blob: 9753e38f2e724afe6eb86e8a673970b34a0f4fa9 [file] [log] [blame]
//===--- ScopDetection.h - Detect Scops -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fullfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCOP_DETECTION_H
#define POLLY_SCOP_DETECTION_H
#include "llvm/Pass.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "polly/ScopDetectionDiagnostic.h"
#include "llvm/ADT/SetVector.h"
#include <set>
#include <map>
using namespace llvm;
namespace llvm {
class RegionInfo;
class Region;
class LoopInfo;
class Loop;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class SCEVUnknown;
class CallInst;
class Instruction;
class AliasAnalysis;
class Value;
}
namespace polly {
typedef std::set<const SCEV *> ParamSetType;
// Description of the shape of an array.
struct ArrayShape {
// Base pointer identifying all accesses to this array.
const SCEVUnknown *BasePointer;
// Sizes of each delinearized dimension.
SmallVector<const SCEV *, 4> DelinearizedSizes;
ArrayShape(const SCEVUnknown *B) : BasePointer(B), DelinearizedSizes() {}
};
struct MemAcc {
const Instruction *Insn;
// A pointer to the shape description of the array.
ArrayShape *Shape;
// Subscripts computed by delinearization.
SmallVector<const SCEV *, 4> DelinearizedSubscripts;
MemAcc(const Instruction *I, ArrayShape *S)
: Insn(I), Shape(S), DelinearizedSubscripts() {}
};
typedef std::map<const Instruction *, MemAcc *> MapInsnToMemAcc;
typedef std::pair<const Instruction *, const SCEV *> PairInstSCEV;
typedef std::vector<PairInstSCEV> AFs;
typedef std::map<const SCEVUnknown *, AFs> BaseToAFs;
typedef std::map<const SCEVUnknown *, const SCEV *> BaseToElSize;
extern bool PollyTrackFailures;
extern bool PollyDelinearize;
extern bool PollyUseRuntimeAliasChecks;
/// @brief A function attribute which will cause Polly to skip the function
extern llvm::StringRef PollySkipFnAttr;
//===----------------------------------------------------------------------===//
/// @brief Pass to detect the maximal static control parts (Scops) of a
/// function.
class ScopDetection : public FunctionPass {
public:
typedef SetVector<const Region *> RegionSet;
private:
//===--------------------------------------------------------------------===//
ScopDetection(const ScopDetection &) LLVM_DELETED_FUNCTION;
const ScopDetection &operator=(const ScopDetection &) LLVM_DELETED_FUNCTION;
/// @brief Analysis passes used.
//@{
ScalarEvolution *SE;
LoopInfo *LI;
RegionInfo *RI;
AliasAnalysis *AA;
//@}
/// @brief Context variables for SCoP detection.
struct DetectionContext {
Region &CurRegion; // The region to check.
AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
bool Verifying; // If we are in the verification phase?
RejectLog Log;
/// @brief Map a base pointer to all access functions accessing it.
///
/// This map is indexed by the base pointer. Each element of the map
/// is a list of memory accesses that reference this base pointer.
BaseToAFs Accesses;
/// @brief The set of base pointers with non-affine accesses.
///
/// This set contains all base pointers which are used in memory accesses
/// that can not be detected as affine accesses.
SetVector<const SCEVUnknown *> NonAffineAccesses;
BaseToElSize ElementSize;
DetectionContext(Region &R, AliasAnalysis &AA, bool Verify)
: CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {}
};
// Remember the valid regions
RegionSet ValidRegions;
// Remember a list of errors for every region.
mutable RejectLogsContainer RejectLogs;
// Delinearize all non affine memory accesses and return false when there
// exists a non affine memory access that cannot be delinearized. Return true
// when all array accesses are affine after delinearization.
bool hasAffineMemoryAccesses(DetectionContext &Context) const;
// Try to expand the region R. If R can be expanded return the expanded
// region, NULL otherwise.
Region *expandRegion(Region &R);
/// Find the Scops in this region tree.
///
/// @param The region tree to scan for scops.
void findScops(Region &R);
/// @brief Check if all basic block in the region are valid.
///
/// @param Context The context of scop detection.
///
/// @return True if all blocks in R are valid, false otherwise.
bool allBlocksValid(DetectionContext &Context) const;
/// @brief Check the exit block of a region is valid.
///
/// @param Context The context of scop detection.
///
/// @return True if the exit of R is valid, false otherwise.
bool isValidExit(DetectionContext &Context) const;
/// @brief Check if a region is a Scop.
///
/// @param Context The context of scop detection.
///
/// @return True if R is a Scop, false otherwise.
bool isValidRegion(DetectionContext &Context) const;
/// @brief Check if a region is a Scop.
///
/// @param Context The context of scop detection.
///
/// @return True if R is a Scop, false otherwise.
bool isValidRegion(Region &R) const;
/// @brief Check if a call instruction can be part of a Scop.
///
/// @param CI The call instruction to check.
/// @return True if the call instruction is valid, false otherwise.
static bool isValidCallInst(CallInst &CI);
/// @brief Check if a value is invariant in the region Reg.
///
/// @param Val Value to check for invariance.
/// @param Reg The region to consider for the invariance of Val.
///
/// @return True if the value represented by Val is invariant in the region
/// identified by Reg.
bool isInvariant(const Value &Val, const Region &Reg) const;
/// @brief Check if a memory access can be part of a Scop.
///
/// @param Inst The instruction accessing the memory.
/// @param Context The context of scop detection.
///
/// @return True if the memory access is valid, false otherwise.
bool isValidMemoryAccess(Instruction &Inst, DetectionContext &Context) const;
/// @brief Check if an instruction has any non trivial scalar dependencies
/// as part of a Scop.
///
/// @param Inst The instruction to check.
/// @param RefRegion The region in respect to which we check the access
/// function.
///
/// @return True if the instruction has scalar dependences, false otherwise.
bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;
/// @brief Check if an instruction can be part of a Scop.
///
/// @param Inst The instruction to check.
/// @param Context The context of scop detection.
///
/// @return True if the instruction is valid, false otherwise.
bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;
/// @brief Check if the control flow in a basic block is valid.
///
/// @param BB The BB to check the control flow.
/// @param Context The context of scop detection.
///
/// @return True if the BB contains only valid control flow.
bool isValidCFG(BasicBlock &BB, DetectionContext &Context) const;
/// @brief Is a loop valid with respect to a given region.
///
/// @param L The loop to check.
/// @param Context The context of scop detection.
///
/// @return True if the loop is valid in the region.
bool isValidLoop(Loop *L, DetectionContext &Context) const;
/// @brief Check if the function @p F is marked as invalid.
///
/// @note An OpenMP subfunction will be marked as invalid.
bool isValidFunction(llvm::Function &F);
/// @brief Print the locations of all detected scops.
void printLocations(llvm::Function &F);
/// @brief Track diagnostics for invalid scops.
///
/// @param Context The context of scop detection.
/// @param Assert Throw an assert in verify mode or not.
/// @param Args Argument list that gets passed to the constructor of RR.
template <class RR, typename... Args>
inline bool invalid(DetectionContext &Context, bool Assert,
Args &&... Arguments) const;
public:
static char ID;
explicit ScopDetection();
/// @brief Get the RegionInfo stored in this pass.
///
/// This was added to give the DOT printer easy access to this information.
RegionInfo *getRI() const { return RI; }
/// @brief Is the region is the maximum region of a Scop?
///
/// @param R The Region to test if it is maximum.
/// @param Verify Rerun the scop detection to verify SCoP was not invalidated
/// meanwhile.
///
/// @return Return true if R is the maximum Region in a Scop, false otherwise.
bool isMaxRegionInScop(const Region &R, bool Verify = true) const;
/// @brief Get a message why a region is invalid
///
/// @param R The region for which we get the error message
///
/// @return The error or "" if no error appeared.
std::string regionIsInvalidBecause(const Region *R) const;
/// @name Maximum Region In Scops Iterators
///
/// These iterators iterator over all maximum region in Scops of this
/// function.
//@{
typedef RegionSet::iterator iterator;
typedef RegionSet::const_iterator const_iterator;
iterator begin() { return ValidRegions.begin(); }
iterator end() { return ValidRegions.end(); }
const_iterator begin() const { return ValidRegions.begin(); }
const_iterator end() const { return ValidRegions.end(); }
//@}
/// @name Reject log iterators
///
/// These iterators iterate over the logs of all rejected regions of this
// function.
//@{
typedef std::map<const Region *, RejectLog>::iterator reject_iterator;
typedef std::map<const Region *, RejectLog>::const_iterator
const_reject_iterator;
reject_iterator reject_begin() { return RejectLogs.begin(); }
reject_iterator reject_end() { return RejectLogs.end(); }
const_reject_iterator reject_begin() const { return RejectLogs.begin(); }
const_reject_iterator reject_end() const { return RejectLogs.end(); }
//@}
/// @brief Emit rejection remarks for all smallest invalid regions.
///
/// @param F The function to emit remarks for.
/// @param R The region to start the region tree traversal for.
void emitMissedRemarksForLeaves(const Function &F, const Region *R);
/// @brief Emit rejection remarks for the parent regions of all valid regions.
///
/// Emitting rejection remarks for the parent regions of all valid regions
/// may give the end-user clues about how to increase the size of the
/// detected Scops.
///
/// @param F The function to emit remarks for.
/// @param ValidRegions The set of valid regions to emit remarks for.
void emitMissedRemarksForValidRegions(const Function &F,
const RegionSet &ValidRegions);
/// @brief Mark the function as invalid so we will not extract any scop from
/// the function.
///
/// @param F The function to mark as invalid.
void markFunctionAsInvalid(Function *F) const;
/// @brief Verify if all valid Regions in this Function are still valid
/// after some transformations.
void verifyAnalysis() const;
/// @brief Verify if R is still a valid part of Scop after some
/// transformations.
///
/// @param R The Region to verify.
void verifyRegion(const Region &R) const;
/// @name FunctionPass interface
//@{
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual bool runOnFunction(Function &F);
virtual void print(raw_ostream &OS, const Module *) const;
//@}
};
} // end namespace polly
namespace llvm {
class PassRegistry;
void initializeScopDetectionPass(llvm::PassRegistry &);
}
#endif