blob: 5771c9b3d1bc3cdb55578f7b1461fdb95f8bcd32 [file] [log] [blame]
//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/TempScopInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/constraint.h"
#include "isl/local_space.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include "isl/val.h"
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scops"
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool> DisableMultiplicativeReductions(
"polly-disable-multiplicative-reductions",
cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
cl::init(false), cl::cat(PollyCategory));
static cl::opt<unsigned> RunTimeChecksMaxParameters(
"polly-rtc-max-parameters",
cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
"polly-rtc-max-arrays-per-group",
cl::desc("The maximal number of arrays to compare in each alias group."),
cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
/// Translate a 'const SCEV *' expression in an isl_pw_aff.
struct SCEVAffinator : public SCEVVisitor<SCEVAffinator, isl_pw_aff *> {
public:
/// @brief Translate a 'const SCEV *' to an isl_pw_aff.
///
/// @param Stmt The location at which the scalar evolution expression
/// is evaluated.
/// @param Expr The expression that is translated.
static __isl_give isl_pw_aff *getPwAff(ScopStmt *Stmt, const SCEV *Expr);
private:
isl_ctx *Ctx;
int NbLoopSpaces;
const Scop *S;
SCEVAffinator(const ScopStmt *Stmt);
int getLoopDepth(const Loop *L);
__isl_give isl_pw_aff *visit(const SCEV *Expr);
__isl_give isl_pw_aff *visitConstant(const SCEVConstant *Expr);
__isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr *Expr);
__isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr);
__isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr *Expr);
__isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr *Expr);
__isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr *Expr);
__isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr *Expr);
__isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr *Expr);
__isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr *Expr);
__isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr *Expr);
__isl_give isl_pw_aff *visitUnknown(const SCEVUnknown *Expr);
__isl_give isl_pw_aff *visitSDivInstruction(Instruction *SDiv);
__isl_give isl_pw_aff *visitSRemInstruction(Instruction *SDiv);
friend struct SCEVVisitor<SCEVAffinator, isl_pw_aff *>;
};
SCEVAffinator::SCEVAffinator(const ScopStmt *Stmt)
: Ctx(Stmt->getIslCtx()), NbLoopSpaces(Stmt->getNumIterators()),
S(Stmt->getParent()) {}
__isl_give isl_pw_aff *SCEVAffinator::getPwAff(ScopStmt *Stmt,
const SCEV *Scev) {
Scop *S = Stmt->getParent();
const Region *Reg = &S->getRegion();
S->addParams(getParamsInAffineExpr(Reg, Scev, *S->getSE()));
SCEVAffinator Affinator(Stmt);
return Affinator.visit(Scev);
}
__isl_give isl_pw_aff *SCEVAffinator::visit(const SCEV *Expr) {
// In case the scev is a valid parameter, we do not further analyze this
// expression, but create a new parameter in the isl_pw_aff. This allows us
// to treat subexpressions that we cannot translate into an piecewise affine
// expression, as constant parameters of the piecewise affine expression.
if (isl_id *Id = S->getIdForParam(Expr)) {
isl_space *Space = isl_space_set_alloc(Ctx, 1, NbLoopSpaces);
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
return isl_pw_aff_alloc(Domain, Affine);
}
return SCEVVisitor<SCEVAffinator, isl_pw_aff *>::visit(Expr);
}
__isl_give isl_pw_aff *SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
ConstantInt *Value = Expr->getValue();
isl_val *v;
// LLVM does not define if an integer value is interpreted as a signed or
// unsigned value. Hence, without further information, it is unknown how
// this value needs to be converted to GMP. At the moment, we only support
// signed operations. So we just interpret it as signed. Later, there are
// two options:
//
// 1. We always interpret any value as signed and convert the values on
// demand.
// 2. We pass down the signedness of the calculation and use it to interpret
// this constant correctly.
v = isl_valFromAPInt(Ctx, Value->getValue(), /* isSigned */ true);
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
isl_local_space *ls = isl_local_space_from_space(Space);
return isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v));
}
__isl_give isl_pw_aff *
SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
llvm_unreachable("SCEVTruncateExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
llvm_unreachable("SCEVZeroExtendExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// Assuming the value is signed, a sign extension is basically a noop.
// TODO: Reconsider this as soon as we support unsigned values.
return visit(Expr->getOperand());
}
__isl_give isl_pw_aff *SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
isl_pw_aff *Sum = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
Sum = isl_pw_aff_add(Sum, NextSummand);
}
// TODO: Check for NSW and NUW.
return Sum;
}
__isl_give isl_pw_aff *SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
// Divide Expr into a constant part and the rest. Then visit both and multiply
// the result to obtain the representation for Expr. While the second part of
// ConstantAndLeftOverPair might still be a SCEVMulExpr we will not get to
// this point again. The reason is that if it is a multiplication it consists
// only of parameters and we will stop in the visit(const SCEV *) function and
// return the isl_pw_aff for that parameter.
auto ConstantAndLeftOverPair = extractConstantFactor(Expr, *S->getSE());
return isl_pw_aff_mul(visit(ConstantAndLeftOverPair.first),
visit(ConstantAndLeftOverPair.second));
}
__isl_give isl_pw_aff *SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
llvm_unreachable("SCEVUDivExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
auto Flags = Expr->getNoWrapFlags();
// Directly generate isl_pw_aff for Expr if 'start' is zero.
if (Expr->getStart()->isZero()) {
assert(S->getRegion().contains(Expr->getLoop()) &&
"Scop does not contain the loop referenced in this AddRec");
isl_pw_aff *Start = visit(Expr->getStart());
isl_pw_aff *Step = visit(Expr->getOperand(1));
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
int loopDimension = getLoopDepth(Expr->getLoop());
isl_aff *LAff = isl_aff_set_coefficient_si(
isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
// TODO: Do we need to check for NSW and NUW?
return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff));
}
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
// TODO: Using the original SCEV no-wrap flags is not always safe, however
// as our code generation is reordering the expression anyway it doesn't
// really matter.
ScalarEvolution &SE = *S->getSE();
const SCEV *ZeroStartExpr =
SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);
isl_pw_aff *ZeroStartResult = visit(ZeroStartExpr);
isl_pw_aff *Start = visit(Expr->getStart());
return isl_pw_aff_add(ZeroStartResult, Start);
}
__isl_give isl_pw_aff *SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
isl_pw_aff *Max = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
Max = isl_pw_aff_max(Max, NextOperand);
}
return Max;
}
__isl_give isl_pw_aff *SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
llvm_unreachable("SCEVUMaxExpr not yet supported");
}
__isl_give isl_pw_aff *SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
auto *SE = S->getSE();
auto *Divisor = SDiv->getOperand(1);
auto *DivisorSCEV = SE->getSCEV(Divisor);
auto *DivisorPWA = visit(DivisorSCEV);
assert(isa<ConstantInt>(Divisor) &&
"SDiv is no parameter but has a non-constant RHS.");
auto *Dividend = SDiv->getOperand(0);
auto *DividendSCEV = SE->getSCEV(Dividend);
auto *DividendPWA = visit(DividendSCEV);
return isl_pw_aff_tdiv_q(DividendPWA, DivisorPWA);
}
__isl_give isl_pw_aff *SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");
auto *SE = S->getSE();
auto *Divisor = dyn_cast<ConstantInt>(SRem->getOperand(1));
assert(Divisor && "SRem is no parameter but has a non-constant RHS.");
auto *DivisorVal = isl_valFromAPInt(Ctx, Divisor->getValue(),
/* isSigned */ true);
auto *Dividend = SRem->getOperand(0);
auto *DividendSCEV = SE->getSCEV(Dividend);
auto *DividendPWA = visit(DividendSCEV);
return isl_pw_aff_mod_val(DividendPWA, isl_val_abs(DivisorVal));
}
__isl_give isl_pw_aff *SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
switch (I->getOpcode()) {
case Instruction::SDiv:
return visitSDivInstruction(I);
case Instruction::SRem:
return visitSRemInstruction(I);
default:
break; // Fall through.
}
}
llvm_unreachable(
"Unknowns SCEV was neither parameter nor a valid instruction.");
}
int SCEVAffinator::getLoopDepth(const Loop *L) {
Loop *outerLoop = S->getRegion().outermostLoopInRegion(const_cast<Loop *>(L));
assert(outerLoop && "Scop does not contain this loop");
return L->getLoopDepth() - outerLoop->getLoopDepth();
}
/// @brief Add the bounds of @p Range to the set @p S for dimension @p dim.
static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S,
const ConstantRange &Range,
int dim,
enum isl_dim_type type) {
isl_val *V;
isl_ctx *ctx = isl_set_get_ctx(S);
bool useLowerUpperBound = Range.isSignWrappedSet() && !Range.isFullSet();
const auto LB = useLowerUpperBound ? Range.getLower() : Range.getSignedMin();
V = isl_valFromAPInt(ctx, LB, true);
isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V);
const auto UB = useLowerUpperBound ? Range.getUpper() : Range.getSignedMax();
V = isl_valFromAPInt(ctx, UB, true);
if (useLowerUpperBound)
V = isl_val_sub_ui(V, 1);
isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V);
if (useLowerUpperBound)
return isl_set_union(SLB, SUB);
else
return isl_set_intersect(SLB, SUB);
}
ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx,
const SmallVector<const SCEV *, 4> &DimensionSizes)
: BasePtr(BasePtr), ElementType(ElementType),
DimensionSizes(DimensionSizes) {
const std::string BasePtrName = getIslCompatibleName("MemRef_", BasePtr, "");
Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
}
ScopArrayInfo::~ScopArrayInfo() { isl_id_free(Id); }
std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); }
int ScopArrayInfo::getElemSizeInBytes() const {
return ElementType->getPrimitiveSizeInBits() / 8;
}
isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); }
void ScopArrayInfo::dump() const { print(errs()); }
void ScopArrayInfo::print(raw_ostream &OS) const {
OS.indent(8) << *getElementType() << " " << getName() << "[*]";
for (unsigned u = 0; u < getNumberOfDimensions(); u++)
OS << "[" << *DimensionSizes[u] << "]";
OS << " // Element size " << getElemSizeInBytes() << "\n";
}
const ScopArrayInfo *
ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
assert(Id && "Output dimension didn't have an ID");
return getFromId(Id);
}
const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) {
void *User = isl_id_get_user(Id);
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
isl_id_free(Id);
return SAI;
}
const std::string
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
switch (RT) {
case MemoryAccess::RT_NONE:
llvm_unreachable("Requested a reduction operator string for a memory "
"access which isn't a reduction");
case MemoryAccess::RT_ADD:
return "+";
case MemoryAccess::RT_MUL:
return "*";
case MemoryAccess::RT_BOR:
return "|";
case MemoryAccess::RT_BXOR:
return "^";
case MemoryAccess::RT_BAND:
return "&";
}
llvm_unreachable("Unknown reduction type");
return "";
}
/// @brief Return the reduction type for a given binary operator
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
const Instruction *Load) {
if (!BinOp)
return MemoryAccess::RT_NONE;
switch (BinOp->getOpcode()) {
case Instruction::FAdd:
if (!BinOp->hasUnsafeAlgebra())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Add:
return MemoryAccess::RT_ADD;
case Instruction::Or:
return MemoryAccess::RT_BOR;
case Instruction::Xor:
return MemoryAccess::RT_BXOR;
case Instruction::And:
return MemoryAccess::RT_BAND;
case Instruction::FMul:
if (!BinOp->hasUnsafeAlgebra())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Mul:
if (DisableMultiplicativeReductions)
return MemoryAccess::RT_NONE;
return MemoryAccess::RT_MUL;
default:
return MemoryAccess::RT_NONE;
}
}
//===----------------------------------------------------------------------===//
MemoryAccess::~MemoryAccess() {
isl_id_free(Id);
isl_map_free(AccessRelation);
isl_map_free(newAccessRelation);
}
static MemoryAccess::AccessType getMemoryAccessType(const IRAccess &Access) {
switch (Access.getType()) {
case IRAccess::READ:
return MemoryAccess::READ;
case IRAccess::MUST_WRITE:
return MemoryAccess::MUST_WRITE;
case IRAccess::MAY_WRITE:
return MemoryAccess::MAY_WRITE;
}
llvm_unreachable("Unknown IRAccess type!");
}
const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const {
isl_id *ArrayId = getArrayId();
void *User = isl_id_get_user(ArrayId);
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
isl_id_free(ArrayId);
return SAI;
}
__isl_give isl_id *MemoryAccess::getArrayId() const {
return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
}
__isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation(
__isl_take isl_union_map *USchedule) const {
isl_map *Schedule, *ScheduledAccRel;
isl_union_set *UDomain;
UDomain = isl_union_set_from_set(getStatement()->getDomain());
USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
Schedule = isl_map_from_union_map(USchedule);
ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule);
return isl_pw_multi_aff_from_map(ScheduledAccRel);
}
__isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const {
return isl_map_copy(AccessRelation);
}
std::string MemoryAccess::getOriginalAccessRelationStr() const {
return stringFromIslObj(AccessRelation);
}
__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
return isl_map_get_space(AccessRelation);
}
__isl_give isl_map *MemoryAccess::getNewAccessRelation() const {
return isl_map_copy(newAccessRelation);
}
__isl_give isl_basic_map *
MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
Space = isl_space_align_params(Space, Statement->getDomainSpace());
return isl_basic_map_from_domain_and_range(
isl_basic_set_universe(Statement->getDomainSpace()),
isl_basic_set_universe(Space));
}
// Formalize no out-of-bound access assumption
//
// When delinearizing array accesses we optimistically assume that the
// delinearized accesses do not access out of bound locations (the subscript
// expression of each array evaluates for each statement instance that is
// executed to a value that is larger than zero and strictly smaller than the
// size of the corresponding dimension). The only exception is the outermost
// dimension for which we do not need to assume any upper bound. At this point
// we formalize this assumption to ensure that at code generation time the
// relevant run-time checks can be generated.
//
// To find the set of constraints necessary to avoid out of bound accesses, we
// first build the set of data locations that are not within array bounds. We
// then apply the reverse access relation to obtain the set of iterations that
// may contain invalid accesses and reduce this set of iterations to the ones
// that are actually executed by intersecting them with the domain of the
// statement. If we now project out all loop dimensions, we obtain a set of
// parameters that may cause statement instances to be executed that may
// possibly yield out of bound memory accesses. The complement of these
// constraints is the set of constraints that needs to be assumed to ensure such
// statement instances are never executed.
void MemoryAccess::assumeNoOutOfBound(const IRAccess &Access) {
isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
isl_set *Outside = isl_set_empty(isl_space_copy(Space));
for (int i = 1, Size = Access.Subscripts.size(); i < Size; ++i) {
isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
isl_pw_aff *Var =
isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
isl_set *DimOutside;
DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
isl_pw_aff *SizeE = SCEVAffinator::getPwAff(Statement, Access.Sizes[i - 1]);
SizeE = isl_pw_aff_drop_dims(SizeE, isl_dim_in, 0,
Statement->getNumIterators());
SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
isl_space_dim(Space, isl_dim_set));
SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
isl_space_get_tuple_id(Space, isl_dim_set));
DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
Outside = isl_set_union(Outside, DimOutside);
}
Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
Outside = isl_set_intersect(Outside, Statement->getDomain());
Outside = isl_set_params(Outside);
// Remove divs to avoid the construction of overly complicated assumptions.
// Doing so increases the set of parameter combinations that are assumed to
// not appear. This is always save, but may make the resulting run-time check
// bail out more often than strictly necessary.
Outside = isl_set_remove_divs(Outside);
Outside = isl_set_complement(Outside);
Statement->getParent()->addAssumption(Outside);
isl_space_free(Space);
}
void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
ScalarEvolution *SE = Statement->getParent()->getSE();
Value *Ptr = getPointerOperand(*getAccessInstruction());
if (!Ptr || !SE->isSCEVable(Ptr->getType()))
return;
auto *PtrSCEV = SE->getSCEV(Ptr);
if (isa<SCEVCouldNotCompute>(PtrSCEV))
return;
auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
if (Range.isFullSet())
return;
bool isWrapping = Range.isSignWrappedSet();
unsigned BW = Range.getBitWidth();
const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
const auto UB = isWrapping ? Range.getUpper() : Range.getSignedMax();
auto Min = LB.sdiv(APInt(BW, ElementSize));
auto Max = (UB - APInt(BW, 1)).sdiv(APInt(BW, ElementSize));
isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation));
AccessRange =
addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set);
AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange);
}
__isl_give isl_map *MemoryAccess::foldAccess(const IRAccess &Access,
__isl_take isl_map *AccessRelation,
ScopStmt *Statement) {
int Size = Access.Subscripts.size();
for (int i = Size - 2; i >= 0; --i) {
isl_space *Space;
isl_map *MapOne, *MapTwo;
isl_pw_aff *DimSize = SCEVAffinator::getPwAff(Statement, Access.Sizes[i]);
isl_space *SpaceSize = isl_pw_aff_get_space(DimSize);
isl_pw_aff_free(DimSize);
isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0);
Space = isl_map_get_space(AccessRelation);
Space = isl_space_map_from_set(isl_space_range(Space));
Space = isl_space_align_params(Space, SpaceSize);
int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId);
isl_id_free(ParamId);
MapOne = isl_map_universe(isl_space_copy(Space));
for (int j = 0; j < Size; ++j)
MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j);
MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0);
MapTwo = isl_map_universe(isl_space_copy(Space));
for (int j = 0; j < Size; ++j)
if (j < i || j > i + 1)
MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j);
isl_local_space *LS = isl_local_space_from_space(Space);
isl_constraint *C;
C = isl_equality_alloc(isl_local_space_copy(LS));
C = isl_constraint_set_constant_si(C, -1);
C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1);
MapTwo = isl_map_add_constraint(MapTwo, C);
C = isl_equality_alloc(LS);
C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1);
C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1);
C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1);
MapTwo = isl_map_add_constraint(MapTwo, C);
MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1);
MapOne = isl_map_union(MapOne, MapTwo);
AccessRelation = isl_map_apply_range(AccessRelation, MapOne);
}
return AccessRelation;
}
MemoryAccess::MemoryAccess(const IRAccess &Access, Instruction *AccInst,
ScopStmt *Statement, const ScopArrayInfo *SAI,
int Identifier)
: AccType(getMemoryAccessType(Access)), Statement(Statement), Inst(AccInst),
newAccessRelation(nullptr) {
isl_ctx *Ctx = Statement->getIslCtx();
BaseAddr = Access.getBase();
BaseName = getIslCompatibleName("MemRef_", getBaseAddr(), "");
isl_id *BaseAddrId = SAI->getBasePtrId();
auto IdName = "__polly_array_ref_ " + std::to_string(Identifier);
Id = isl_id_alloc(Ctx, IdName.c_str(), nullptr);
if (!Access.isAffine()) {
// We overapproximate non-affine accesses with a possible access to the
// whole array. For read accesses it does not make a difference, if an
// access must or may happen. However, for write accesses it is important to
// differentiate between writes that must happen and writes that may happen.
AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
AccessRelation =
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
computeBoundsOnAccessRelation(Access.getElemSizeInBytes());
return;
}
isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
AccessRelation = isl_map_universe(Space);
for (int i = 0, Size = Access.Subscripts.size(); i < Size; ++i) {
isl_pw_aff *Affine =
SCEVAffinator::getPwAff(Statement, Access.Subscripts[i]);
if (Size == 1) {
// For the non delinearized arrays, divide the access function of the last
// subscript by the size of the elements in the array.
//
// A stride one array access in C expressed as A[i] is expressed in
// LLVM-IR as something like A[i * elementsize]. This hides the fact that
// two subsequent values of 'i' index two values that are stored next to
// each other in memory. By this division we make this characteristic
// obvious again.
isl_val *v = isl_val_int_from_si(Ctx, Access.getElemSizeInBytes());
Affine = isl_pw_aff_scale_down_val(Affine, v);
}
isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
}
AccessRelation = foldAccess(Access, AccessRelation, Statement);
Space = Statement->getDomainSpace();
AccessRelation = isl_map_set_tuple_id(
AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
AccessRelation =
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
assumeNoOutOfBound(Access);
AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
isl_space_free(Space);
}
void MemoryAccess::realignParams() {
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
const std::string MemoryAccess::getReductionOperatorStr() const {
return MemoryAccess::getReductionOperatorStr(getReductionType());
}
__isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); }
raw_ostream &polly::operator<<(raw_ostream &OS,
MemoryAccess::ReductionType RT) {
if (RT == MemoryAccess::RT_NONE)
OS << "NONE";
else
OS << MemoryAccess::getReductionOperatorStr(RT);
return OS;
}
void MemoryAccess::print(raw_ostream &OS) const {
switch (AccType) {
case READ:
OS.indent(12) << "ReadAccess :=\t";
break;
case MUST_WRITE:
OS.indent(12) << "MustWriteAccess :=\t";
break;
case MAY_WRITE:
OS.indent(12) << "MayWriteAccess :=\t";
break;
}
OS << "[Reduction Type: " << getReductionType() << "] ";
OS << "[Scalar: " << isScalar() << "]\n";
OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
}
void MemoryAccess::dump() const { print(errs()); }
// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
// getEqualAndLarger(set[i0, i1, ..., iX]):
//
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_space *setDomain) {
isl_space *Space = isl_space_map_from_set(setDomain);
isl_map *Map = isl_map_universe(Space);
unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
// Set all but the last dimension to be equal for the input and output
//
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
for (unsigned i = 0; i < lastDimension; ++i)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
// Set the last dimension of the input to be strict smaller than the
// last dimension of the output.
//
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out,
lastDimension);
return Map;
}
__isl_give isl_set *
MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
isl_map *S = const_cast<isl_map *>(Schedule);
isl_map *AccessRelation = getAccessRelation();
isl_space *Space = isl_space_range(isl_map_get_space(S));
isl_map *NextScatt = getEqualAndLarger(Space);
S = isl_map_reverse(S);
NextScatt = isl_map_lexmin(NextScatt);
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
NextScatt = isl_map_apply_domain(NextScatt, S);
NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
isl_set *Deltas = isl_map_deltas(NextScatt);
return Deltas;
}
bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
int StrideWidth) const {
isl_set *Stride, *StrideX;
bool IsStrideX;
Stride = getStride(Schedule);
StrideX = isl_set_universe(isl_set_get_space(Stride));
StrideX = isl_set_fix_si(StrideX, isl_dim_set, 0, StrideWidth);
IsStrideX = isl_set_is_equal(Stride, StrideX);
isl_set_free(StrideX);
isl_set_free(Stride);
return IsStrideX;
}
bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
return isStrideX(Schedule, 0);
}
bool MemoryAccess::isScalar() const {
return isl_map_n_out(AccessRelation) == 0;
}
bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
return isStrideX(Schedule, 1);
}
void MemoryAccess::setNewAccessRelation(isl_map *newAccess) {
isl_map_free(newAccessRelation);
newAccessRelation = newAccess;
}
//===----------------------------------------------------------------------===//
isl_map *ScopStmt::getSchedule() const {
isl_set *Domain = getDomain();
if (isl_set_is_empty(Domain)) {
isl_set_free(Domain);
return isl_map_from_aff(
isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
}
auto *Schedule = getParent()->getSchedule();
Schedule = isl_union_map_intersect_domain(
Schedule, isl_union_set_from_set(isl_set_copy(Domain)));
if (isl_union_map_is_empty(Schedule)) {
isl_set_free(Domain);
isl_union_map_free(Schedule);
return isl_map_from_aff(
isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
}
auto *M = isl_map_from_union_map(Schedule);
M = isl_map_coalesce(M);
M = isl_map_gist_domain(M, Domain);
M = isl_map_coalesce(M);
return M;
}
void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
assert(isl_set_is_subset(NewDomain, Domain) &&
"New domain is not a subset of old domain!");
isl_set_free(Domain);
Domain = NewDomain;
}
void ScopStmt::buildAccesses(TempScop &tempScop, BasicBlock *Block,
bool isApproximated) {
AccFuncSetType *AFS = tempScop.getAccessFunctions(Block);
if (!AFS)
return;
for (auto &AccessPair : *AFS) {
IRAccess &Access = AccessPair.first;
Instruction *AccessInst = AccessPair.second;
Type *ElementType = getAccessInstType(AccessInst);
const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo(
Access.getBase(), ElementType, Access.Sizes);
if (isApproximated && Access.isWrite())
Access.setMayWrite();
MemoryAccessList *&MAL = InstructionToAccess[AccessInst];
if (!MAL)
MAL = new MemoryAccessList();
MAL->emplace_front(Access, AccessInst, this, SAI, MemAccs.size());
MemAccs.push_back(&MAL->front());
}
}
void ScopStmt::realignParams() {
for (MemoryAccess *MA : *this)
MA->realignParams();
Domain = isl_set_align_params(Domain, Parent.getParamSpace());
}
__isl_give isl_set *ScopStmt::buildConditionSet(const Comparison &Comp) {
isl_pw_aff *L = SCEVAffinator::getPwAff(this, Comp.getLHS());
isl_pw_aff *R = SCEVAffinator::getPwAff(this, Comp.getRHS());
switch (Comp.getPred()) {
case ICmpInst::ICMP_EQ:
return isl_pw_aff_eq_set(L, R);
case ICmpInst::ICMP_NE:
return isl_pw_aff_ne_set(L, R);
case ICmpInst::ICMP_SLT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_SLE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_SGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_SGE:
return isl_pw_aff_ge_set(L, R);
case ICmpInst::ICMP_ULT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_UGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_ULE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_UGE:
return isl_pw_aff_ge_set(L, R);
default:
llvm_unreachable("Non integer predicate not supported");
}
}
__isl_give isl_set *ScopStmt::addLoopBoundsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop) {
isl_space *Space;
isl_local_space *LocalSpace;
Space = isl_set_get_space(Domain);
LocalSpace = isl_local_space_from_space(Space);
ScalarEvolution *SE = getParent()->getSE();
for (int i = 0, e = getNumIterators(); i != e; ++i) {
isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_copy(LocalSpace));
isl_pw_aff *IV =
isl_pw_aff_from_aff(isl_aff_set_coefficient_si(Zero, isl_dim_in, i, 1));
// 0 <= IV.
isl_set *LowerBound = isl_pw_aff_nonneg_set(isl_pw_aff_copy(IV));
Domain = isl_set_intersect(Domain, LowerBound);
// IV <= LatchExecutions.
const Loop *L = getLoopForDimension(i);
const SCEV *LatchExecutions = SE->getBackedgeTakenCount(L);
isl_pw_aff *UpperBound = SCEVAffinator::getPwAff(this, LatchExecutions);
isl_set *UpperBoundSet = isl_pw_aff_le_set(IV, UpperBound);
Domain = isl_set_intersect(Domain, UpperBoundSet);
}
isl_local_space_free(LocalSpace);
return Domain;
}
__isl_give isl_set *ScopStmt::addConditionsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop,
const Region &CurRegion) {
const Region *TopRegion = tempScop.getMaxRegion().getParent(),
*CurrentRegion = &CurRegion;
const BasicBlock *BranchingBB = BB ? BB : R->getEntry();
do {
if (BranchingBB != CurrentRegion->getEntry()) {
if (const BBCond *Condition = tempScop.getBBCond(BranchingBB))
for (const auto &C : *Condition) {
isl_set *ConditionSet = buildConditionSet(C);
Domain = isl_set_intersect(Domain, ConditionSet);
}
}
BranchingBB = CurrentRegion->getEntry();
CurrentRegion = CurrentRegion->getParent();
} while (TopRegion != CurrentRegion);
return Domain;
}
__isl_give isl_set *ScopStmt::buildDomain(TempScop &tempScop,
const Region &CurRegion) {
isl_space *Space;
isl_set *Domain;
isl_id *Id;
Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators());
Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
Domain = isl_set_universe(Space);
Domain = addLoopBoundsToDomain(Domain, tempScop);
Domain = addConditionsToDomain(Domain, tempScop, CurRegion);
Domain = isl_set_set_tuple_id(Domain, Id);
return Domain;
}
void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) {
int Dimension = 0;
isl_ctx *Ctx = Parent.getIslCtx();
isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace());
Type *Ty = GEP->getPointerOperandType();
ScalarEvolution &SE = *Parent.getSE();
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
Dimension = 1;
Ty = PtrTy->getElementType();
}
while (auto ArrayTy = dyn_cast<ArrayType>(Ty)) {
unsigned int Operand = 1 + Dimension;
if (GEP->getNumOperands() <= Operand)
break;
const SCEV *Expr = SE.getSCEV(GEP->getOperand(Operand));
if (isAffineExpr(&Parent.getRegion(), Expr, SE)) {
isl_pw_aff *AccessOffset = SCEVAffinator::getPwAff(this, Expr);
AccessOffset =
isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId());
isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain(
isl_local_space_copy(LSpace),
isl_val_int_from_si(Ctx, ArrayTy->getNumElements())));
isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize);
OutOfBound = isl_set_intersect(getDomain(), OutOfBound);
OutOfBound = isl_set_params(OutOfBound);
isl_set *InBound = isl_set_complement(OutOfBound);
isl_set *Executed = isl_set_params(getDomain());
// A => B == !A or B
isl_set *InBoundIfExecuted =
isl_set_union(isl_set_complement(Executed), InBound);
Parent.addAssumption(InBoundIfExecuted);
}
Dimension += 1;
Ty = ArrayTy->getElementType();
}
isl_local_space_free(LSpace);
}
void ScopStmt::deriveAssumptions(BasicBlock *Block) {
for (Instruction &Inst : *Block)
if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst))
deriveAssumptionsFromGEP(GEP);
}
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
Region &R, SmallVectorImpl<Loop *> &Nest)
: Parent(parent), BB(nullptr), R(&R), Build(nullptr),
NestLoops(Nest.size()) {
// Setup the induction variables.
for (unsigned i = 0, e = Nest.size(); i < e; ++i)
NestLoops[i] = Nest[i];
BaseName = getIslCompatibleName("Stmt_", R.getNameStr(), "");
Domain = buildDomain(tempScop, CurRegion);
BasicBlock *EntryBB = R.getEntry();
for (BasicBlock *Block : R.blocks()) {
buildAccesses(tempScop, Block, Block != EntryBB);
deriveAssumptions(Block);
}
checkForReductions();
}
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
BasicBlock &bb, SmallVectorImpl<Loop *> &Nest)
: Parent(parent), BB(&bb), R(nullptr), Build(nullptr),
NestLoops(Nest.size()) {
// Setup the induction variables.
for (unsigned i = 0, e = Nest.size(); i < e; ++i)
NestLoops[i] = Nest[i];
BaseName = getIslCompatibleName("Stmt_", &bb, "");
Domain = buildDomain(tempScop, CurRegion);
buildAccesses(tempScop, BB);
deriveAssumptions(BB);
checkForReductions();
}
/// @brief Collect loads which might form a reduction chain with @p StoreMA
///
/// Check if the stored value for @p StoreMA is a binary operator with one or
/// two loads as operands. If the binary operand is commutative & associative,
/// used only once (by @p StoreMA) and its load operands are also used only
/// once, we have found a possible reduction chain. It starts at an operand
/// load and includes the binary operator and @p StoreMA.
///
/// Note: We allow only one use to ensure the load and binary operator cannot
/// escape this block or into any other store except @p StoreMA.
void ScopStmt::collectCandiateReductionLoads(
MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
if (!Store)
return;
// Skip if there is not one binary operator between the load and the store
auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
if (!BinOp)
return;
// Skip if the binary operators has multiple uses
if (BinOp->getNumUses() != 1)
return;
// Skip if the opcode of the binary operator is not commutative/associative
if (!BinOp->isCommutative() || !BinOp->isAssociative())
return;
// Skip if the binary operator is outside the current SCoP
if (BinOp->getParent() != Store->getParent())
return;
// Skip if it is a multiplicative reduction and we disabled them
if (DisableMultiplicativeReductions &&
(BinOp->getOpcode() == Instruction::Mul ||
BinOp->getOpcode() == Instruction::FMul))
return;
// Check the binary operator operands for a candidate load
auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
if (!PossibleLoad0 && !PossibleLoad1)
return;
// A load is only a candidate if it cannot escape (thus has only this use)
if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
if (PossibleLoad0->getParent() == Store->getParent())
Loads.push_back(lookupAccessFor(PossibleLoad0));
if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
if (PossibleLoad1->getParent() == Store->getParent())
Loads.push_back(lookupAccessFor(PossibleLoad1));
}
/// @brief Check for reductions in this ScopStmt
///
/// Iterate over all store memory accesses and check for valid binary reduction
/// like chains. For all candidates we check if they have the same base address
/// and there are no other accesses which overlap with them. The base address
/// check rules out impossible reductions candidates early. The overlap check,
/// together with the "only one user" check in collectCandiateReductionLoads,
/// guarantees that none of the intermediate results will escape during
/// execution of the loop nest. We basically check here that no other memory
/// access can access the same memory as the potential reduction.
void ScopStmt::checkForReductions() {
SmallVector<MemoryAccess *, 2> Loads;
SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
// First collect candidate load-store reduction chains by iterating over all
// stores and collecting possible reduction loads.
for (MemoryAccess *StoreMA : MemAccs) {
if (StoreMA->isRead())
continue;
Loads.clear();
collectCandiateReductionLoads(StoreMA, Loads);
for (MemoryAccess *LoadMA : Loads)
Candidates.push_back(std::make_pair(LoadMA, StoreMA));
}
// Then check each possible candidate pair.
for (const auto &CandidatePair : Candidates) {
bool Valid = true;
isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
// Skip those with obviously unequal base addresses.
if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
isl_map_free(LoadAccs);
isl_map_free(StoreAccs);
continue;
}
// And check if the remaining for overlap with other memory accesses.
isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
isl_set *AllAccs = isl_map_range(AllAccsRel);
for (MemoryAccess *MA : MemAccs) {
if (MA == CandidatePair.first || MA == CandidatePair.second)
continue;
isl_map *AccRel =
isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
isl_set *Accs = isl_map_range(AccRel);
if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
Valid = Valid && isl_set_is_empty(OverlapAccs);
isl_set_free(OverlapAccs);
}
}
isl_set_free(AllAccs);
if (!Valid)
continue;
const LoadInst *Load =
dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
MemoryAccess::ReductionType RT =
getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
// If no overlapping access was found we mark the load and store as
// reduction like.
CandidatePair.first->markAsReductionLike(RT);
CandidatePair.second->markAsReductionLike(RT);
}
}
std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
std::string ScopStmt::getScheduleStr() const {
auto *S = getSchedule();
auto Str = stringFromIslObj(S);
isl_map_free(S);
return Str;
}
unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
return NestLoops[Dimension];
}
isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
__isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
__isl_give isl_space *ScopStmt::getDomainSpace() const {
return isl_set_get_space(Domain);
}
__isl_give isl_id *ScopStmt::getDomainId() const {
return isl_set_get_tuple_id(Domain);
}
ScopStmt::~ScopStmt() {
DeleteContainerSeconds(InstructionToAccess);
isl_set_free(Domain);
}
void ScopStmt::print(raw_ostream &OS) const {
OS << "\t" << getBaseName() << "\n";
OS.indent(12) << "Domain :=\n";
if (Domain) {
OS.indent(16) << getDomainStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
OS.indent(12) << "Schedule :=\n";
if (Domain) {
OS.indent(16) << getScheduleStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
for (MemoryAccess *Access : MemAccs)
Access->print(OS);
}
void ScopStmt::dump() const { print(dbgs()); }
//===----------------------------------------------------------------------===//
/// Scop class implement
void Scop::setContext(__isl_take isl_set *NewContext) {
NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
isl_set_free(Context);
Context = NewContext;
}
void Scop::addParams(std::vector<const SCEV *> NewParameters) {
for (const SCEV *Parameter : NewParameters) {
Parameter = extractConstantFactor(Parameter, *SE).second;
if (ParameterIds.find(Parameter) != ParameterIds.end())
continue;
int dimension = Parameters.size();
Parameters.push_back(Parameter);
ParameterIds[Parameter] = dimension;
}
}
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const {
ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
if (IdIter == ParameterIds.end())
return nullptr;
std::string ParameterName;
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
Value *Val = ValueParameter->getValue();
ParameterName = Val->getName();
}
if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
ParameterName = "p_" + utostr_32(IdIter->second);
return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
const_cast<void *>((const void *)Parameter));
}
void Scop::buildContext() {
isl_space *Space = isl_space_params_alloc(IslCtx, 0);
Context = isl_set_universe(isl_space_copy(Space));
AssumedContext = isl_set_universe(Space);
}
void Scop::addParameterBounds() {
for (const auto &ParamID : ParameterIds) {
int dim = ParamID.second;
ConstantRange SRange = SE->getSignedRange(ParamID.first);
Context = addRangeBoundsToSet(Context, SRange, dim, isl_dim_param);
}
}
void Scop::realignParams() {
// Add all parameters into a common model.
isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
for (const auto &ParamID : ParameterIds) {
const SCEV *Parameter = ParamID.first;
isl_id *id = getIdForParam(Parameter);
Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id);
}
// Align the parameters of all data structures to the model.
Context = isl_set_align_params(Context, Space);
for (ScopStmt &Stmt : *this)
Stmt.realignParams();
}
void Scop::simplifyAssumedContext() {
// The parameter constraints of the iteration domains give us a set of
// constraints that need to hold for all cases where at least a single
// statement iteration is executed in the whole scop. We now simplify the
// assumed context under the assumption that such constraints hold and at
// least a single statement iteration is executed. For cases where no
// statement instances are executed, the assumptions we have taken about
// the executed code do not matter and can be changed.
//
// WARNING: This only holds if the assumptions we have taken do not reduce
// the set of statement instances that are executed. Otherwise we
// may run into a case where the iteration domains suggest that
// for a certain set of parameter constraints no code is executed,
// but in the original program some computation would have been
// performed. In such a case, modifying the run-time conditions and
// possibly influencing the run-time check may cause certain scops
// to not be executed.
//
// Example:
//
// When delinearizing the following code:
//
// for (long i = 0; i < 100; i++)
// for (long j = 0; j < m; j++)
// A[i+p][j] = 1.0;
//
// we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
// otherwise we would access out of bound data. Now, knowing that code is
// only executed for the case m >= 0, it is sufficient to assume p >= 0.
AssumedContext =
isl_set_gist_params(AssumedContext, isl_union_set_params(getDomains()));
AssumedContext = isl_set_gist_params(AssumedContext, getContext());
}
/// @brief Add the minimal/maximal access in @p Set to @p User.
static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
isl_pw_multi_aff *MinPMA, *MaxPMA;
isl_pw_aff *LastDimAff;
isl_aff *OneAff;
unsigned Pos;
// Restrict the number of parameters involved in the access as the lexmin/
// lexmax computation will take too long if this number is high.
//
// Experiments with a simple test case using an i7 4800MQ:
//
// #Parameters involved | Time (in sec)
// 6 | 0.01
// 7 | 0.04
// 8 | 0.12
// 9 | 0.40
// 10 | 1.54
// 11 | 6.78
// 12 | 30.38
//
if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
unsigned InvolvedParams = 0;
for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
InvolvedParams++;
if (InvolvedParams > RunTimeChecksMaxParameters) {
isl_set_free(Set);
return isl_stat_error;
}
}
Set = isl_set_remove_divs(Set);
MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
// Adjust the last dimension of the maximal access by one as we want to
// enclose the accessed memory region by MinPMA and MaxPMA. The pointer
// we test during code generation might now point after the end of the
// allocated array but we will never dereference it anyway.
assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&
"Assumed at least one output dimension");
Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
OneAff = isl_aff_zero_on_domain(
isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
OneAff = isl_aff_add_constant_si(OneAff, 1);
LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
isl_set_free(Set);
return isl_stat_ok;
}
static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
isl_set *Domain = MA->getStatement()->getDomain();
Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
return isl_set_reset_tuple_id(Domain);
}
bool Scop::buildAliasGroups(AliasAnalysis &AA) {
// To create sound alias checks we perform the following steps:
// o) Use the alias analysis and an alias set tracker to build alias sets
// for all memory accesses inside the SCoP.
// o) For each alias set we then map the aliasing pointers back to the
// memory accesses we know, thus obtain groups of memory accesses which
// might alias.
// o) We divide each group based on the domains of the minimal/maximal
// accesses. That means two minimal/maximal accesses are only in a group
// if their access domains intersect, otherwise they are in different
// ones.
// o) We split groups such that they contain at most one read only base
// address.
// o) For each group with more than one base pointer we then compute minimal
// and maximal accesses to each array in this group.
using AliasGroupTy = SmallVector<MemoryAccess *, 4>;
AliasSetTracker AST(AA);
DenseMap<Value *, MemoryAccess *> PtrToAcc;
DenseSet<Value *> HasWriteAccess;
for (ScopStmt &Stmt : *this) {
// Skip statements with an empty domain as they will never be executed.
isl_set *StmtDomain = Stmt.getDomain();
bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
isl_set_free(StmtDomain);
if (StmtDomainEmpty)
continue;
for (MemoryAccess *MA : Stmt) {
if (MA->isScalar())
continue;
if (!MA->isRead())
HasWriteAccess.insert(MA->getBaseAddr());
Instruction *Acc = MA->getAccessInstruction();
PtrToAcc[getPointerOperand(*Acc)] = MA;
AST.add(Acc);
}
}
SmallVector<AliasGroupTy, 4> AliasGroups;
for (AliasSet &AS : AST) {
if (AS.isMustAlias() || AS.isForwardingAliasSet())
continue;
AliasGroupTy AG;
for (auto PR : AS)
AG.push_back(PtrToAcc[PR.getValue()]);
assert(AG.size() > 1 &&
"Alias groups should contain at least two accesses");
AliasGroups.push_back(std::move(AG));
}
// Split the alias groups based on their domain.
for (unsigned u = 0; u < AliasGroups.size(); u++) {
AliasGroupTy NewAG;
AliasGroupTy &AG = AliasGroups[u];
AliasGroupTy::iterator AGI = AG.begin();
isl_set *AGDomain = getAccessDomain(*AGI);
while (AGI != AG.end()) {
MemoryAccess *MA = *AGI;
isl_set *MADomain = getAccessDomain(MA);
if (isl_set_is_disjoint(AGDomain, MADomain)) {
NewAG.push_back(MA);
AGI = AG.erase(AGI);
isl_set_free(MADomain);
} else {
AGDomain = isl_set_union(AGDomain, MADomain);
AGI++;
}
}
if (NewAG.size() > 1)
AliasGroups.push_back(std::move(NewAG));
isl_set_free(AGDomain);
}
MapVector<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs;
SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues;
for (AliasGroupTy &AG : AliasGroups) {
NonReadOnlyBaseValues.clear();
ReadOnlyPairs.clear();
if (AG.size() < 2) {
AG.clear();
continue;
}
for (auto II = AG.begin(); II != AG.end();) {
Value *BaseAddr = (*II)->getBaseAddr();
if (HasWriteAccess.count(BaseAddr)) {
NonReadOnlyBaseValues.insert(BaseAddr);
II++;
} else {
ReadOnlyPairs[BaseAddr].insert(*II);
II = AG.erase(II);
}
}
// If we don't have read only pointers check if there are at least two
// non read only pointers, otherwise clear the alias group.
if (ReadOnlyPairs.empty()) {
if (NonReadOnlyBaseValues.size() <= 1)
AG.clear();
continue;
}
// If we don't have non read only pointers clear the alias group.
if (NonReadOnlyBaseValues.empty()) {
AG.clear();
continue;
}
// If we have both read only and non read only base pointers we combine
// the non read only ones with exactly one read only one at a time into a
// new alias group and clear the old alias group in the end.
for (const auto &ReadOnlyPair : ReadOnlyPairs) {
AliasGroupTy AGNonReadOnly = AG;
for (MemoryAccess *MA : ReadOnlyPair.second)
AGNonReadOnly.push_back(MA);
AliasGroups.push_back(std::move(AGNonReadOnly));
}
AG.clear();
}
for (AliasGroupTy &AG : AliasGroups) {
if (AG.empty())
continue;
MinMaxVectorTy *MinMaxAccesses = new MinMaxVectorTy();
MinMaxAccesses->reserve(AG.size());
isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
for (MemoryAccess *MA : AG)
Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
Accesses = isl_union_map_intersect_domain(Accesses, getDomains());
isl_union_set *Locations = isl_union_map_range(Accesses);
Locations = isl_union_set_intersect_params(Locations, getAssumedContext());
Locations = isl_union_set_coalesce(Locations);
Locations = isl_union_set_detect_equalities(Locations);
bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
MinMaxAccesses));
isl_union_set_free(Locations);
MinMaxAliasGroups.push_back(MinMaxAccesses);
if (!Valid)
return false;
}
// Bail out if the number of values we need to compare is too large.
// This is important as the number of comparisions grows quadratically with
// the number of values we need to compare.
for (const auto *Values : MinMaxAliasGroups)
if (Values->size() > RunTimeChecksMaxArraysPerGroup)
return false;
return true;
}
static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI,
ScopDetection &SD) {
const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD.getBoxedLoops(&R);
unsigned MinLD = INT_MAX, MaxLD = 0;
for (BasicBlock *BB : R.blocks()) {
if (Loop *L = LI.getLoopFor(BB)) {
if (!R.contains(L))
continue;
if (BoxedLoops && BoxedLoops->count(L))
continue;
unsigned LD = L->getLoopDepth();
MinLD = std::min(MinLD, LD);
MaxLD = std::max(MaxLD, LD);
}
}
// Handle the case that there is no loop in the SCoP first.
if (MaxLD == 0)
return 1;
assert(MinLD >= 1 && "Minimal loop depth should be at least one");
assert(MaxLD >= MinLD &&
"Maximal loop depth was smaller than mininaml loop depth?");
return MaxLD - MinLD + 1;
}
Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution,
ScopDetection &SD, isl_ctx *Context)
: SE(&ScalarEvolution), R(tempScop.getMaxRegion()), IsOptimized(false),
MaxLoopDepth(getMaxLoopDepthInRegion(tempScop.getMaxRegion(), LI, SD)) {
IslCtx = Context;
buildContext();
SmallVector<Loop *, 8> NestLoops;
// Build the iteration domain, access functions and schedule functions
// traversing the region tree.
Schedule = buildScop(tempScop, getRegion(), NestLoops, LI, SD);
if (!Schedule)
Schedule = isl_schedule_empty(getParamSpace());
realignParams();
addParameterBounds();
simplifyAssumedContext();
assert(NestLoops.empty() && "NestLoops not empty at top level!");
}
Scop::~Scop() {
isl_set_free(Context);
isl_set_free(AssumedContext);
isl_schedule_free(Schedule);
// Free the alias groups
for (MinMaxVectorTy *MinMaxAccesses : MinMaxAliasGroups) {
for (MinMaxAccessTy &MMA : *MinMaxAccesses) {
isl_pw_multi_aff_free(MMA.first);
isl_pw_multi_aff_free(MMA.second);
}
delete MinMaxAccesses;
}
}
const ScopArrayInfo *
Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType,
const SmallVector<const SCEV *, 4> &Sizes) {
auto &SAI = ScopArrayInfoMap[BasePtr];
if (!SAI)
SAI.reset(new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes));
return SAI.get();
}
const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr) {
const ScopArrayInfo *SAI = ScopArrayInfoMap[BasePtr].get();
assert(SAI && "No ScopArrayInfo available for this base pointer");
return SAI;
}
std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
std::string Scop::getAssumedContextStr() const {
return stringFromIslObj(AssumedContext);
}
std::string Scop::getNameStr() const {
std::string ExitName, EntryName;
raw_string_ostream ExitStr(ExitName);
raw_string_ostream EntryStr(EntryName);
R.getEntry()->printAsOperand(EntryStr, false);
EntryStr.str();
if (R.getExit()) {
R.getExit()->printAsOperand(ExitStr, false);
ExitStr.str();
} else
ExitName = "FunctionExit";
return EntryName + "---" + ExitName;
}
__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
__isl_give isl_space *Scop::getParamSpace() const {
return isl_set_get_space(Context);
}
__isl_give isl_set *Scop::getAssumedContext() const {
return isl_set_copy(AssumedContext);
}
void Scop::addAssumption(__isl_take isl_set *Set) {
AssumedContext = isl_set_intersect(AssumedContext, Set);
AssumedContext = isl_set_coalesce(AssumedContext);
}
void Scop::printContext(raw_ostream &OS) const {
OS << "Context:\n";
if (!Context) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getContextStr() << "\n";
OS.indent(4) << "Assumed Context:\n";
if (!AssumedContext) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getAssumedContextStr() << "\n";
for (const SCEV *Parameter : Parameters) {
int Dim = ParameterIds.find(Parameter)->second;
OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
}
}
void Scop::printAliasAssumptions(raw_ostream &OS) const {
OS.indent(4) << "Alias Groups (" << MinMaxAliasGroups.size() << "):\n";
if (MinMaxAliasGroups.empty()) {
OS.indent(8) << "n/a\n";
return;
}
for (MinMaxVectorTy *MinMaxAccesses : MinMaxAliasGroups) {
OS.indent(8) << "[[";
for (MinMaxAccessTy &MinMacAccess : *MinMaxAccesses)
OS << " <" << MinMacAccess.first << ", " << MinMacAccess.second << ">";
OS << " ]]\n";
}
}
void Scop::printStatements(raw_ostream &OS) const {
OS << "Statements {\n";
for (const ScopStmt &Stmt : *this)
OS.indent(4) << Stmt;
OS.indent(4) << "}\n";
}
void Scop::printArrayInfo(raw_ostream &OS) const {
OS << "Arrays {\n";
for (auto &Array : arrays())
Array.second->print(OS);
OS.indent(4) << "}\n";
}
void Scop::print(raw_ostream &OS) const {
OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
<< "\n";
OS.indent(4) << "Region: " << getNameStr() << "\n";
OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
printContext(OS.indent(4));
printArrayInfo(OS.indent(4));
printAliasAssumptions(OS);
printStatements(OS.indent(4));
}
void Scop::dump() const { print(dbgs()); }
isl_ctx *Scop::getIslCtx() const { return IslCtx; }
__isl_give isl_union_set *Scop::getDomains() const {
isl_union_set *Domain = isl_union_set_empty(getParamSpace());
for (const ScopStmt &Stmt : *this)
Domain = isl_union_set_add_set(Domain, Stmt.getDomain());
return Domain;
}
__isl_give isl_union_map *Scop::getMustWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isMustWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getMayWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isMayWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getWrites() {
isl_union_map *Write = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isWrite())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getReads() {
isl_union_map *Read = isl_union_map_empty(getParamSpace());
for (ScopStmt &Stmt : *this) {
for (MemoryAccess *MA : Stmt) {
if (!MA->isRead())
continue;
isl_set *Domain = Stmt.getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Read = isl_union_map_add_map(Read, AccessDomain);
}
}
return isl_union_map_coalesce(Read);
}
__isl_give isl_union_map *Scop::getSchedule() const {
auto Tree = getScheduleTree();
auto S = isl_schedule_get_map(Tree);
isl_schedule_free(Tree);
return S;
}
__isl_give isl_schedule *Scop::getScheduleTree() const {
return isl_schedule_intersect_domain(isl_schedule_copy(Schedule),
getDomains());
}
void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) {
auto *S = isl_schedule_from_domain(getDomains());
S = isl_schedule_insert_partial_schedule(
S, isl_multi_union_pw_aff_from_union_map(NewSchedule));
isl_schedule_free(Schedule);
Schedule = S;
}
void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) {
isl_schedule_free(Schedule);
Schedule = NewSchedule;
}
bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
bool Changed = false;
for (ScopStmt &Stmt : *this) {
isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain());
isl_union_set *NewStmtDomain = isl_union_set_intersect(
isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
isl_union_set_free(StmtDomain);
isl_union_set_free(NewStmtDomain);
continue;
}
Changed = true;
isl_union_set_free(StmtDomain);
NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
if (isl_union_set_is_empty(NewStmtDomain)) {
Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace()));
isl_union_set_free(NewStmtDomain);
} else
Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain));
}
isl_union_set_free(Domain);
return Changed;
}
ScalarEvolution *Scop::getSE() const { return SE; }
bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
if (tempScop.getAccessFunctions(BB))
return false;
return true;
}
struct MapToDimensionDataTy {
int N;
isl_union_pw_multi_aff *Res;
};
// @brief Create a function that maps the elements of 'Set' to its N-th
// dimension.
//
// The result is added to 'User->Res'.
//
// @param Set The input set.
// @param N The dimension to map to.
//
// @returns Zero if no error occurred, non-zero otherwise.
static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) {
struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User;
int Dim;
isl_space *Space;
isl_pw_multi_aff *PMA;
Dim = isl_set_dim(Set, isl_dim_set);
Space = isl_set_get_space(Set);
PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N,
Dim - Data->N);
if (Data->N > 1)
PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1);
Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA);
isl_set_free(Set);
return isl_stat_ok;
}
// @brief Create a function that maps the elements of Domain to their Nth
// dimension.
//
// @param Domain The set of elements to map.
// @param N The dimension to map to.
static __isl_give isl_multi_union_pw_aff *
mapToDimension(__isl_take isl_union_set *Domain, int N) {
struct MapToDimensionDataTy Data;
isl_space *Space;
Space = isl_union_set_get_space(Domain);
Data.N = N;
Data.Res = isl_union_pw_multi_aff_empty(Space);
if (isl_union_set_foreach_set(Domain, &mapToDimension_AddSet, &Data) < 0)
Data.Res = isl_union_pw_multi_aff_free(Data.Res);
isl_union_set_free(Domain);
return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res);
}
ScopStmt *Scop::addScopStmt(BasicBlock *BB, Region *R, TempScop &tempScop,
const Region &CurRegion,
SmallVectorImpl<Loop *> &NestLoops) {
ScopStmt *Stmt;
if (BB) {
Stmts.emplace_back(*this, tempScop, CurRegion, *BB, NestLoops);
Stmt = &Stmts.back();
StmtMap[BB] = Stmt;
} else {
assert(R && "Either basic block or a region expected.");
Stmts.emplace_back(*this, tempScop, CurRegion, *R, NestLoops);
Stmt = &Stmts.back();
for (BasicBlock *BB : R->blocks())
StmtMap[BB] = Stmt;
}
return Stmt;
}
__isl_give isl_schedule *Scop::buildScop(TempScop &tempScop,
const Region &CurRegion,
SmallVectorImpl<Loop *> &NestLoops,
LoopInfo &LI, ScopDetection &SD) {
if (SD.isNonAffineSubRegion(&CurRegion, &getRegion())) {
auto *Stmt = addScopStmt(nullptr, const_cast<Region *>(&CurRegion),
tempScop, CurRegion, NestLoops);
auto *Domain = Stmt->getDomain();
return isl_schedule_from_domain(isl_union_set_from_set(Domain));
}
Loop *L = castToLoop(CurRegion, LI);
if (L)
NestLoops.push_back(L);
unsigned loopDepth = NestLoops.size();
isl_schedule *Schedule = nullptr;
for (Region::const_element_iterator I = CurRegion.element_begin(),
E = CurRegion.element_end();
I != E; ++I) {
isl_schedule *StmtSchedule = nullptr;
if (I->isSubRegion()) {
StmtSchedule =
buildScop(tempScop, *I->getNodeAs<Region>(), NestLoops, LI, SD);
} else {
BasicBlock *BB = I->getNodeAs<BasicBlock>();
if (isTrivialBB(BB, tempScop)) {
continue;
} else {
auto *Stmt = addScopStmt(BB, nullptr, tempScop, CurRegion, NestLoops);
auto *Domain = Stmt->getDomain();
StmtSchedule = isl_schedule_from_domain(isl_union_set_from_set(Domain));
}
}
if (!Schedule)
Schedule = StmtSchedule;
else if (StmtSchedule)
Schedule = isl_schedule_sequence(Schedule, StmtSchedule);
}
if (!L)
return Schedule;
auto *Domain = isl_schedule_get_domain(Schedule);
if (!isl_union_set_is_empty(Domain)) {
auto *MUPA = mapToDimension(isl_union_set_copy(Domain), loopDepth);
Schedule = isl_schedule_insert_partial_schedule(Schedule, MUPA);
}
isl_union_set_free(Domain);
NestLoops.pop_back();
return Schedule;
}
ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const {
auto StmtMapIt = StmtMap.find(BB);
if (StmtMapIt == StmtMap.end())
return nullptr;
return StmtMapIt->second;
}
//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
ctx = isl_ctx_alloc();
isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
}
ScopInfo::~ScopInfo() {
clear();
isl_ctx_free(ctx);
}
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<ScopDetection>();
AU.addRequired<TempScopInfo>();
AU.addRequired<AliasAnalysis>();
AU.setPreservesAll();
}
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
ScopDetection &SD = getAnalysis<ScopDetection>();
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);
// This region is no Scop.
if (!tempScop) {
scop = nullptr;
return false;
}
scop = new Scop(*tempScop, LI, SE, SD, ctx);
DEBUG(scop->print(dbgs()));
if (!PollyUseRuntimeAliasChecks) {
// Statistics.
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
return false;
}
// If a problem occurs while building the alias groups we need to delete
// this SCoP and pretend it wasn't valid in the first place.
if (scop->buildAliasGroups(AA)) {
// Statistics.
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
return false;
}
DEBUG(dbgs()
<< "\n\nNOTE: Run time checks for " << scop->getNameStr()
<< " could not be created as the number of parameters involved is too "
"high. The SCoP will be "
"dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust the "
"maximal number of parameters but be advised that the compile time "
"might increase exponentially.\n\n");
delete scop;
scop = nullptr;
return false;
}
char ScopInfo::ID = 0;
Pass *polly::createScopInfoPass() { return new ScopInfo(); }
INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false);
INITIALIZE_AG_DEPENDENCY(AliasAnalysis);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
INITIALIZE_PASS_DEPENDENCY(TempScopInfo);
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false)