blob: d7973e4e0195600899bf48cb63a0dac4f3d0de26 [file] [log] [blame]
//===- IslAst.cpp - isl code generator interface --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The isl code generator interface takes a Scop and generates a isl_ast. This
// ist_ast can either be returned directly or it can be pretty printed to
// stdout.
//
// A typical isl_ast output looks like this:
//
// for (c2 = max(0, ceild(n + m, 2); c2 <= min(511, floord(5 * n, 3)); c2++) {
// bb2(c2);
// }
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
#include "isl/union_map.h"
#include "isl/list.h"
#include "isl/ast_build.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
#define DEBUG_TYPE "polly-ast"
using namespace llvm;
using namespace polly;
using IslAstUserPayload = IslAstInfo::IslAstUserPayload;
static cl::opt<bool>
PollyParallel("polly-parallel",
cl::desc("Generate thread parallel code (isl codegen only)"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> PollyParallelForce(
"polly-parallel-force",
cl::desc(
"Force generation of thread parallel code ignoring any cost model"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> UseContext("polly-ast-use-context",
cl::desc("Use context"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> DetectParallel("polly-ast-detect-parallel",
cl::desc("Detect parallelism"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
namespace polly {
class IslAst {
public:
IslAst(Scop *Scop, Dependences &D);
~IslAst();
/// Print a source code representation of the program.
void pprint(llvm::raw_ostream &OS);
__isl_give isl_ast_node *getAst();
/// @brief Get the run-time conditions for the Scop.
__isl_give isl_ast_expr *getRunCondition();
private:
Scop *S;
isl_ast_node *Root;
isl_ast_expr *RunCondition;
void buildRunCondition(__isl_keep isl_ast_build *Build);
};
} // End namespace polly.
/// @brief Free an IslAstUserPayload object pointed to by @p Ptr
static void freeIslAstUserPayload(void *Ptr) {
delete ((IslAstInfo::IslAstUserPayload *)Ptr);
}
IslAstInfo::IslAstUserPayload::~IslAstUserPayload() {
isl_ast_build_free(Build);
isl_pw_aff_free(MinimalDependenceDistance);
}
/// @brief Temporary information used when building the ast.
struct AstBuildUserInfo {
/// @brief Construct and initialize the helper struct for AST creation.
AstBuildUserInfo()
: Deps(nullptr), InParallelFor(false), LastForNodeId(nullptr) {}
/// @brief The dependence information used for the parallelism check.
Dependences *Deps;
/// @brief Flag to indicate that we are inside a parallel for node.
bool InParallelFor;
/// @brief The last iterator id created for the current SCoP.
isl_id *LastForNodeId;
};
/// @brief Print a string @p str in a single line using @p Printer.
static isl_printer *printLine(__isl_take isl_printer *Printer,
const std::string &str,
__isl_keep isl_pw_aff *PWA = nullptr) {
Printer = isl_printer_start_line(Printer);
Printer = isl_printer_print_str(Printer, str.c_str());
if (PWA)
Printer = isl_printer_print_pw_aff(Printer, PWA);
return isl_printer_end_line(Printer);
}
/// @brief Return all broken reductions as a string of clauses (OpenMP style).
static const std::string getBrokenReductionsStr(__isl_keep isl_ast_node *Node) {
IslAstInfo::MemoryAccessSet *BrokenReductions;
std::string str;
BrokenReductions = IslAstInfo::getBrokenReductions(Node);
if (!BrokenReductions || BrokenReductions->empty())
return "";
// Map each type of reduction to a comma separated list of the base addresses.
std::map<MemoryAccess::ReductionType, std::string> Clauses;
for (MemoryAccess *MA : *BrokenReductions)
if (MA->isWrite())
Clauses[MA->getReductionType()] +=
", " + MA->getBaseAddr()->getName().str();
// Now print the reductions sorted by type. Each type will cause a clause
// like: reduction (+ : sum0, sum1, sum2)
for (const auto &ReductionClause : Clauses) {
str += " reduction (";
str += MemoryAccess::getReductionOperatorStr(ReductionClause.first);
// Remove the first two symbols (", ") to make the output look pretty.
str += " : " + ReductionClause.second.substr(2) + ")";
}
return str;
}
/// @brief Callback executed for each for node in the ast in order to print it.
static isl_printer *cbPrintFor(__isl_take isl_printer *Printer,
__isl_take isl_ast_print_options *Options,
__isl_keep isl_ast_node *Node, void *) {
isl_pw_aff *DD = IslAstInfo::getMinimalDependenceDistance(Node);
const std::string BrokenReductionsStr = getBrokenReductionsStr(Node);
const std::string KnownParallelStr = "#pragma known-parallel";
const std::string DepDisPragmaStr = "#pragma minimal dependence distance: ";
const std::string SimdPragmaStr = "#pragma simd";
const std::string OmpPragmaStr = "#pragma omp parallel for";
if (DD)
Printer = printLine(Printer, DepDisPragmaStr, DD);
if (IslAstInfo::isInnermostParallel(Node))
Printer = printLine(Printer, SimdPragmaStr + BrokenReductionsStr);
if (IslAstInfo::isExecutedInParallel(Node))
Printer = printLine(Printer, OmpPragmaStr);
else if (IslAstInfo::isOutermostParallel(Node))
Printer = printLine(Printer, KnownParallelStr + BrokenReductionsStr);
isl_pw_aff_free(DD);
return isl_ast_node_for_print(Node, Printer, Options);
}
/// @brief Check if the current scheduling dimension is parallel
///
/// In case the dimension is parallel we also check if any reduction
/// dependences is broken when we exploit this parallelism. If so,
/// @p IsReductionParallel will be set to true. The reduction dependences we use
/// to check are actually the union of the transitive closure of the initial
/// reduction dependences together with their reveresal. Even though these
/// dependences connect all iterations with each other (thus they are cyclic)
/// we can perform the parallelism check as we are only interested in a zero
/// (or non-zero) dependence distance on the dimension in question.
static bool astScheduleDimIsParallel(__isl_keep isl_ast_build *Build,
Dependences *D,
IslAstUserPayload *NodeInfo) {
if (!D->hasValidDependences())
return false;
isl_union_map *Schedule = isl_ast_build_get_schedule(Build);
isl_union_map *Deps = D->getDependences(
Dependences::TYPE_RAW | Dependences::TYPE_WAW | Dependences::TYPE_WAR);
if (!D->isParallel(Schedule, Deps, &NodeInfo->MinimalDependenceDistance) &&
!isl_union_map_free(Schedule))
return false;
isl_union_map *RedDeps = D->getDependences(Dependences::TYPE_TC_RED);
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->IsReductionParallel = true;
if (!NodeInfo->IsReductionParallel && !isl_union_map_free(Schedule))
return true;
// Annotate reduction parallel nodes with the memory accesses which caused the
// reduction dependences parallel execution of the node conflicts with.
for (const auto &MaRedPair : D->getReductionDependences()) {
if (!MaRedPair.second)
continue;
RedDeps = isl_union_map_from_map(isl_map_copy(MaRedPair.second));
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->BrokenReductions.insert(MaRedPair.first);
}
isl_union_map_free(Schedule);
return true;
}
// This method is executed before the construction of a for node. It creates
// an isl_id that is used to annotate the subsequently generated ast for nodes.
//
// In this function we also run the following analyses:
//
// - Detection of openmp parallel loops
//
static __isl_give isl_id *astBuildBeforeFor(__isl_keep isl_ast_build *Build,
void *User) {
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
BuildInfo->LastForNodeId = Id;
// Test for parallelism only if we are not already inside a parallel loop
if (!BuildInfo->InParallelFor)
BuildInfo->InParallelFor = Payload->IsOutermostParallel =
astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload);
return Id;
}
// This method is executed after the construction of a for node.
//
// It performs the following actions:
//
// - Reset the 'InParallelFor' flag, as soon as we leave a for node,
// that is marked as openmp parallel.
//
static __isl_give isl_ast_node *
astBuildAfterFor(__isl_take isl_ast_node *Node, __isl_keep isl_ast_build *Build,
void *User) {
isl_id *Id = isl_ast_node_get_annotation(Node);
assert(Id && "Post order visit assumes annotated for nodes");
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
assert(Payload && "Post order visit assumes annotated for nodes");
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
assert(!Payload->Build && "Build environment already set");
Payload->Build = isl_ast_build_copy(Build);
Payload->IsInnermost = (Id == BuildInfo->LastForNodeId);
// Innermost loops that are surrounded by parallel loops have not yet been
// tested for parallelism. Test them here to ensure we check all innermost
// loops for parallelism.
if (Payload->IsInnermost && BuildInfo->InParallelFor) {
if (Payload->IsOutermostParallel)
Payload->IsInnermostParallel = true;
else
Payload->IsInnermostParallel =
astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload);
}
if (Payload->IsOutermostParallel)
BuildInfo->InParallelFor = false;
isl_id_free(Id);
return Node;
}
static __isl_give isl_ast_node *AtEachDomain(__isl_take isl_ast_node *Node,
__isl_keep isl_ast_build *Build,
void *User) {
assert(!isl_ast_node_get_annotation(Node) && "Node already annotated");
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
Payload->Build = isl_ast_build_copy(Build);
return isl_ast_node_set_annotation(Node, Id);
}
void IslAst::buildRunCondition(__isl_keep isl_ast_build *Build) {
// The conditions that need to be checked at run-time for this scop are
// available as an isl_set in the AssumedContext. We generate code for this
// check as follows. First, we generate an isl_pw_aff that is 1, if a certain
// combination of parameter values fulfills the conditions in the assumed
// context, and that is 0 otherwise. We then translate this isl_pw_aff into
// an isl_ast_expr. At run-time this expression can be evaluated and the
// optimized scop can be executed conditionally according to the result of the
// run-time check.
isl_aff *Zero =
isl_aff_zero_on_domain(isl_local_space_from_space(S->getParamSpace()));
isl_aff *One =
isl_aff_zero_on_domain(isl_local_space_from_space(S->getParamSpace()));
One = isl_aff_add_constant_si(One, 1);
isl_pw_aff *PwZero = isl_pw_aff_from_aff(Zero);
isl_pw_aff *PwOne = isl_pw_aff_from_aff(One);
PwOne = isl_pw_aff_intersect_domain(PwOne, S->getAssumedContext());
PwZero = isl_pw_aff_intersect_domain(
PwZero, isl_set_complement(S->getAssumedContext()));
isl_pw_aff *Cond = isl_pw_aff_union_max(PwOne, PwZero);
RunCondition = isl_ast_build_expr_from_pw_aff(Build, Cond);
// Create the alias checks from the minimal/maximal accesses in each alias
// group. This operation is by construction quadratic in the number of
// elements in each alias group.
isl_ast_expr *NonAliasGroup, *MinExpr, *MaxExpr;
for (const Scop::MinMaxVectorTy *MinMaxAccesses : S->getAliasGroups()) {
auto AccEnd = MinMaxAccesses->end();
for (auto AccIt0 = MinMaxAccesses->begin(); AccIt0 != AccEnd; ++AccIt0) {
for (auto AccIt1 = AccIt0 + 1; AccIt1 != AccEnd; ++AccIt1) {
MinExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt0->first)));
MaxExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt1->second)));
NonAliasGroup = isl_ast_expr_le(MaxExpr, MinExpr);
MinExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt1->first)));
MaxExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt0->second)));
NonAliasGroup =
isl_ast_expr_or(NonAliasGroup, isl_ast_expr_le(MaxExpr, MinExpr));
RunCondition = isl_ast_expr_and(RunCondition, NonAliasGroup);
}
}
}
}
IslAst::IslAst(Scop *Scop, Dependences &D) : S(Scop) {
isl_ctx *Ctx = S->getIslCtx();
isl_options_set_ast_build_atomic_upper_bound(Ctx, true);
isl_ast_build *Build;
AstBuildUserInfo BuildInfo;
if (UseContext)
Build = isl_ast_build_from_context(S->getContext());
else
Build = isl_ast_build_from_context(isl_set_universe(S->getParamSpace()));
Build = isl_ast_build_set_at_each_domain(Build, AtEachDomain, nullptr);
isl_union_map *Schedule =
isl_union_map_intersect_domain(S->getSchedule(), S->getDomains());
if (PollyParallel || DetectParallel ||
PollyVectorizerChoice != VECTORIZER_NONE) {
BuildInfo.Deps = &D;
BuildInfo.InParallelFor = 0;
Build = isl_ast_build_set_before_each_for(Build, &astBuildBeforeFor,
&BuildInfo);
Build =
isl_ast_build_set_after_each_for(Build, &astBuildAfterFor, &BuildInfo);
}
buildRunCondition(Build);
Root = isl_ast_build_ast_from_schedule(Build, Schedule);
isl_ast_build_free(Build);
}
IslAst::~IslAst() {
isl_ast_node_free(Root);
isl_ast_expr_free(RunCondition);
}
__isl_give isl_ast_node *IslAst::getAst() { return isl_ast_node_copy(Root); }
__isl_give isl_ast_expr *IslAst::getRunCondition() {
return isl_ast_expr_copy(RunCondition);
}
void IslAstInfo::releaseMemory() {
if (Ast) {
delete Ast;
Ast = nullptr;
}
}
bool IslAstInfo::runOnScop(Scop &Scop) {
if (Ast)
delete Ast;
S = &Scop;
Dependences &D = getAnalysis<Dependences>();
Ast = new IslAst(&Scop, D);
DEBUG(printScop(dbgs()));
return false;
}
__isl_give isl_ast_node *IslAstInfo::getAst() const { return Ast->getAst(); }
__isl_give isl_ast_expr *IslAstInfo::getRunCondition() const {
return Ast->getRunCondition();
}
IslAstUserPayload *IslAstInfo::getNodePayload(__isl_keep isl_ast_node *Node) {
isl_id *Id = isl_ast_node_get_annotation(Node);
if (!Id)
return nullptr;
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
isl_id_free(Id);
return Payload;
}
bool IslAstInfo::isInnermost(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermost;
}
bool IslAstInfo::isParallel(__isl_keep isl_ast_node *Node) {
return IslAstInfo::isInnermostParallel(Node) ||
IslAstInfo::isOutermostParallel(Node);
}
bool IslAstInfo::isInnermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermostParallel;
}
bool IslAstInfo::isOutermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsOutermostParallel;
}
bool IslAstInfo::isReductionParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsReductionParallel;
}
bool IslAstInfo::isExecutedInParallel(__isl_keep isl_ast_node *Node) {
if (!PollyParallel)
return false;
// Do not parallelize innermost loops.
//
// Parallelizing innermost loops is often not profitable, especially if
// they have a low number of iterations.
//
// TODO: Decide this based on the number of loop iterations that will be
// executed. This can possibly require run-time checks, which again
// raises the question of both run-time check overhead and code size
// costs.
if (!PollyParallelForce && isInnermost(Node))
return false;
return isOutermostParallel(Node) && !isReductionParallel(Node);
}
isl_union_map *IslAstInfo::getSchedule(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? isl_ast_build_get_schedule(Payload->Build) : nullptr;
}
isl_pw_aff *
IslAstInfo::getMinimalDependenceDistance(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? isl_pw_aff_copy(Payload->MinimalDependenceDistance)
: nullptr;
}
IslAstInfo::MemoryAccessSet *
IslAstInfo::getBrokenReductions(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? &Payload->BrokenReductions : nullptr;
}
isl_ast_build *IslAstInfo::getBuild(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? Payload->Build : nullptr;
}
void IslAstInfo::printScop(raw_ostream &OS) const {
isl_ast_print_options *Options;
isl_ast_node *RootNode = getAst();
isl_ast_expr *RunCondition = getRunCondition();
char *RtCStr, *AstStr;
Scop &S = getCurScop();
Options = isl_ast_print_options_alloc(S.getIslCtx());
Options = isl_ast_print_options_set_print_for(Options, cbPrintFor, nullptr);
isl_printer *P = isl_printer_to_str(S.getIslCtx());
P = isl_printer_print_ast_expr(P, RunCondition);
RtCStr = isl_printer_get_str(P);
P = isl_printer_flush(P);
P = isl_printer_indent(P, 4);
P = isl_printer_set_output_format(P, ISL_FORMAT_C);
P = isl_ast_node_print(RootNode, P, Options);
AstStr = isl_printer_get_str(P);
Function *F = S.getRegion().getEntry()->getParent();
isl_union_map *Schedule =
isl_union_map_intersect_domain(S.getSchedule(), S.getDomains());
OS << ":: isl ast :: " << F->getName() << " :: " << S.getRegion().getNameStr()
<< "\n";
DEBUG({
dbgs() << S.getContextStr() << "\n";
dbgs() << stringFromIslObj(Schedule);
});
OS << "\nif (" << RtCStr << ")\n\n";
OS << AstStr << "\n";
OS << "else\n";
OS << " { /* original code */ }\n\n";
isl_ast_expr_free(RunCondition);
isl_union_map_free(Schedule);
isl_ast_node_free(RootNode);
isl_printer_free(P);
}
void IslAstInfo::getAnalysisUsage(AnalysisUsage &AU) const {
// Get the Common analysis usage of ScopPasses.
ScopPass::getAnalysisUsage(AU);
AU.addRequired<ScopInfo>();
AU.addRequired<Dependences>();
}
char IslAstInfo::ID = 0;
Pass *polly::createIslAstInfoPass() { return new IslAstInfo(); }
INITIALIZE_PASS_BEGIN(IslAstInfo, "polly-ast",
"Polly - Generate an AST of the SCoP (isl)", false,
false);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_DEPENDENCY(Dependences);
INITIALIZE_PASS_END(IslAstInfo, "polly-ast",
"Polly - Generate an AST from the SCoP (isl)", false, false)