blob: 2ee009057a6e4b454ab056504571c27aaf55a31b [file] [log] [blame]
//===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the BlockGenerator and VectorBlockGenerator classes, which
// generate sequential code and vectorized code for a polyhedral statement,
// respectively.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_BLOCK_GENERATORS_H
#define POLLY_BLOCK_GENERATORS_H
#include "polly/CodeGen/IRBuilder.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "isl/map.h"
#include <vector>
namespace llvm {
class Pass;
class Region;
class ScalarEvolution;
}
namespace polly {
extern bool SCEVCodegen;
using namespace llvm;
class ScopStmt;
typedef DenseMap<const Value *, Value *> ValueMapT;
typedef std::vector<ValueMapT> VectorValueMapT;
/// @brief Check whether an instruction can be synthesized by the code
/// generator.
///
/// Some instructions will be recalculated only from information that is code
/// generated from the polyhedral representation. For such instructions we do
/// not need to ensure that their operands are available during code generation.
///
/// @param I The instruction to check.
/// @param LI The LoopInfo analysis.
/// @param SE The scalar evolution database.
/// @param R The region out of which SSA names are parameters.
/// @return If the instruction I can be regenerated from its
/// scalar evolution representation, return true,
/// otherwise return false.
bool canSynthesize(const llvm::Instruction *I, const llvm::LoopInfo *LI,
llvm::ScalarEvolution *SE, const llvm::Region *R);
/// @brief Generate a new basic block for a polyhedral statement.
///
/// The only public function exposed is generate().
class BlockGenerator {
public:
/// @brief Generate a new BasicBlock for a ScopStmt.
///
/// @param Builder The LLVM-IR Builder used to generate the statement. The
/// code is generated at the location, the Builder points to.
/// @param Stmt The statement to code generate.
/// @param GlobalMap A map that defines for certain Values referenced from the
/// original code new Values they should be replaced with.
/// @param P A reference to the pass this function is called from.
/// The pass is needed to update other analysis.
static void generate(PollyIRBuilder &Builder, ScopStmt &Stmt,
ValueMapT &GlobalMap, LoopToScevMapT &LTS, Pass *P) {
BlockGenerator Generator(Builder, Stmt, P);
Generator.copyBB(GlobalMap, LTS);
}
protected:
PollyIRBuilder &Builder;
ScopStmt &Statement;
Pass *P;
ScalarEvolution &SE;
BlockGenerator(PollyIRBuilder &B, ScopStmt &Stmt, Pass *P);
/// @brief Get the new version of a Value.
///
/// @param Old The old Value.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param LTS A mapping from loops virtual canonical induction
/// variable to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
/// @param L The loop that surrounded the instruction that referenced
/// this value in the original code. This loop is used to
/// evaluate the scalar evolution at the right scope.
///
/// @returns o The old value, if it is still valid.
/// o The new value, if available.
/// o NULL, if no value is found.
Value *getNewValue(const Value *Old, ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS, Loop *L);
/// @brief Get the new version of a Value if it is available.
///
/// @param Old The old Value.
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
///
/// @returns The new value, if available.
Value *lookupAvailableValue(const Value *Old, ValueMapT &BBMap,
ValueMapT &GlobalMap) const;
void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Get the innermost loop that surrounds an instruction.
///
/// @param Inst The instruction for which we get the loop.
/// @return The innermost loop that surrounds the instruction.
Loop *getLoopForInst(const Instruction *Inst);
/// @brief Get the memory access offset to be added to the base address
///
/// @param L The loop that surrounded the instruction that referenced this
/// memory subscript in the original code.
std::vector<Value *> getMemoryAccessIndex(__isl_keep isl_map *AccessRelation,
Value *BaseAddress,
ValueMapT &BBMap,
ValueMapT &GlobalMap,
LoopToScevMapT &LTS, Loop *L);
/// @brief Get the new operand address according to the changed access in
/// JSCOP file.
///
/// @param L The loop that surrounded the instruction that used this operand
/// in the original code.
Value *getNewAccessOperand(__isl_keep isl_map *NewAccessRelation,
Value *BaseAddress, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS,
Loop *L);
/// @brief Generate the operand address
Value *generateLocationAccessed(const Instruction *Inst, const Value *Pointer,
ValueMapT &BBMap, ValueMapT &GlobalMap,
LoopToScevMapT &LTS);
Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
Value *generateScalarStore(const StoreInst *store, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Copy a single Instruction.
///
/// This copies a single Instruction and updates references to old values
/// with references to new values, as defined by GlobalMap and BBMap.
///
/// @param BBMap A mapping from old values to their new values
/// (for values recalculated within this basic block).
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
void copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
ValueMapT &GlobalMap, LoopToScevMapT &LTS);
/// @brief Copy the basic block.
///
/// This copies the entire basic block and updates references to old values
/// with references to new values, as defined by GlobalMap.
///
/// @param GlobalMap A mapping from old values to their new values
/// (for values recalculated in the new ScoP, but not
/// within this basic block).
void copyBB(ValueMapT &GlobalMap, LoopToScevMapT &LTS);
};
/// @brief Generate a new vector basic block for a polyhedral statement.
///
/// The only public function exposed is generate().
class VectorBlockGenerator : BlockGenerator {
public:
/// @brief Generate a new vector basic block for a ScoPStmt.
///
/// This code generation is similar to the normal, scalar code generation,
/// except that each instruction is code generated for several vector lanes
/// at a time. If possible instructions are issued as actual vector
/// instructions, but e.g. for address calculation instructions we currently
/// generate scalar instructions for each vector lane.
///
/// @param Stmt The statement to code generate.
/// @param GlobalMaps A vector of maps that define for certain Values
/// referenced from the original code new Values they should
/// be replaced with. Each map in the vector of maps is
/// used for one vector lane. The number of elements in the
/// vector defines the width of the generated vector
/// instructions.
/// @param Schedule A map from the statement to a schedule where the
/// innermost dimension is the dimension of the innermost
/// loop containing the statemenet.
/// @param P A reference to the pass this function is called from.
/// The pass is needed to update other analysis.
static void generate(PollyIRBuilder &B, ScopStmt &Stmt,
VectorValueMapT &GlobalMaps,
std::vector<LoopToScevMapT> &VLTS,
__isl_keep isl_map *Schedule, Pass *P) {
VectorBlockGenerator Generator(B, GlobalMaps, VLTS, Stmt, Schedule, P);
Generator.copyBB();
}
private:
// This is a vector of global value maps. The first map is used for the first
// vector lane, ...
// Each map, contains information about Instructions in the old ScoP, which
// are recalculated in the new SCoP. When copying the basic block, we replace
// all referenes to the old instructions with their recalculated values.
VectorValueMapT &GlobalMaps;
// This is a vector of loop->scev maps. The first map is used for the first
// vector lane, ...
// Each map, contains information about Instructions in the old ScoP, which
// are recalculated in the new SCoP. When copying the basic block, we replace
// all referenes to the old instructions with their recalculated values.
//
// For example, when the code generator produces this AST:
//
// for (int c1 = 0; c1 <= 1023; c1 += 1)
// for (int c2 = 0; c2 <= 1023; c2 += VF)
// for (int lane = 0; lane <= VF; lane += 1)
// Stmt(c2 + lane + 3, c1);
//
// VLTS[lane] contains a map:
// "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"),
// "inner loop in the old loop nest" -> SCEV("c1").
std::vector<LoopToScevMapT> &VLTS;
// A map from the statement to a schedule where the innermost dimension is the
// dimension of the innermost loop containing the statemenet.
isl_map *Schedule;
VectorBlockGenerator(PollyIRBuilder &B, VectorValueMapT &GlobalMaps,
std::vector<LoopToScevMapT> &VLTS, ScopStmt &Stmt,
__isl_keep isl_map *Schedule, Pass *P);
int getVectorWidth();
Value *getVectorValue(const Value *Old, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, Loop *L);
Type *getVectorPtrTy(const Value *V, int Width);
/// @brief Load a vector from a set of adjacent scalars
///
/// In case a set of scalars is known to be next to each other in memory,
/// create a vector load that loads those scalars
///
/// %vector_ptr= bitcast double* %p to <4 x double>*
/// %vec_full = load <4 x double>* %vector_ptr
///
/// @param NegativeStride This is used to indicate a -1 stride. In such
/// a case we load the end of a base address and
/// shuffle the accesses in reverse order into the
/// vector. By default we would do only positive
/// strides.
///
Value *generateStrideOneLoad(const LoadInst *Load,
VectorValueMapT &ScalarMaps,
bool NegativeStride);
/// @brief Load a vector initialized from a single scalar in memory
///
/// In case all elements of a vector are initialized to the same
/// scalar value, this value is loaded and shuffeled into all elements
/// of the vector.
///
/// %splat_one = load <1 x double>* %p
/// %splat = shufflevector <1 x double> %splat_one, <1 x
/// double> %splat_one, <4 x i32> zeroinitializer
///
Value *generateStrideZeroLoad(const LoadInst *Load, ValueMapT &BBMap);
/// @brief Load a vector from scalars distributed in memory
///
/// In case some scalars a distributed randomly in memory. Create a vector
/// by loading each scalar and by inserting one after the other into the
/// vector.
///
/// %scalar_1= load double* %p_1
/// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
/// %scalar 2 = load double* %p_2
/// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
///
Value *generateUnknownStrideLoad(const LoadInst *Load,
VectorValueMapT &ScalarMaps);
void generateLoad(const LoadInst *Load, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyBinaryInst(const BinaryOperator *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyStore(const StoreInst *Store, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyInstScalarized(const Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap);
void copyInstruction(const Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps);
void copyBB();
};
}
#endif