blob: 03d337d81c98ee5d29d8462e7f73347a696069fc [file] [log] [blame]
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
// the unittest for this requiring linking against LLVM.
//
//===----------------------------------------------------------------------===//
#include "polly/FlattenAlgo.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "polly-flatten-algo"
using namespace polly;
using namespace llvm;
namespace {
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
bool isDimBoundedByConstant(IslPtr<isl_set> Set, unsigned dim) {
auto ParamDims = isl_set_dim(Set.keep(), isl_dim_param);
Set = give(isl_set_project_out(Set.take(), isl_dim_param, 0, ParamDims));
Set = give(isl_set_project_out(Set.take(), isl_dim_set, 0, dim));
auto SetDims = isl_set_dim(Set.keep(), isl_dim_set);
Set = give(isl_set_project_out(Set.take(), isl_dim_set, 1, SetDims - 1));
return isl_set_is_bounded(Set.keep());
}
/// Whether a dimension of a set is (lower and upper) bounded by a constant or
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
/// p, such that every value x of the chosen dimensions is
/// Min_p <= x <= Max_p.
bool isDimBoundedByParameter(IslPtr<isl_set> Set, unsigned dim) {
Set = give(isl_set_project_out(Set.take(), isl_dim_set, 0, dim));
auto SetDims = isl_set_dim(Set.keep(), isl_dim_set);
Set = give(isl_set_project_out(Set.take(), isl_dim_set, 1, SetDims - 1));
return isl_set_is_bounded(Set.keep());
}
/// Whether BMap's first out-dimension is not a constant.
bool isVariableDim(NonowningIslPtr<isl_basic_map> BMap) {
auto FixedVal =
give(isl_basic_map_plain_get_val_if_fixed(BMap.keep(), isl_dim_out, 0));
return !FixedVal || isl_val_is_nan(FixedVal.keep());
}
/// Whether Map's first out dimension is no constant nor piecewise constant.
bool isVariableDim(NonowningIslPtr<isl_map> Map) {
return foreachEltWithBreak(Map, [](IslPtr<isl_basic_map> BMap) -> isl_stat {
if (isVariableDim(BMap))
return isl_stat_error;
return isl_stat_ok;
});
}
/// Whether UMap's first out dimension is no (piecewise) constant.
bool isVariableDim(NonowningIslPtr<isl_union_map> UMap) {
return foreachEltWithBreak(UMap, [](IslPtr<isl_map> Map) -> isl_stat {
if (isVariableDim(Map))
return isl_stat_error;
return isl_stat_ok;
});
}
/// If @p PwAff maps to a constant, return said constant. If @p Max/@p Min, it
/// can also be a piecewise constant and it would return the minimum/maximum
/// value. Otherwise, return NaN.
IslPtr<isl_val> getConstant(IslPtr<isl_pw_aff> PwAff, bool Max, bool Min) {
assert(!Max || !Min);
IslPtr<isl_val> Result;
foreachPieceWithBreak(
PwAff, [=, &Result](IslPtr<isl_set> Set, IslPtr<isl_aff> Aff) {
if (Result && isl_val_is_nan(Result.keep()))
return isl_stat_ok;
// TODO: If Min/Max, we can also determine a minimum/maximum value if
// Set is constant-bounded.
if (!isl_aff_is_cst(Aff.keep())) {
Result = give(isl_val_nan(Aff.getCtx()));
return isl_stat_error;
}
auto ThisVal = give(isl_aff_get_constant_val(Aff.keep()));
if (!Result) {
Result = ThisVal;
return isl_stat_ok;
}
if (isl_val_eq(Result.keep(), ThisVal.keep()))
return isl_stat_ok;
if (Max && isl_val_gt(ThisVal.keep(), Result.keep())) {
Result = ThisVal;
return isl_stat_ok;
}
if (Min && isl_val_lt(ThisVal.keep(), Result.keep())) {
Result = ThisVal;
return isl_stat_ok;
}
// Not compatible
Result = give(isl_val_nan(Aff.getCtx()));
return isl_stat_error;
});
return Result;
}
/// Compute @p UPwAff - @p Val.
IslPtr<isl_union_pw_aff> subtract(IslPtr<isl_union_pw_aff> UPwAff,
IslPtr<isl_val> Val) {
if (isl_val_is_zero(Val.keep()))
return UPwAff;
auto Result =
give(isl_union_pw_aff_empty(isl_union_pw_aff_get_space(UPwAff.keep())));
foreachElt(UPwAff, [=, &Result](IslPtr<isl_pw_aff> PwAff) {
auto ValAff = give(isl_pw_aff_val_on_domain(
isl_set_universe(isl_space_domain(isl_pw_aff_get_space(PwAff.keep()))),
Val.copy()));
auto Subtracted = give(isl_pw_aff_sub(PwAff.copy(), ValAff.take()));
Result = give(isl_union_pw_aff_union_add(
Result.take(), isl_union_pw_aff_from_pw_aff(Subtracted.take())));
});
return Result;
}
/// Compute @UPwAff * @p Val.
IslPtr<isl_union_pw_aff> multiply(IslPtr<isl_union_pw_aff> UPwAff,
IslPtr<isl_val> Val) {
if (isl_val_is_one(Val.keep()))
return UPwAff;
auto Result =
give(isl_union_pw_aff_empty(isl_union_pw_aff_get_space(UPwAff.keep())));
foreachElt(UPwAff, [=, &Result](IslPtr<isl_pw_aff> PwAff) {
auto ValAff = give(isl_pw_aff_val_on_domain(
isl_set_universe(isl_space_domain(isl_pw_aff_get_space(PwAff.keep()))),
Val.copy()));
auto Multiplied = give(isl_pw_aff_mul(PwAff.copy(), ValAff.take()));
Result = give(isl_union_pw_aff_union_add(
Result.take(), isl_union_pw_aff_from_pw_aff(Multiplied.take())));
});
return Result;
}
/// Remove @p n dimensions from @p UMap's range, starting at @p first.
///
/// It is assumed that all maps in the maps have at least the necessary number
/// of out dimensions.
IslPtr<isl_union_map> scheduleProjectOut(NonowningIslPtr<isl_union_map> UMap,
unsigned first, unsigned n) {
if (n == 0)
return UMap; /* isl_map_project_out would also reset the tuple, which should
have no effect on schedule ranges */
auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
foreachElt(UMap, [=, &Result](IslPtr<isl_map> Map) {
auto Outprojected =
give(isl_map_project_out(Map.take(), isl_dim_out, first, n));
Result = give(isl_union_map_add_map(Result.take(), Outprojected.take()));
});
return Result;
}
/// Return the number of dimensions in the input map's range.
///
/// Because this function takes an isl_union_map, the out dimensions could be
/// different. We return the maximum number in this case. However, a different
/// number of dimensions is not supported by the other code in this file.
size_t scheduleScatterDims(NonowningIslPtr<isl_union_map> Schedule) {
unsigned Dims = 0;
foreachElt(Schedule, [&Dims](IslPtr<isl_map> Map) {
Dims = std::max(Dims, isl_map_dim(Map.keep(), isl_dim_out));
});
return Dims;
}
/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
IslPtr<isl_union_pw_aff> scheduleExtractDimAff(IslPtr<isl_union_map> UMap,
unsigned pos) {
auto SingleUMap =
give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
foreachElt(UMap, [=, &SingleUMap](IslPtr<isl_map> Map) {
auto MapDims = isl_map_dim(Map.keep(), isl_dim_out);
auto SingleMap = give(isl_map_project_out(Map.take(), isl_dim_out, 0, pos));
SingleMap = give(isl_map_project_out(SingleMap.take(), isl_dim_out, 1,
MapDims - pos - 1));
SingleUMap =
give(isl_union_map_add_map(SingleUMap.take(), SingleMap.take()));
});
auto UAff = give(isl_union_pw_multi_aff_from_union_map(SingleUMap.take()));
auto FirstMAff =
give(isl_multi_union_pw_aff_from_union_pw_multi_aff(UAff.take()));
return give(isl_multi_union_pw_aff_get_union_pw_aff(FirstMAff.keep(), 0));
}
/// Flatten a sequence-like first dimension.
///
/// A sequence-like scatter dimension is constant, or at least only small
/// variation, typically the result of ordering a sequence of different
/// statements. An example would be:
/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
///
/// To flatten, first begin with an offset of zero. Then determine the lowest
/// possible value of the dimension, call it "i" [In the example we start at 0].
/// Considering only schedules with that value, consider only instances with
/// that value and determine the extent of the next dimension. Let l_X(i) and
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
/// to Offset and remove all i-instances from the old schedule. Repeat with the
/// remaining lowest value i' until there are no instances in the old schedule
/// left.
/// The example schedule would be transformed to:
/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
IslPtr<isl_union_map> tryFlattenSequence(IslPtr<isl_union_map> Schedule) {
auto IslCtx = Schedule.getCtx();
auto ScatterSet =
give(isl_set_from_union_set(isl_union_map_range(Schedule.copy())));
auto ParamSpace =
give(isl_space_params(isl_union_map_get_space(Schedule.keep())));
auto Dims = isl_set_dim(ScatterSet.keep(), isl_dim_set);
assert(Dims >= 2);
// Would cause an infinite loop.
if (!isDimBoundedByConstant(ScatterSet, 0)) {
DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
return nullptr;
}
auto AllDomains = give(isl_union_map_domain(Schedule.copy()));
auto AllDomainsToNull =
give(isl_union_pw_multi_aff_from_domain(AllDomains.take()));
auto NewSchedule = give(isl_union_map_empty(ParamSpace.copy()));
auto Counter = give(isl_pw_aff_zero_on_domain(isl_local_space_from_space(
isl_space_set_from_params(ParamSpace.copy()))));
while (!isl_set_is_empty(ScatterSet.keep())) {
DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
auto ThisSet =
give(isl_set_project_out(ScatterSet.copy(), isl_dim_set, 1, Dims - 1));
auto ThisFirst = give(isl_set_lexmin(ThisSet.take()));
auto ScatterFirst =
give(isl_set_add_dims(ThisFirst.take(), isl_dim_set, Dims - 1));
auto SubSchedule = give(isl_union_map_intersect_range(
Schedule.copy(), isl_union_set_from_set(ScatterFirst.copy())));
SubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
SubSchedule = flattenSchedule(std::move(SubSchedule));
auto SubDims = scheduleScatterDims(SubSchedule);
auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
auto RemainingSubSchedule =
scheduleProjectOut(std::move(SubSchedule), 0, 1);
auto FirstSubScatter = give(
isl_set_from_union_set(isl_union_map_range(FirstSubSchedule.take())));
DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter << "\n");
if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
return nullptr;
}
auto FirstSubScatterMap = give(isl_map_from_range(FirstSubScatter.take()));
// isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
// 'none'. It doesn't match with any space including a 0-dimensional
// anonymous tuple.
// Interesting, one can create such a set using
// isl_set_universe(ParamSpace). Bug?
auto PartMin = give(isl_map_dim_min(FirstSubScatterMap.copy(), 0));
auto PartMax = give(isl_map_dim_max(FirstSubScatterMap.take(), 0));
auto One = give(isl_pw_aff_val_on_domain(
isl_set_universe(isl_space_set_from_params(ParamSpace.copy())),
isl_val_one(IslCtx)));
auto PartLen = give(isl_pw_aff_add(
isl_pw_aff_add(PartMax.take(), isl_pw_aff_neg(PartMin.copy())),
One.take()));
auto AllPartMin = give(isl_union_pw_aff_pullback_union_pw_multi_aff(
isl_union_pw_aff_from_pw_aff(PartMin.take()), AllDomainsToNull.copy()));
auto FirstScheduleAffNormalized =
give(isl_union_pw_aff_sub(FirstScheduleAff.take(), AllPartMin.take()));
auto AllCounter = give(isl_union_pw_aff_pullback_union_pw_multi_aff(
isl_union_pw_aff_from_pw_aff(Counter.copy()), AllDomainsToNull.copy()));
auto FirstScheduleAffWithOffset = give(isl_union_pw_aff_add(
FirstScheduleAffNormalized.take(), AllCounter.take()));
auto ScheduleWithOffset = give(isl_union_map_flat_range_product(
isl_union_map_from_union_pw_aff(FirstScheduleAffWithOffset.take()),
RemainingSubSchedule.take()));
NewSchedule = give(
isl_union_map_union(NewSchedule.take(), ScheduleWithOffset.take()));
ScatterSet = give(isl_set_subtract(ScatterSet.take(), ScatterFirst.take()));
Counter = give(isl_pw_aff_add(Counter.take(), PartLen.take()));
}
DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule << "\n");
return NewSchedule;
}
/// Flatten a loop-like first dimension.
///
/// A loop-like dimension is one that depends on a variable (usually a loop's
/// induction variable). Let the input schedule look like this:
/// { Stmt[i] -> [i, X, ...] }
///
/// To flatten, we determine the largest extent of X which may not depend on the
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
/// largest value. Then, construct a new schedule
/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
IslPtr<isl_union_map> tryFlattenLoop(IslPtr<isl_union_map> Schedule) {
assert(scheduleScatterDims(Schedule) >= 2);
auto Remaining = scheduleProjectOut(Schedule, 0, 1);
auto SubSchedule = flattenSchedule(Remaining);
auto SubDims = scheduleScatterDims(SubSchedule);
auto SubExtent =
give(isl_set_from_union_set(isl_union_map_range(SubSchedule.copy())));
auto SubExtentDims = isl_set_dim(SubExtent.keep(), isl_dim_param);
SubExtent = give(
isl_set_project_out(SubExtent.take(), isl_dim_param, 0, SubExtentDims));
SubExtent =
give(isl_set_project_out(SubExtent.take(), isl_dim_set, 1, SubDims - 1));
if (!isDimBoundedByConstant(SubExtent, 0)) {
DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
return nullptr;
}
auto Min = give(isl_set_dim_min(SubExtent.copy(), 0));
DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
auto MinVal = getConstant(Min, false, true);
auto Max = give(isl_set_dim_max(SubExtent.take(), 0));
DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
auto MaxVal = getConstant(Max, true, false);
if (!MinVal || !MaxVal || isl_val_is_nan(MinVal.keep()) ||
isl_val_is_nan(MaxVal.keep())) {
DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
return nullptr;
}
auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
auto LenVal =
give(isl_val_add_ui(isl_val_sub(MaxVal.take(), MinVal.copy()), 1));
auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
// TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
// subtract it)
auto FirstAff = scheduleExtractDimAff(Schedule, 0);
auto Offset = multiply(FirstAff, LenVal);
auto Index = give(
isl_union_pw_aff_add(FirstSubScheduleNormalized.take(), Offset.take()));
auto IndexMap = give(isl_union_map_from_union_pw_aff(Index.take()));
auto Result = give(isl_union_map_flat_range_product(
IndexMap.take(), RemainingSubSchedule.take()));
DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
return Result;
}
} // anonymous namespace
IslPtr<isl_union_map> polly::flattenSchedule(IslPtr<isl_union_map> Schedule) {
auto Dims = scheduleScatterDims(Schedule);
DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule << "\n");
// Base case; no dimensions left
if (Dims == 0) {
// TODO: Add one dimension?
return Schedule;
}
// Base case; already one-dimensional
if (Dims == 1)
return Schedule;
// Fixed dimension; no need to preserve variabledness.
if (!isVariableDim(Schedule)) {
DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
auto NewScheduleSequence = tryFlattenSequence(Schedule);
if (NewScheduleSequence)
return NewScheduleSequence;
}
// Constant stride
DEBUG(dbgs() << "Try loop flattening\n");
auto NewScheduleLoop = tryFlattenLoop(Schedule);
if (NewScheduleLoop)
return NewScheduleLoop;
// Try again without loop condition (may blow up the number of pieces!!)
DEBUG(dbgs() << "Try sequence flattening again\n");
auto NewScheduleSequence = tryFlattenSequence(Schedule);
if (NewScheduleSequence)
return NewScheduleSequence;
// Cannot flatten
return Schedule;
}