blob: 64a15409efe29253bc82d67b8f4424fefbfc3a20 [file] [log] [blame]
//===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the BlockGenerator and VectorBlockGenerator classes, which
// generate sequential code and vectorized code for a polyhedral statement,
// respectively.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_BLOCK_GENERATORS_H
#define POLLY_BLOCK_GENERATORS_H
#include "polly/CodeGen/IRBuilder.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "isl/map.h"
#include <vector>
struct isl_ast_build;
namespace llvm {
class Pass;
class Region;
class ScalarEvolution;
}
namespace polly {
using namespace llvm;
class ScopStmt;
class MemoryAccess;
class IslExprBuilder;
typedef DenseMap<const Value *, Value *> ValueMapT;
typedef std::vector<ValueMapT> VectorValueMapT;
/// @brief Check whether an instruction can be synthesized by the code
/// generator.
///
/// Some instructions will be recalculated only from information that is code
/// generated from the polyhedral representation. For such instructions we do
/// not need to ensure that their operands are available during code generation.
///
/// @param I The instruction to check.
/// @param LI The LoopInfo analysis.
/// @param SE The scalar evolution database.
/// @param R The region out of which SSA names are parameters.
/// @return If the instruction I can be regenerated from its
/// scalar evolution representation, return true,
/// otherwise return false.
bool canSynthesize(const llvm::Instruction *I, const llvm::LoopInfo *LI,
llvm::ScalarEvolution *SE, const llvm::Region *R);
/// @brief Return true iff @p V is an intrinsic that we ignore during code
/// generation.
bool isIgnoredIntrinsic(const llvm::Value *V);
/// @brief Generate a new basic block for a polyhedral statement.
class BlockGenerator {
public:
/// @brief Map types to resolve scalar dependences.
///
///@{
/// @see The ScalarMap and PHIOpMap member.
using ScalarAllocaMapTy = DenseMap<Instruction *, AllocaInst *>;
/// @brief Simple vector of instructions to store escape users.
using EscapeUserVectorTy = SmallVector<Instruction *, 4>;
/// @brief Map type to resolve escaping users for scalar instructions.
///
/// @see The EscapeMap member.
using EscapeUsersAllocaMapTy =
DenseMap<Instruction *, std::pair<AllocaInst *, EscapeUserVectorTy>>;
///@}
/// @brief Create a generator for basic blocks.
///
/// @param Builder The LLVM-IR Builder used to generate the statement. The
/// code is generated at the location, the Builder points
/// to.
/// @param LI The loop info for the current function
/// @param SE The scalar evolution info for the current function
/// @param DT The dominator tree of this function.
/// @param ScalarMap Map from scalars to their demoted location.
/// @param PHIOpMap Map from PHIs to their demoted operand location.
/// @param EscapeMap Map from scalars to their escape users and locations.
/// @param ExprBuilder An expression builder to generate new access functions.
BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE,
DominatorTree &DT, ScalarAllocaMapTy &ScalarMap,
ScalarAllocaMapTy &PHIOpMap, EscapeUsersAllocaMapTy &EscapeMap,
IslExprBuilder *ExprBuilder = nullptr);
/// @brief Copy the basic block.
///
/// This copies the entire basic block and updates references to old values
/// with references to new values, as defined by GlobalMap.
///
/// @param Stmt The block statement to code generate.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as SCEVs.
void copyStmt(ScopStmt &Stmt, ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Finalize the code generation for the SCoP @p S.
///
/// This will initialize and finalize the scalar variables we demoted during
/// the code generation.
///
/// @see createScalarInitialization(Region &, ValueMapT &)
/// @see createScalarFinalization(Region &)
void finalizeSCoP(Scop &S, ValueMapT &VMap);
/// @brief An empty destructor
virtual ~BlockGenerator(){};
protected:
PollyIRBuilder &Builder;
LoopInfo &LI;
ScalarEvolution &SE;
IslExprBuilder *ExprBuilder;
/// @brief The dominator tree of this function.
DominatorTree &DT;
/// @brief The entry block of the current function.
BasicBlock *EntryBB;
/// @brief Maps to resolve scalar dependences for PHI operands and scalars.
///
/// Usage example:
///
/// x1 = ... // x1 will be inserted in the ScalarMap and PhiOpMap.
/// for (i=0...N) {
/// x2 = phi(x1, add) // x2 will be inserted in the ScalarMap, x1 and
/// // add are mapped in the PHIOpMap.
/// add = x2 + A[i]; // add will be inserted in the ScalarMap and
/// // the PhiOpMap.
/// }
/// print(x1) // x1 is mapped in the ScalarMap.
/// print(x2) // x2 is mapped in the ScalarMap.
/// print(add) // add is mapped in the ScalarMap.
///
///{
/// The PHIOpMap is used to get the alloca to communicate a value to a PHI
/// node, hence when the operand of a PHI is demoted the corresponding write
/// access will use the PHIOpMap to look for the correct alloca. PHI nodes
/// will then read that location in order to get the correct/current operand
/// value.
ScalarAllocaMapTy &PHIOpMap;
/// The ScalarMap is used in __all__ other cases, thus always when a scalar
/// variable is read/written and the write is not because the scalar is a PHI
/// operand.
ScalarAllocaMapTy &ScalarMap;
///}
/// @brief Map from instructions to their escape users as well as the alloca.
EscapeUsersAllocaMapTy &EscapeMap;
/// @brief Split @p BB to create a new one we can use to clone @p BB in.
BasicBlock *splitBB(BasicBlock *BB);
/// @brief Copy the given basic block.
///
/// @param Stmt The statement to code generate.
/// @param BB The basic block to code generate.
/// @param BBMap A mapping from old values to their new values in this
/// block.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as SCEVs.
///
/// @returns The copy of the basic block.
BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Copy the given basic block.
///
/// @param Stmt The statement to code generate.
/// @param BB The basic block to code generate.
/// @param BBCopy The new basic block to generate code in.
/// @param BBMap A mapping from old values to their new values in this
/// block.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as SCEVs.
void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy,
ValueMapT &BBMap, ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Return the alloca for @p ScalarBase in @p Map.
///
/// If no alloca was mapped to @p ScalarBase in @p Map a new one is created
/// and named after @p ScalarBase with the suffix @p NameExt.
///
/// @param ScalarBase The demoted scalar instruction.
/// @param Map The map we should look for a mapped alloca instruction.
/// @param NameExt The suffix we add to the name of a new created alloca.
/// @param IsNew If set it will hold true iff the alloca was created.
///
/// @returns The alloca for @p ScalarBase in @p Map.
AllocaInst *getOrCreateAlloca(Instruction *ScalarBase, ScalarAllocaMapTy &Map,
const char *NameExt = ".s2a",
bool *IsNew = nullptr);
/// @brief Generate reload of scalars demoted to memory and needed by @p Inst.
///
/// @param Stmt The statement we generate code for.
/// @param Inst The instruction that might need reloaded values.
/// @param BBMap A mapping from old values to their new values in this block.
virtual void generateScalarLoads(ScopStmt &Stmt, const Instruction *Inst,
ValueMapT &BBMap);
/// @brief Generate the scalar stores for the given statement.
///
/// After the statement @p Stmt was copied all inner-SCoP scalar dependences
/// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
/// be demoted to memory.
///
/// @param Stmt The statement we generate code for.
/// @param BB The basic block we generate code for.
/// @param BBMap A mapping from old values to their new values in this block.
/// @param GlobalMap A mapping for globally replaced values.
virtual void generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
ValueMapT &BBMAp, ValueMapT &GlobalMap);
/// @brief Handle users of @p Inst outside the SCoP.
///
/// @param R The current SCoP region.
/// @param Inst The current instruction we check.
/// @param InstCopy The copy of the instruction @p Inst in the optimized SCoP.
void handleOutsideUsers(const Region &R, Instruction *Inst, Value *InstCopy);
/// @brief Initialize the memory of demoted scalars.
///
/// If a PHI node was demoted and one of its predecessor blocks was outside
/// the SCoP we need to initialize the memory cell we demoted the PHI into
/// with the value corresponding to that predecessor. As a SCoP is a
/// __single__ entry region there is at most one such predecessor.
void createScalarInitialization(Region &R, ValueMapT &VMap);
/// @brief Promote the values of demoted scalars after the SCoP.
///
/// If a scalar value was used outside the SCoP we need to promote the value
/// stored in the memory cell allocated for that scalar and combine it with
/// the original value in the non-optimized SCoP.
void createScalarFinalization(Region &R);
/// @brief Get the new version of a value.
///
/// Given an old value, we first check if a new version of this value is
/// available in the BBMap or GlobalMap. In case it is not and the value can
/// be recomputed using SCEV, we do so. If we can not recompute a value
/// using SCEV, but we understand that the value is constant within the scop,
/// we return the old value. If the value can still not be derived, this
/// function will assert.
///
/// @param Stmt The statement to code generate.
/// @param Old The old Value.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A mapping from loops virtual canonical induction
/// variable to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param L The loop that surrounded the instruction that referenced
/// this value in the original code. This loop is used to
/// evaluate the scalar evolution at the right scope.
///
/// @returns o The old value, if it is still valid.
/// o The new value, if available.
/// o NULL, if no value is found.
Value *getNewValue(ScopStmt &Stmt, const Value *Old, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS, Loop *L) const;
void copyInstScalar(ScopStmt &Stmt, const Instruction *Inst, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Get the innermost loop that surrounds an instruction.
///
/// @param Inst The instruction for which we get the loop.
/// @return The innermost loop that surrounds the instruction.
Loop *getLoopForInst(const Instruction *Inst);
/// @brief Get the new operand address according to access relation of @p MA.
Value *getNewAccessOperand(ScopStmt &Stmt, const MemoryAccess &MA);
/// @brief Generate the operand address
Value *generateLocationAccessed(ScopStmt &Stmt, const Instruction *Inst,
const Value *Pointer, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
Value *generateScalarLoad(ScopStmt &Stmt, const LoadInst *load,
ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS);
Value *generateScalarStore(ScopStmt &Stmt, const StoreInst *store,
ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS);
/// @brief Copy a single PHI instruction.
///
/// The implementation in the BlockGenerator is trivial, however it allows
/// subclasses to handle PHIs different.
///
/// @returns The nullptr as the BlockGenerator does not copy PHIs.
virtual Value *copyPHIInstruction(ScopStmt &, const PHINode *, ValueMapT &,
ValueMapT &, LoopToScevMapT &) {
return nullptr;
}
/// @brief Copy a single Instruction.
///
/// This copies a single Instruction and updates references to old values
/// with references to new values, as defined by GlobalMap and BBMap.
///
/// @param Stmt The statement to code generate.
/// @param Inst The instruction to copy.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A mapping from loops virtual canonical induction
/// variable to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
void copyInstruction(ScopStmt &Stmt, const Instruction *Inst,
ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS);
/// @brief Helper to get the newest version of @p ScalarValue.
///
/// @param ScalarValue The original value needed.
/// @param R The current SCoP region.
/// @param ReloadMap The scalar map for demoted values.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
///
/// @returns The newest version (e.g., reloaded) of the scalar value.
Value *getNewScalarValue(Value *ScalarValue, const Region &R,
ScalarAllocaMapTy &ReloadMap, ValueMapT &BBMap,
ValueMapT &GlobalMap);
};
/// @brief Generate a new vector basic block for a polyhedral statement.
///
/// The only public function exposed is generate().
class VectorBlockGenerator : BlockGenerator {
public:
/// @brief Generate a new vector basic block for a ScoPStmt.
///
/// This code generation is similar to the normal, scalar code generation,
/// except that each instruction is code generated for several vector lanes
/// at a time. If possible instructions are issued as actual vector
/// instructions, but e.g. for address calculation instructions we currently
/// generate scalar instructions for each vector lane.
///
/// @param BlockGen A block generator object used as parent.
/// @param Stmt The statement to code generate.
/// @param GlobalMaps A vector of maps that define for certain Values
/// referenced from the original code new Values they should
/// be replaced with. Each map in the vector of maps is
/// used for one vector lane. The number of elements in the
/// vector defines the width of the generated vector
/// instructions.
/// @param VLTS A mapping from loops virtual canonical induction
/// variable to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block), one for each lane.
/// @param Schedule A map from the statement to a schedule where the
/// innermost dimension is the dimension of the innermost
/// loop containing the statemenet.
static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt,
VectorValueMapT &GlobalMaps,
std::vector<LoopToScevMapT> &VLTS,
__isl_keep isl_map *Schedule) {
VectorBlockGenerator Generator(BlockGen, GlobalMaps, VLTS, Schedule);
Generator.copyStmt(Stmt);
}
private:
// This is a vector of global value maps. The first map is used for the first
// vector lane, ...
// Each map, contains information about Instructions in the old ScoP, which
// are recalculated in the new SCoP. When copying the basic block, we replace
// all referenes to the old instructions with their recalculated values.
VectorValueMapT &GlobalMaps;
// This is a vector of loop->scev maps. The first map is used for the first
// vector lane, ...
// Each map, contains information about Instructions in the old ScoP, which
// are recalculated in the new SCoP. When copying the basic block, we replace
// all referenes to the old instructions with their recalculated values.
//
// For example, when the code generator produces this AST:
//
// for (int c1 = 0; c1 <= 1023; c1 += 1)
// for (int c2 = 0; c2 <= 1023; c2 += VF)
// for (int lane = 0; lane <= VF; lane += 1)
// Stmt(c2 + lane + 3, c1);
//
// VLTS[lane] contains a map:
// "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"),
// "inner loop in the old loop nest" -> SCEV("c1").
std::vector<LoopToScevMapT> &VLTS;
// A map from the statement to a schedule where the innermost dimension is the
// dimension of the innermost loop containing the statemenet.
isl_map *Schedule;
VectorBlockGenerator(BlockGenerator &BlockGen, VectorValueMapT &GlobalMaps,
std::vector<LoopToScevMapT> &VLTS,
__isl_keep isl_map *Schedule);
int getVectorWidth();
Value *getVectorValue(ScopStmt &Stmt, const Value *Old, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, Loop *L);
Type *getVectorPtrTy(const Value *V, int Width);
/// @brief Load a vector from a set of adjacent scalars
///
/// In case a set of scalars is known to be next to each other in memory,
/// create a vector load that loads those scalars
///
/// %vector_ptr= bitcast double* %p to <4 x double>*
/// %vec_full = load <4 x double>* %vector_ptr
///
/// @param Stmt The statement to code generate.
/// @param NegativeStride This is used to indicate a -1 stride. In such
/// a case we load the end of a base address and
/// shuffle the accesses in reverse order into the
/// vector. By default we would do only positive
/// strides.
///
Value *generateStrideOneLoad(ScopStmt &Stmt, const LoadInst *Load,
VectorValueMapT &ScalarMaps,
bool NegativeStride);
/// @brief Load a vector initialized from a single scalar in memory
///
/// In case all elements of a vector are initialized to the same
/// scalar value, this value is loaded and shuffeled into all elements
/// of the vector.
///
/// %splat_one = load <1 x double>* %p
/// %splat = shufflevector <1 x double> %splat_one, <1 x
/// double> %splat_one, <4 x i32> zeroinitializer
///
Value *generateStrideZeroLoad(ScopStmt &Stmt, const LoadInst *Load,
ValueMapT &BBMap);
/// @brief Load a vector from scalars distributed in memory
///
/// In case some scalars a distributed randomly in memory. Create a vector
/// by loading each scalar and by inserting one after the other into the
/// vector.
///
/// %scalar_1= load double* %p_1
/// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
/// %scalar 2 = load double* %p_2
/// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
///
Value *generateUnknownStrideLoad(ScopStmt &Stmt, const LoadInst *Load,
VectorValueMapT &ScalarMaps);
void generateLoad(ScopStmt &Stmt, const LoadInst *Load, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyUnaryInst(ScopStmt &Stmt, const UnaryInstruction *Inst,
ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
void copyBinaryInst(ScopStmt &Stmt, const BinaryOperator *Inst,
ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
void copyStore(ScopStmt &Stmt, const StoreInst *Store, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyInstScalarized(ScopStmt &Stmt, const Instruction *Inst,
ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap);
void copyInstruction(ScopStmt &Stmt, const Instruction *Inst,
ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
void copyStmt(ScopStmt &Stmt);
};
/// @brief Generator for new versions of polyhedral region statements.
class RegionGenerator : public BlockGenerator {
public:
/// @brief Create a generator for regions.
///
/// @param BlockGen A generator for basic blocks.
RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {}
/// @brief Copy the region statement @p Stmt.
///
/// This copies the entire region represented by @p Stmt and updates
/// references to old values with references to new values, as defined by
/// GlobalMap.
///
/// @param Stmt The statement to code generate.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as SCEVs.
void copyStmt(ScopStmt &Stmt, ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief An empty destructor
virtual ~RegionGenerator(){};
private:
/// @brief A map from old to new blocks in the region.
DenseMap<BasicBlock *, BasicBlock *> BlockMap;
/// @brief The "BBMaps" for the whole region (one for each block).
DenseMap<BasicBlock *, ValueMapT> RegionMaps;
/// @brief Mapping to remember PHI nodes that still need incoming values.
using PHINodePairTy = std::pair<const PHINode *, PHINode *>;
DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap;
/// @brief Repair the dominance tree after we created a copy block for @p BB.
///
/// @returns The immediate dominator in the DT for @p BBCopy if in the region.
BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy);
/// @brief Add the new operand from the copy of @p IncomingBB to @p PHICopy.
///
/// @param Stmt The statement to code generate.
/// @param PHI The original PHI we copy.
/// @param PHICopy The copy of @p PHI.
/// @param IncomingBB An incoming block of @p PHI.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as
/// SCEVs.
void addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, PHINode *PHICopy,
BasicBlock *IncomingBB, ValueMapT &GlobalMap,
LoopToScevMapT &LTS);
/// @brief Generate reload of scalars demoted to memory and needed by @p Inst.
///
/// @param Stmt The statement we generate code for.
/// @param Inst The instruction that might need reloaded values.
/// @param BBMap A mapping from old values to their new values in this block.
virtual void generateScalarLoads(ScopStmt &Stmt, const Instruction *Inst,
ValueMapT &BBMap) override;
/// @brief Generate the scalar stores for the given statement.
///
/// After the statement @p Stmt was copied all inner-SCoP scalar dependences
/// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
/// be demoted to memory.
///
/// @param Stmt The statement we generate code for.
/// @param BB The basic block we generate code for.
/// @param BBMap A mapping from old values to their new values in this block.
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
virtual void generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
ValueMapT &BBMAp,
ValueMapT &GlobalMap) override;
/// @brief Copy a single PHI instruction.
///
/// This copies a single PHI instruction and updates references to old values
/// with references to new values, as defined by GlobalMap and BBMap.
///
/// @param Stmt The statement to code generate.
/// @param PHI The PHI instruction to copy.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A map from old loops to new induction variables as SCEVs.
///
/// @returns The copied instruction or nullptr if no copy was made.
virtual Value *copyPHIInstruction(ScopStmt &Stmt, const PHINode *Inst,
ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS) override;
};
}
#endif