blob: 22ae87e3805b4a3ab1df607d7fa4705a88ff9b8d [file] [log] [blame]
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirey new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The coice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transations on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/space.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> LatencyVectorFma(
"polly-target-latency-vector-fma",
cl::desc("The minimal number of cycles between issuing two "
"dependent consecutive vector fused multiply-add "
"instructions."),
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> ThrougputVectorFma(
"polly-target-througput-vector-fma",
cl::desc("A throughput of the processor floating-point arithmetic units "
"expressed in the number of vector fused multiply-add "
"instructions per clock cycle."),
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int> FirstLevelTileSizes(
"polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
/// @brief Create an isl_union_set, which describes the isolate option based
/// on IsoalteDomain.
///
/// @param IsolateDomain An isl_set whose last dimension is the only one that
/// should belong to the current band node.
static __isl_give isl_union_set *
getIsolateOptions(__isl_take isl_set *IsolateDomain) {
auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0,
isl_dim_in, Dims - 1, 1);
auto *IsolateOption = isl_map_wrap(IsolateRelation);
auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr);
return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
}
/// @brief Create an isl_union_set, which describes the atomic option for the
/// dimension of the current node.
///
/// It may help to reduce the size of generated code.
///
/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) {
auto *Space = isl_space_set_alloc(Ctx, 0, 1);
auto *AtomicOption = isl_set_universe(Space);
auto *Id = isl_id_alloc(Ctx, "atomic", nullptr);
return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
}
/// @brief Make the last dimension of Set to take values
/// from 0 to VectorWidth - 1.
///
/// @param Set A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
int VectorWidth) {
auto Dims = isl_set_dim(Set, isl_dim_set);
auto Space = isl_set_get_space(Set);
auto *LocalSpace = isl_local_space_from_space(Space);
auto *ExtConstr =
isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
ExtConstr =
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
Set = isl_set_add_constraint(Set, ExtConstr);
ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
ExtConstr =
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
return isl_set_add_constraint(Set, ExtConstr);
}
/// @brief Build the desired set of partial tile prefixes.
///
/// We build a set of partial tile prefixes, which are prefixes of the vector
/// loop that have exactly VectorWidth iterations.
///
/// 1. Get all prefixes of the vector loop.
/// 2. Extend it to a set, which has exactly VectorWidth iterations for
/// any prefix from the set that was built on the previous step.
/// 3. Subtract loop domain from it, project out the vector loop dimension and
/// get a set of prefixes, which don't have exactly VectorWidth iterations.
/// 4. Subtract it from all prefixes of the vector loop and get the desired
/// set.
///
/// @param ScheduleRange A range of a map, which describes a prefix schedule
/// relation.
static __isl_give isl_set *
getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
isl_dim_set, Dims - 1, 1);
auto *ExtentPrefixes =
isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
return isl_set_subtract(LoopPrefixes, BadPrefixes);
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
__isl_take isl_schedule_node *Node, int VectorWidth) {
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
Node = isl_schedule_node_child(Node, 0);
Node = isl_schedule_node_child(Node, 0);
auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
auto *ScheduleRange = isl_map_range(ScheduleRelation);
auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
auto *IsolateOption = getIsolateOptions(IsolateDomain);
Node = isl_schedule_node_parent(Node);
Node = isl_schedule_node_parent(Node);
auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
unsigned DimToVectorize,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
auto Space = isl_schedule_node_band_get_space(Node);
auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl_schedule_node_band_split(Node, DimToVectorize);
Node = isl_schedule_node_child(Node, 0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl_schedule_node_band_split(Node, 1);
Space = isl_schedule_node_band_get_space(Node);
auto Sizes = isl_multi_val_zero(Space);
auto Ctx = isl_schedule_node_get_ctx(Node);
Sizes =
isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
Node = isl_schedule_node_band_tile(Node, Sizes);
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = isl_schedule_node_child(Node, 0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = isl_schedule_node_band_set_ast_build_options(
Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
Node = isl_schedule_node_band_sink(Node);
Node = isl_schedule_node_child(Node, 0);
if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
Node = isl_schedule_node_parent(Node);
isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
Node = isl_schedule_node_insert_mark(Node, LoopMarker);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
const char *Identifier, ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto Ctx = isl_schedule_node_get_ctx(Node);
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
auto Sizes = isl_multi_val_zero(Space);
std::string IdentifierString(Identifier);
for (unsigned i = 0; i < Dims; i++) {
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
}
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
isl_id *TileLoopMarker =
isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
Node = isl_schedule_node_child(Node, 0);
Node = isl_schedule_node_band_tile(Node, Sizes);
Node = isl_schedule_node_child(Node, 0);
auto PointLoopMarkerStr = IdentifierString + " - Points";
isl_id *PointLoopMarker =
isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
Node = isl_schedule_node_child(Node, 0);
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
llvm::ArrayRef<int> TileSizes,
int DefaultTileSize) {
auto *Ctx = isl_schedule_node_get_ctx(Node);
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
Node = isl_schedule_node_band_set_ast_build_options(
Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
return Node;
}
bool ScheduleTreeOptimizer::isTileableBandNode(
__isl_keep isl_schedule_node *Node) {
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node))
return false;
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
if (Dims <= 1)
return false;
auto Child = isl_schedule_node_get_child(Node, 0);
auto Type = isl_schedule_node_get_type(Child);
isl_schedule_node_free(Child);
if (Type != isl_schedule_node_leaf)
return false;
return true;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
void *User) {
if (FirstLevelTiling)
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
if (SecondLevelTiling)
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
if (RegisterTiling)
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Node;
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
isl_space_free(Space);
for (int i = Dims - 1; i >= 0; i--)
if (isl_schedule_node_band_member_get_coincident(Node, i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
/// @brief Check whether output dimensions of the map rely on the specified
/// input dimension.
///
/// @param IslMap The isl map to be considered.
/// @param DimNum The number of an input dimension to be checked.
static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) {
auto *CheckedAccessRelation =
isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1);
CheckedAccessRelation =
isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1);
auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
CheckedAccessRelation =
isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId);
InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out);
CheckedAccessRelation =
isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId);
auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap);
isl_map_free(CheckedAccessRelation);
isl_map_free(IslMap);
return res;
}
/// @brief Check if the SCoP statement could probably be optimized with
/// analytical modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. all memory accesses of the statement will have stride 0 or 1,
/// if we interchange loops (switch the variable used in the inner
/// loop to the outer loop).
/// 2. all memory accesses of the statement except from the last one, are
/// read memory access and the last one is write memory access.
/// 3. all subscripts of the last memory access of the statement don't contain
/// the variable used in the inner loop.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) {
auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
auto *ScpStmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
isl_id_free(InputDimsId);
if (ScpStmt->size() <= 1)
return false;
auto MemA = ScpStmt->begin();
for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end();
i++, MemA++)
if (!(*MemA)->isRead() ||
((*MemA)->isArrayKind() &&
!((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
(*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))))
return false;
MemA++;
if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() ||
!((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
(*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))
return false;
auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in);
return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1);
}
/// @brief Circular shift of output dimensions of the integer map.
///
/// @param IslMap The isl map to be modified.
static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) {
auto DimNum = isl_map_dim(IslMap, isl_dim_out);
if (DimNum == 0)
return IslMap;
auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1);
IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1);
return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId);
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
assert(TTI && "The target transform info should be provided.");
// Get a micro-kernel.
// Nvec - Number of double-precision floating-point numbers that can be hold
// by a vector register. Use 2 by default.
auto Nvec = TTI->getRegisterBitWidth(true) / 64;
if (Nvec == 0)
Nvec = 2;
int Nr =
ceil(sqrt(Nvec * LatencyVectorFma * ThrougputVectorFma) / Nvec) * Nvec;
int Mr = ceil(Nvec * LatencyVectorFma * ThrougputVectorFma / Nr);
std::vector<int> MicroKernelParams{Mr, Nr};
Node = applyRegisterTiling(Node, MicroKernelParams, 1);
return Node;
}
bool ScheduleTreeOptimizer::isMatrMultPattern(
__isl_keep isl_schedule_node *Node) {
auto *PartialSchedule =
isl_schedule_node_band_get_partial_schedule_union_map(Node);
if (isl_schedule_node_band_n_member(Node) != 3 ||
isl_union_map_n_map(PartialSchedule) != 1) {
isl_union_map_free(PartialSchedule);
return false;
}
auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule);
if (containsMatrMult(NewPartialSchedule)) {
isl_map_free(NewPartialSchedule);
return true;
}
isl_map_free(NewPartialSchedule);
return false;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
void *User) {
if (!isTileableBandNode(Node))
return Node;
if (PMBasedOpts && User && isMatrMultPattern(Node)) {
DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
const llvm::TargetTransformInfo *TTI;
TTI = static_cast<const llvm::TargetTransformInfo *>(User);
Node = optimizeMatMulPattern(Node, TTI);
}
return standardBandOpts(Node, User);
}
__isl_give isl_schedule *
ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
const llvm::TargetTransformInfo *TTI) {
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
Root = optimizeScheduleNode(Root, TTI);
isl_schedule_free(Schedule);
auto S = isl_schedule_node_get_schedule(Root);
isl_schedule_node_free(Root);
return S;
}
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
Node = isl_schedule_node_map_descendant_bottom_up(
Node, optimizeBand, const_cast<void *>(static_cast<const void *>(TTI)));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(
Scop &S, __isl_keep isl_union_map *NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
isl_union_map *OldSchedule = S.getSchedule();
bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
isl_union_map_free(OldSchedule);
return changed;
}
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
/// @brief Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// @brief Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// @brief Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// @brief Release the internal memory.
void releaseMemory() override {
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
}
private:
isl_schedule *LastSchedule;
};
} // namespace
char IslScheduleOptimizer::ID = 0;
bool IslScheduleOptimizer::runOnScop(Scop &S) {
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
const Dependences &D =
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
if (!D.hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl_union_set *Domain = S.getDomains();
if (!Domain)
return false;
isl_union_map *Validity = D.getDependences(ValidityKinds);
isl_union_map *Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Proximity =
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
isl_schedule_constraints *ScheduleConstraints;
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
ScheduleConstraints =
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
ScheduleConstraints = isl_schedule_constraints_set_validity(
ScheduleConstraints, isl_union_map_copy(Validity));
ScheduleConstraints =
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
isl_schedule *Schedule;
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
isl_options_set_on_error(Ctx, OnErrorStatus);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
DEBUG({
auto *P = isl_printer_to_str(Ctx);
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule);
dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
isl_printer_free(P);
});
Function &F = S.getFunction();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
isl_schedule *NewSchedule =
ScheduleTreeOptimizer::optimizeSchedule(Schedule, TTI);
isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule);
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewScheduleMap)) {
isl_union_map_free(NewScheduleMap);
isl_schedule_free(NewSchedule);
return false;
}
S.setScheduleTree(NewSchedule);
S.markAsOptimized();
isl_union_map_free(NewScheduleMap);
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)