecondDim =
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim);
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
PartialSchedule, SecondDim, PartialScheduleFirstDim);
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
PartialSchedule, FirstDim, PartialScheduleSecondDim);
Node = isl_schedule_node_delete(Node);
Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule);
return Node;
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel(
__isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) {
applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1);
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
Node = permuteBandNodeDimensions(Node, 0, 1);
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel(
__isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) {
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
MacroKernelParams.Kc == 1)
return Node;
int DimOutNum = isl_schedule_node_band_n_member(Node);
std::vector<int> TileSizes(DimOutNum, 1);
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static struct MicroKernelParamsTy
getMicroKernelParams(const llvm::TargetTransformInfo *TTI, MatMulInfoTy MMI) {
assert(TTI && "The target transform info should be provided.");
// Nvec - Number of double-precision floating-point numbers that can be hold
// by a vector register. Use 2 by default.
long RegisterBitwidth = VectorRegisterBitwidth;
if (RegisterBitwidth == -1)
RegisterBitwidth = TTI->getRegisterBitWidth(true);
auto ElementSize = getMatMulTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
auto Nvec = RegisterBitwidth / ElementSize;
if (Nvec == 0)
Nvec = 2;
int Nr =
ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
return {Mr, Nr};
}
/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static struct MacroKernelParamsTy
getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams,
MatMulInfoTy MMI) {
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
// it requires information about the first two levels of a cache to determine
// all the parameters of a macro-kernel. It also checks that an associativity
// degree of a cache level is greater than two. Otherwise, another algorithm
// for determination of the parameters should be used.
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
return {1, 1, 1};
// The quotient should be greater than zero.
if (PollyPatternMatchingNcQuotient <= 0)
return {1, 1, 1};
int Car = floor(
(FirstCacheLevelAssociativity - 1) /
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
// Car can be computed to be zero since it is floor to int.
// On Mac OS, division by 0 does not raise a signal. This causes negative
// tile sizes to be computed. Prevent division by Cac==0 by early returning
// if this happens.
if (Car == 0)
return {1, 1, 1};
auto ElementSize = getMatMulAlignTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
int Kc = (Car * FirstCacheLevelSize) /
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
double Cac =
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
SecondCacheLevelSize;
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
"Matrix block sizes should be greater than zero");
return {Mc, Nc, Kc};
}
/// Create an access relation that is specific to
/// the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
/// the specified access relation.
/// @return The specified access relation.
__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
unsigned FirstDim, unsigned SecondDim) {
auto *Ctx = isl_map_get_ctx(MapOldIndVar);
auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
auto *AccessRel = isl_map_universe(AccessRelSpace);
AccessRel = isl_map_equate(AccessRel, isl_dim_in, FirstDim, isl_dim_out, 0);
AccessRel = isl_map_equate(AccessRel, isl_dim_in, 5, isl_dim_out, 1);
AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
return isl_map_apply_range(MapOldIndVar, AccessRel);
}
__isl_give isl_schedule_node *
createExtensionNode(__isl_take isl_schedule_node *Node,
__isl_take isl_map *ExtensionMap) {
auto *Extension = isl_union_map_from_map(ExtensionMap);
auto *NewNode = isl_schedule_node_from_extension(Extension);
return isl_schedule_node_graft_before(Node, NewNode);
}
/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern(
__isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar,
MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
isl_id_free(InputDimsId);
// Create a copy statement that corresponds to the memory access to the
// matrix B, the second operand of the matrix multiplication.
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
Node = isl_schedule_node_parent(Node);
Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0);
auto *AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 3, 7);
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
unsigned SecondDimSize = MacroParams.Kc;
unsigned ThirdDimSize = MicroParams.Nr;
auto *SAI = Stmt->getParent()->createScopArrayInfo(
MMI.B->getElementType(), "Packed_B",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
auto *OldAcc = MMI.B->getAccessRelation();
MMI.B->setNewAccessRelation(AccRel);
auto *ExtMap =
isl_map_project_out(isl_map_copy(MapOldIndVar), isl_dim_out, 2,
isl_map_dim(MapOldIndVar, isl_dim_out) - 2);
ExtMap = isl_map_reverse(ExtMap);
ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.i, 0);
auto *Domain = Stmt->getDomain();
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
auto *DomainId = isl_set_get_tuple_id(Domain);
auto *NewStmt = Stmt->getParent()->addScopStmt(
OldAcc, MMI.B->getAccessRelation(), isl_set_copy(Domain));
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, isl_id_copy(DomainId));
ExtMap = isl_map_intersect_range(ExtMap, isl_set_copy(Domain));
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
// Create a copy statement that corresponds to the memory access
// to the matrix A, the first operand of the matrix multiplication.
Node = isl_schedule_node_child(Node, 0);
AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 4, 6);
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
ThirdDimSize = MicroParams.Mr;
SAI = Stmt->getParent()->createScopArrayInfo(
MMI.A->getElementType(), "Packed_A",
{FirstDimSize, SecondDimSize, ThirdDimSize});
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
OldAcc = MMI.A->getAccessRelation();
MMI.A->setNewAccessRelation(AccRel);
ExtMap = isl_map_project_out(MapOldIndVar, isl_dim_out, 3,
isl_map_dim(MapOldIndVar, isl_dim_out) - 3);
ExtMap = isl_map_reverse(ExtMap);
ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.j, 0);
NewStmt = Stmt->getParent()->addScopStmt(OldAcc, MMI.A->getAccessRelation(),
isl_set_copy(Domain));
// Restrict the domains of the copy statements to only execute when also its
// originating statement is executed.
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, DomainId);
ExtMap = isl_map_intersect_range(ExtMap, Domain);
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
Node = createExtensionNode(Node, ExtMap);
Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
}
/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
/// of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
/// to be taken into account.
/// @return The relation mapping original induction variables to the ones
/// produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
__isl_give isl_map *
getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
MicroKernelParamsTy MicroKernelParams,
MacroKernelParamsTy MacroKernelParams) {
auto *Child = isl_schedule_node_get_child(Node, 0);
auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
isl_schedule_node_free(Child);
auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
MapOldIndVar =
isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
return MapOldIndVar;
}
/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
///
/// @param Node The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
struct MicroKernelParamsTy MicroKernelParams) {
isl::schedule_node Child = Node.get_child(0);
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
unsigned Dims = Prefix.dim(isl::dim::set);
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
isl::union_set IsolateOption =
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
isl::ctx Ctx = Node.get_ctx();
isl::union_set AtomicOption = getAtomicOptions(Ctx);
isl::union_set Options = IsolateOption.unite(AtomicOption);
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
Node = Node.band_set_ast_build_options(Options);
Node = Node.parent().parent();
IsolateOption = getIsolateOptions(Prefix, 3);
Options = IsolateOption.unite(AtomicOption);
Node = Node.band_set_ast_build_options(Options);
Node = Node.child(0).child(0);
return Node;
}
/// Mark @p BasePtr with "Inter iteration alias-free" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @param BasePtr The pointer to be marked.
/// @return The modified isl_schedule_node.
static isl_schedule_node *markInterIterationAliasFree(isl_schedule_node *Node,
llvm::Value *BasePtr) {
if (!BasePtr)
return Node;
auto *Ctx = isl_schedule_node_get_ctx(Node);
auto *Id = isl_id_alloc(Ctx, "Inter iteration alias-free", BasePtr);
return isl_schedule_node_child(isl_schedule_node_insert_mark(Node, Id), 0);
}
/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
namespace {
isl::schedule_node getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
assert(isl_schedule_node_get_type(Node.keep()) == isl_schedule_node_band);
if (isl_schedule_node_get_type(Node.child(0).keep()) !=
isl_schedule_node_leaf)
return Node;
auto Domain = isl::manage(isl_schedule_node_get_universe_domain(Node.keep()));
assert(isl_union_set_n_set(Domain.keep()) == 1);
if (isl_schedule_node_get_schedule_depth(Node.keep()) != 0 ||
(isl::set(isl::manage(Domain.copy())).dim(isl::dim::set) !=
isl_schedule_node_band_n_member(Node.keep())))
return Node;
Node = isl::manage(isl_schedule_node_delete(Node.take()));
auto PartialSchedulePwAff =
isl::manage(isl_union_set_identity_union_pw_multi_aff(Domain.take()));
auto PartialScheduleMultiPwAff =
isl::multi_union_pw_aff(PartialSchedulePwAff);
PartialScheduleMultiPwAff = isl::manage(isl_multi_union_pw_aff_reset_tuple_id(
PartialScheduleMultiPwAff.take(), isl_dim_set));
return isl::manage(isl_schedule_node_insert_partial_schedule(
Node.take(), PartialScheduleMultiPwAff.take()));
}
} // namespace
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI,
MatMulInfoTy &MMI) {
assert(TTI && "The target transform info should be provided.");
Node = markInterIterationAliasFree(
Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
int DimOutNum = isl_schedule_node_band_n_member(Node);
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
Node = getBandNodeWithOriginDimOrder(isl::manage(Node)).take();
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
auto MacroKernelParams = getMacroKernelParams(MicroKernelParams, MMI);
Node = createMacroKernel(Node, MacroKernelParams);
Node = createMicroKernel(Node, MicroKernelParams);
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
MacroKernelParams.Kc == 1)
return Node;
auto *MapOldIndVar = getInductionVariablesSubstitution(
Node, MicroKernelParams, MacroKernelParams);
if (!MapOldIndVar)
return Node;
Node =
isolateAndUnrollMatMulInnerLoops(give(Node), MicroKernelParams).release();
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
MacroKernelParams, MMI);
}
bool ScheduleTreeOptimizer::isMatrMultPattern(
__isl_keep isl_schedule_node *Node, const Dependences *D,
MatMulInfoTy &MMI) {
auto *PartialSchedule =
isl_schedule_node_band_get_partial_schedule_union_map(Node);
Node = isl_schedule_node_child(Node, 0);
auto LeafType = isl_schedule_node_get_type(Node);
Node = isl_schedule_node_parent(Node);
if (LeafType != isl_schedule_node_leaf ||
isl_schedule_node_band_n_member(Node) < 3 ||
isl_schedule_node_get_schedule_depth(Node) != 0 ||
isl_union_map_n_map(PartialSchedule) != 1) {
isl_union_map_free(PartialSchedule);
return false;
}
auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
if (containsMatrMult(NewPartialSchedule, D, MMI)) {
isl_map_free(NewPartialSchedule);
return true;
}
isl_map_free(NewPartialSchedule);
return false;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
void *User) {
if (!isTileableBandNode(Node))
return Node;
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
MatMulInfoTy MMI;
if (PMBasedOpts && User && isMatrMultPattern(Node, OAI->D, MMI)) {
DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
return optimizeMatMulPattern(Node, OAI->TTI, MMI);
}
return standardBandOpts(Node, User);
}
__isl_give isl_schedule *
ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
const OptimizerAdditionalInfoTy *OAI) {
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
Root = optimizeScheduleNode(Root, OAI);
isl_schedule_free(Schedule);
auto S = isl_schedule_node_get_schedule(Root);
isl_schedule_node_free(Root);
return S;
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
__isl_take isl_schedule_node *Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl_schedule_node_map_descendant_bottom_up(
Node, optimizeBand, const_cast<void *>(static_cast<const void *>(OAI)));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(
Scop &S, __isl_keep isl_schedule *NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
if (S.containsExtensionNode(NewSchedule))
return true;
auto *NewScheduleMap = isl_schedule_get_map(NewSchedule);
isl_union_map *OldSchedule = S.getSchedule();
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap);
isl_union_map_free(OldSchedule);
isl_union_map_free(NewScheduleMap);
return changed;
}
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
}
private:
isl_schedule *LastSchedule;
};
} // namespace
char IslScheduleOptimizer::ID = 0;
bool IslScheduleOptimizer::runOnScop(Scop &S) {
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
if (S.isToBeSkipped())
return false;
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
const Dependences &D =
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
if (!D.hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = give(S.getDomains());
if (!Domain)
return false;
isl::union_map Validity = give(D.getDependences(ValidityKinds));
isl::union_map Proximity = give(D.getDependences(ProximityKinds));
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := " << Domain << ";\n");
DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
DEBUG(dbgs() << "Validity := " << Validity << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
isl_schedule *Schedule;
Schedule = SC.compute_schedule().release();
isl_options_set_on_error(Ctx, OnErrorStatus);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
DEBUG({
auto *P = isl_printer_to_str(Ctx);
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule);
auto *str = isl_printer_get_str(P);
dbgs() << "NewScheduleTree: \n" << str << "\n";
free(str);
isl_printer_free(P);
});
Function &F = S.getFunction();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
isl_schedule *NewSchedule =
ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) {
isl_schedule_free(NewSchedule);
return false;
}
S.setScheduleTree(NewSchedule);
S.markAsOptimized();
if (OptimizedScops)
S.dump();
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)