blob: 67e111bb0bda1670ad0ce434e0f04bc406016ab2 [file] [log] [blame]
//===---- CodePreparation.cpp - Code preparation for Scop Detection -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The Polly code preparation pass is executed before SCoP detection. Its only
// use is to translate all PHI nodes that can not be expressed by the code
// generator into explicit memory dependences.
//
// Polly's code generation can code generate all PHI nodes that do not
// reference parameters within the scop. As the code preparation pass is run
// before scop detection, we can not check this condition, because without
// a detected scop, we do not know SCEVUnknowns that appear in the SCEV of
// a PHI node may later be within or outside of the SCoP. Hence, we follow a
// heuristic and translate all PHI nodes that are either directly SCEVUnknown
// or SCEVCouldNotCompute. This will hopefully get most of the PHI nodes that
// are introduced due to conditional control flow, but not the ones that are
// referencing loop counters.
//
// XXX: In the future, we should remove the need for this pass entirely and
// instead add support for scalar dependences to ScopInfo and code generation.
//
//===----------------------------------------------------------------------===//
#include "polly/LinkAllPasses.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace polly;
namespace {
// Helper function which (for a given PHI node):
//
// 1) Remembers all incoming values and the associated basic blocks
// 2) Demotes the phi node to the stack
// 3) Remembers the correlation between the PHI node and the new alloca
//
// When we combine the information from 1) and 3) we know the values stored
// in this alloca at the end of the predecessor basic blocks of the PHI.
static void DemotePHI(
PHINode *PN, DenseMap<PHINode *, AllocaInst *> &PNallocMap,
DenseMap<std::pair<Value *, BasicBlock *>, PHINode *> &ValueLocToPhiMap) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
auto *InVal = PN->getIncomingValue(i);
auto *InBB = PN->getIncomingBlock(i);
ValueLocToPhiMap[std::make_pair(InVal, InBB)] = PN;
}
PNallocMap[PN] = DemotePHIToStack(PN);
}
/// @brief Prepare the IR for the scop detection.
///
class CodePreparation : public FunctionPass {
CodePreparation(const CodePreparation &) LLVM_DELETED_FUNCTION;
const CodePreparation &
operator=(const CodePreparation &) LLVM_DELETED_FUNCTION;
LoopInfo *LI;
ScalarEvolution *SE;
void clear();
bool eliminatePHINodes(Function &F);
public:
static char ID;
explicit CodePreparation() : FunctionPass(ID) {}
~CodePreparation();
/// @name FunctionPass interface.
//@{
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual bool runOnFunction(Function &F);
virtual void print(raw_ostream &OS, const Module *) const;
//@}
};
}
void CodePreparation::clear() {}
CodePreparation::~CodePreparation() { clear(); }
bool CodePreparation::eliminatePHINodes(Function &F) {
// The PHINodes that will be demoted.
std::vector<PHINode *> PNtoDemote;
// The PHINodes that will be deleted (stack slot sharing).
std::vector<PHINode *> PNtoDelete;
// The PHINodes that will be preserved.
std::vector<PHINode *> PNtoPreserve;
// Map to remember values stored in PHINodes at the end of basic blocks.
DenseMap<std::pair<Value *, BasicBlock *>, PHINode *> ValueLocToPhiMap;
// Map from PHINodes to their alloca (after demotion) counterpart.
DenseMap<PHINode *, AllocaInst *> PNallocMap;
// Scan the PHINodes in this function and categorize them to be either:
// o Preserved, if they are (canonical) induction variables or can be
// synthesized during code generation ('SCEVable')
// o Deleted, if they are trivial PHI nodes (one incoming value) and the
// incoming value is a PHI node we will demote
// o Demoted, if they do not fit any of the previous categories
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI)
for (BasicBlock::iterator II = BI->begin(), IE = BI->getFirstNonPHI();
II != IE; ++II) {
PHINode *PN = cast<PHINode>(II);
if (SE->isSCEVable(PN->getType())) {
const SCEV *S = SE->getSCEV(PN);
if (!isa<SCEVUnknown>(S) && !isa<SCEVCouldNotCompute>(S)) {
PNtoPreserve.push_back(PN);
continue;
}
}
// As DemotePHIToStack does not support invoke edges, we preserve
// PHINodes that have invoke edges.
if (hasInvokeEdge(PN)) {
PNtoPreserve.push_back(PN);
} else {
if (PN->getNumIncomingValues() == 1)
PNtoDelete.push_back(PN);
else
PNtoDemote.push_back(PN);
}
}
if (PNtoDemote.empty() && PNtoDelete.empty())
return false;
while (!PNtoDemote.empty()) {
PHINode *PN = PNtoDemote.back();
PNtoDemote.pop_back();
DemotePHI(PN, PNallocMap, ValueLocToPhiMap);
}
// For each trivial PHI we encountered (and we want to delete) we try to find
// the value it will hold in a alloca we already created by PHI demotion. If
// we succeed (the incoming value is stored in an alloca at the predecessor
// block), we can replace the trivial PHI by the value stored in the alloca.
// If not, we will demote this trivial PHI as any other one.
for (auto PNIt = PNtoDelete.rbegin(), PNEnd = PNtoDelete.rend();
PNIt != PNEnd; ++PNIt) {
PHINode *TrivPN = *PNIt;
assert(TrivPN->getNumIncomingValues() == 1 && "Assumed trivial PHI");
auto *InVal = TrivPN->getIncomingValue(0);
auto *InBB = TrivPN->getIncomingBlock(0);
const auto &ValLocIt = ValueLocToPhiMap.find(std::make_pair(InVal, InBB));
if (ValLocIt != ValueLocToPhiMap.end()) {
PHINode *InPHI = ValLocIt->second;
assert(PNallocMap.count(InPHI) &&
"Inconsitent state, PN was not demoted!");
auto *InPHIAlloca = PNallocMap[InPHI];
PNallocMap[TrivPN] = InPHIAlloca;
LoadInst *LI = new LoadInst(InPHIAlloca, "",
TrivPN->getParent()->getFirstInsertionPt());
TrivPN->replaceAllUsesWith(LI);
TrivPN->eraseFromParent();
continue;
}
DemotePHI(TrivPN, PNallocMap, ValueLocToPhiMap);
}
// Move preserved PHINodes to the beginning of the BasicBlock.
while (!PNtoPreserve.empty()) {
PHINode *PN = PNtoPreserve.back();
PNtoPreserve.pop_back();
BasicBlock *BB = PN->getParent();
if (PN == BB->begin())
continue;
PN->moveBefore(BB->begin());
}
return true;
}
void CodePreparation::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<RegionInfoPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<DominanceFrontier>();
}
bool CodePreparation::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
splitEntryBlockForAlloca(&F.getEntryBlock(), this);
eliminatePHINodes(F);
return false;
}
void CodePreparation::releaseMemory() { clear(); }
void CodePreparation::print(raw_ostream &OS, const Module *) const {}
char CodePreparation::ID = 0;
char &polly::CodePreparationID = CodePreparation::ID;
Pass *polly::createCodePreparationPass() { return new CodePreparation(); }
INITIALIZE_PASS_BEGIN(CodePreparation, "polly-prepare",
"Polly - Prepare code for polly", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(CodePreparation, "polly-prepare",
"Polly - Prepare code for polly", false, false)