blob: 9bfdd1dcb8435011e2d2dc87a300f9f4f3f83c7c [file] [log] [blame]
//===------ IslCodeGeneration.cpp - Code generate the Scops using ISL. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The IslCodeGeneration pass takes a Scop created by ScopInfo and translates it
// back to LLVM-IR using the ISL code generator.
//
// The Scop describes the high level memory behaviour of a control flow region.
// Transformation passes can update the schedule (execution order) of statements
// in the Scop. ISL is used to generate an abstract syntax tree that reflects
// the updated execution order. This clast is used to create new LLVM-IR that is
// computationally equivalent to the original control flow region, but executes
// its code in the new execution order defined by the changed scattering.
//
//===----------------------------------------------------------------------===//
#include "polly/Config/config.h"
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/TempScopInfo.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/LoopGenerators.h"
#include "polly/CodeGen/Utils.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Module.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#define DEBUG_TYPE "polly-codegen-isl"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/union_map.h"
#include "isl/list.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
#include <map>
using namespace polly;
using namespace llvm;
/// @brief Insert function calls that print certain LLVM values at run time.
///
/// This class inserts libc function calls to print certain LLVM values at
/// run time.
class RuntimeDebugBuilder {
public:
RuntimeDebugBuilder(IRBuilder<> &Builder) : Builder(Builder) {}
/// @brief Print a string to stdout.
///
/// @param String The string to print.
void createStrPrinter(std::string String);
/// @brief Print an integer value to stdout.
///
/// @param V The value to print.
void createIntPrinter(Value *V);
private:
IRBuilder<> &Builder;
/// @brief Add a call to the fflush function with no file pointer given.
///
/// This call will flush all opened file pointers including stdout and stderr.
void createFlush();
/// @brief Get a reference to the 'printf' function.
///
/// If the current module does not yet contain a reference to printf, we
/// insert a reference to it. Otherwise the existing reference is returned.
Function *getPrintF();
};
Function *RuntimeDebugBuilder::getPrintF() {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
const char *Name = "printf";
Function *F = M->getFunction(Name);
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(),
Builder.getInt8PtrTy(), true);
F = Function::Create(Ty, Linkage, Name, M);
}
return F;
}
void RuntimeDebugBuilder::createFlush() {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
const char *Name = "fflush";
Function *F = M->getFunction(Name);
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(),
Builder.getInt8PtrTy(), false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, Constant::getNullValue(Builder.getInt8PtrTy()));
}
void RuntimeDebugBuilder::createStrPrinter(std::string String) {
Function *F = getPrintF();
Value *StringValue = Builder.CreateGlobalStringPtr(String);
Builder.CreateCall(F, StringValue);
createFlush();
}
void RuntimeDebugBuilder::createIntPrinter(Value *V) {
IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
assert(Ty && Ty->getBitWidth() == 64 &&
"Cannot insert printer for this type.");
Function *F = getPrintF();
Value *String = Builder.CreateGlobalStringPtr("%ld");
Builder.CreateCall2(F, String, V);
createFlush();
}
/// @brief Calculate the Value of a certain isl_ast_expr
class IslExprBuilder {
public:
IslExprBuilder(IRBuilder<> &Builder,
std::map<isl_id *, Value*> &IDToValue, Pass *P)
: Builder(Builder), IDToValue(IDToValue) { }
Value *create(__isl_take isl_ast_expr *Expr);
Type *getWidestType(Type *T1, Type *T2);
IntegerType *getType(__isl_keep isl_ast_expr *Expr);
private:
IRBuilder<> &Builder;
std::map<isl_id *, Value*> &IDToValue;
Value *createOp(__isl_take isl_ast_expr *Expr);
Value *createOpUnary(__isl_take isl_ast_expr *Expr);
Value *createOpBin(__isl_take isl_ast_expr *Expr);
Value *createOpNAry(__isl_take isl_ast_expr *Expr);
Value *createOpSelect(__isl_take isl_ast_expr *Expr);
Value *createOpICmp(__isl_take isl_ast_expr *Expr);
Value *createOpBoolean(__isl_take isl_ast_expr *Expr);
Value *createId(__isl_take isl_ast_expr *Expr);
Value *createInt(__isl_take isl_ast_expr *Expr);
};
Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
return T2;
else
return T1;
}
Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
assert (isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus
&& "Unsupported unary operation");
Value *V;
Type *MaxType = getType(Expr);
V = create(isl_ast_expr_get_op_arg(Expr, 0));
MaxType = getWidestType(MaxType, V->getType());
if (MaxType != V->getType())
V = Builder.CreateSExt(V, MaxType);
isl_ast_expr_free(Expr);
return Builder.CreateNSWNeg(V);
}
Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op
&& "isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) >= 2
&& "We need at least two operands in an n-ary operation");
Value *V;
V = create(isl_ast_expr_get_op_arg(Expr, 0));
for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
Value *OpV;
OpV = create(isl_ast_expr_get_op_arg(Expr, i));
Type *Ty = getWidestType(V->getType(), OpV->getType());
if (Ty != OpV->getType())
OpV = Builder.CreateSExt(OpV, Ty);
if (Ty != V->getType())
V = Builder.CreateSExt(V, Ty);
switch (isl_ast_expr_get_op_type(Expr)) {
default:
llvm_unreachable("This is no n-ary isl ast expression");
case isl_ast_op_max:
{
Value *Cmp = Builder.CreateICmpSGT(V, OpV);
V = Builder.CreateSelect(Cmp, V, OpV);
continue;
}
case isl_ast_op_min:
{
Value *Cmp = Builder.CreateICmpSLT(V, OpV);
V = Builder.CreateSelect(Cmp, V, OpV);
continue;
}
}
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
Value *LHS, *RHS, *Res;
Type *MaxType;
isl_ast_op_type OpType;
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op
&& "isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) == 2
&& "not a binary isl ast expression");
OpType = isl_ast_expr_get_op_type(Expr);
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
MaxType = LHS->getType();
MaxType = getWidestType(MaxType, RHS->getType());
// Take the result into account when calculating the widest type.
//
// For operations such as '+' the result may require a type larger than
// the type of the individual operands. For other operations such as '/', the
// result type cannot be larger than the type of the individual operand. isl
// does not calculate correct types for these operations and we consequently
// exclude those operations here.
switch(OpType) {
case isl_ast_op_pdiv_q:
case isl_ast_op_pdiv_r:
case isl_ast_op_div:
case isl_ast_op_fdiv_q:
// Do nothing
break;
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
MaxType = getWidestType(MaxType, getType(Expr));
break;
default:
llvm_unreachable("This is no binary isl ast expression");
}
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
switch (OpType) {
default:
llvm_unreachable("This is no binary isl ast expression");
case isl_ast_op_add:
Res = Builder.CreateNSWAdd(LHS, RHS);
break;
case isl_ast_op_sub:
Res = Builder.CreateNSWSub(LHS, RHS);
break;
case isl_ast_op_mul:
Res = Builder.CreateNSWMul(LHS, RHS);
break;
case isl_ast_op_div:
case isl_ast_op_pdiv_q: // Dividend is non-negative
Res = Builder.CreateSDiv(LHS, RHS);
break;
case isl_ast_op_fdiv_q: // Round towards -infty
{
// TODO: Review code and check that this calculation does not yield
// incorrect overflow in some bordercases.
//
// floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
Value *One = ConstantInt::get(MaxType, 1);
Value *Zero = ConstantInt::get(MaxType, 0);
Value *Sum1 = Builder.CreateSub(LHS, RHS);
Value *Sum2 = Builder.CreateAdd(Sum1, One);
Value *isNegative = Builder.CreateICmpSLT(LHS, Zero);
Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS);
Res = Builder.CreateSDiv(Dividend, RHS);
break;
}
case isl_ast_op_pdiv_r: // Dividend is non-negative
Res = Builder.CreateSRem(LHS, RHS);
break;
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
assert (isl_ast_expr_get_op_type(Expr) == isl_ast_op_select
&& "Unsupported unary isl ast expression");
Value *LHS, *RHS, *Cond;
Type *MaxType = getType(Expr);
Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
MaxType = getWidestType(MaxType, LHS->getType());
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
// TODO: Do we want to truncate the result?
isl_ast_expr_free(Expr);
return Builder.CreateSelect(Cond, LHS, RHS);
}
Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
Type *MaxType = LHS->getType();
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
switch (isl_ast_expr_get_op_type(Expr)) {
default:
llvm_unreachable("Unsupported ICmp isl ast expression");
case isl_ast_op_eq:
Res = Builder.CreateICmpEQ(LHS, RHS);
break;
case isl_ast_op_le:
Res = Builder.CreateICmpSLE(LHS, RHS);
break;
case isl_ast_op_lt:
Res = Builder.CreateICmpSLT(LHS, RHS);
break;
case isl_ast_op_ge:
Res = Builder.CreateICmpSGE(LHS, RHS);
break;
case isl_ast_op_gt:
Res = Builder.CreateICmpSGT(LHS, RHS);
break;
}
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
isl_ast_op_type OpType;
OpType = isl_ast_expr_get_op_type(Expr);
assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
"Unsupported isl_ast_op_type");
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
// Even though the isl pretty printer prints the expressions as 'exp && exp'
// or 'exp || exp', we actually code generate the bitwise expressions
// 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
// but it is, due to the use of i1 types, otherwise equivalent. The reason
// to go for bitwise operations is, that we assume the reduced control flow
// will outweight the overhead introduced by evaluating unneeded expressions.
// The isl code generation currently does not take advantage of the fact that
// the expression after an '||' or '&&' is in some cases not evaluated.
// Evaluating it anyways does not cause any undefined behaviour.
//
// TODO: Document in isl itself, that the unconditionally evaluating the
// second part of '||' or '&&' expressions is safe.
assert(LHS->getType() == Builder.getInt1Ty() && "Expected i1 type");
assert(RHS->getType() == Builder.getInt1Ty() && "Expected i1 type");
switch (OpType) {
default:
llvm_unreachable("Unsupported boolean expression");
case isl_ast_op_and:
Res = Builder.CreateAnd(LHS, RHS);
break;
case isl_ast_op_or:
Res = Builder.CreateOr(LHS, RHS);
break;
}
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op
&& "Expression not of type isl_ast_expr_op");
switch (isl_ast_expr_get_op_type(Expr)) {
case isl_ast_op_error:
case isl_ast_op_cond:
case isl_ast_op_and_then:
case isl_ast_op_or_else:
case isl_ast_op_call:
llvm_unreachable("Unsupported isl ast expression");
case isl_ast_op_max:
case isl_ast_op_min:
return createOpNAry(Expr);
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
case isl_ast_op_div:
case isl_ast_op_fdiv_q: // Round towards -infty
case isl_ast_op_pdiv_q: // Dividend is non-negative
case isl_ast_op_pdiv_r: // Dividend is non-negative
return createOpBin(Expr);
case isl_ast_op_minus:
return createOpUnary(Expr);
case isl_ast_op_select:
return createOpSelect(Expr);
case isl_ast_op_and:
case isl_ast_op_or:
return createOpBoolean(Expr);
case isl_ast_op_eq:
case isl_ast_op_le:
case isl_ast_op_lt:
case isl_ast_op_ge:
case isl_ast_op_gt:
return createOpICmp(Expr);
}
llvm_unreachable("Unsupported isl_ast_expr_op kind.");
}
Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id
&& "Expression not of type isl_ast_expr_ident");
isl_id *Id;
Value *V;
Id = isl_ast_expr_get_id(Expr);
assert(IDToValue.count(Id) && "Identifier not found");
V = IDToValue[Id];
isl_id_free(Id);
isl_ast_expr_free(Expr);
return V;
}
IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
// XXX: We assume i64 is large enough. This is often true, but in general
// incorrect. Also, on 32bit architectures, it would be beneficial to
// use a smaller type. We can and should directly derive this information
// during code generation.
return IntegerType::get(Builder.getContext(), 64);
}
Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int
&& "Expression not of type isl_ast_expr_int");
isl_int Int;
Value *V;
APInt APValue;
IntegerType *T;
isl_int_init(Int);
isl_ast_expr_get_int(Expr, &Int);
APValue = APInt_from_MPZ(Int);
T = getType(Expr);
APValue = APValue.sextOrSelf(T->getBitWidth());
V = ConstantInt::get(T, APValue);
isl_ast_expr_free(Expr);
isl_int_clear(Int);
return V;
}
Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
switch (isl_ast_expr_get_type(Expr)) {
case isl_ast_expr_error:
llvm_unreachable("Code generation error");
case isl_ast_expr_op:
return createOp(Expr);
case isl_ast_expr_id:
return createId(Expr);
case isl_ast_expr_int:
return createInt(Expr);
}
llvm_unreachable("Unexpected enum value");
}
class IslNodeBuilder {
public:
IslNodeBuilder(IRBuilder<> &Builder, Pass *P):
Builder(Builder), ExprBuilder(Builder, IDToValue, P), P(P) {}
void addParameters(__isl_take isl_set *Context);
void create(__isl_take isl_ast_node *Node);
private:
IRBuilder<> &Builder;
IslExprBuilder ExprBuilder;
Pass *P;
// This maps an isl_id* to the Value* it has in the generated program. For now
// on, the only isl_ids that are stored here are the newly calculated loop
// ivs.
std::map<isl_id *, Value*> IDToValue;
// Extract the upper bound of this loop
//
// The isl code generation can generate arbitrary expressions to check if the
// upper bound of a loop is reached, but it provides an option to enforce
// 'atomic' upper bounds. An 'atomic upper bound is always of the form
// iv <= expr, where expr is an (arbitrary) expression not containing iv.
//
// This function extracts 'atomic' upper bounds. Polly, in general, requires
// atomic upper bounds for the following reasons:
//
// 1. An atomic upper bound is loop invariant
//
// It must not be calculated at each loop iteration and can often even be
// hoisted out further by the loop invariant code motion.
//
// 2. OpenMP needs a loop invarient upper bound to calculate the number
// of loop iterations.
//
// 3. With the existing code, upper bounds have been easier to implement.
__isl_give isl_ast_expr *getUpperBound(__isl_keep isl_ast_node *For,
CmpInst::Predicate &Predicate);
void createFor(__isl_take isl_ast_node *For);
void createIf(__isl_take isl_ast_node *If);
void createUser(__isl_take isl_ast_node *User);
void createBlock(__isl_take isl_ast_node *Block);
};
__isl_give isl_ast_expr *IslNodeBuilder::getUpperBound(
__isl_keep isl_ast_node *For, ICmpInst::Predicate &Predicate) {
isl_id *UBID, *IteratorID;
isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
isl_ast_op_type Type;
Cond = isl_ast_node_for_get_cond(For);
Iterator = isl_ast_node_for_get_iterator(For);
Type = isl_ast_expr_get_op_type(Cond);
assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op
&& "conditional expression is not an atomic upper bound");
switch (Type) {
case isl_ast_op_le:
Predicate = ICmpInst::ICMP_SLE;
break;
case isl_ast_op_lt:
Predicate = ICmpInst::ICMP_SLT;
break;
default:
llvm_unreachable("Unexpected comparision type in loop conditon");
}
Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id
&& "conditional expression is not an atomic upper bound");
UBID = isl_ast_expr_get_id(Arg0);
assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id
&& "Could not get the iterator");
IteratorID = isl_ast_expr_get_id(Iterator);
assert(UBID == IteratorID
&& "conditional expression is not an atomic upper bound");
UB = isl_ast_expr_get_op_arg(Cond, 1);
isl_ast_expr_free(Cond);
isl_ast_expr_free(Iterator);
isl_ast_expr_free(Arg0);
isl_id_free(IteratorID);
isl_id_free(UBID);
return UB;
}
void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
isl_ast_node *Body;
isl_ast_expr *Init, *Inc, *Iterator, *UB;
isl_id *IteratorID;
Value *ValueLB, *ValueUB, *ValueInc;
Type *MaxType;
BasicBlock *AfterBlock;
Value *IV;
CmpInst::Predicate Predicate;
Body = isl_ast_node_for_get_body(For);
// isl_ast_node_for_is_degenerate(For)
//
// TODO: For degenerated loops we could generate a plain assignment.
// However, for now we just reuse the logic for normal loops, which will
// create a loop with a single iteration.
Init = isl_ast_node_for_get_init(For);
Inc = isl_ast_node_for_get_inc(For);
Iterator = isl_ast_node_for_get_iterator(For);
IteratorID = isl_ast_expr_get_id(Iterator);
UB = getUpperBound(For, Predicate);
ValueLB = ExprBuilder.create(Init);
ValueUB = ExprBuilder.create(UB);
ValueInc = ExprBuilder.create(Inc);
MaxType = ExprBuilder.getType(Iterator);
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueUB->getType())
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
// TODO: In case we can proof a loop is executed at least once, we can
// generate the condition iv != UB + stride (consider possible
// overflow). This condition will allow LLVM to prove the loop is
// executed at least once, which will enable a lot of loop invariant
// code motion.
IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, AfterBlock,
Predicate);
IDToValue[IteratorID] = IV;
create(Body);
IDToValue.erase(IteratorID);
Builder.SetInsertPoint(AfterBlock->begin());
isl_ast_node_free(For);
isl_ast_expr_free(Iterator);
isl_id_free(IteratorID);
}
void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
Function *F = Builder.GetInsertBlock()->getParent();
LLVMContext &Context = F->getContext();
BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
Builder.GetInsertPoint(), P);
CondBB->setName("polly.cond");
BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P);
MergeBB->setName("polly.merge");
BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
DominatorTree &DT = P->getAnalysis<DominatorTree>();
DT.addNewBlock(ThenBB, CondBB);
DT.addNewBlock(ElseBB, CondBB);
DT.changeImmediateDominator(MergeBB, CondBB);
CondBB->getTerminator()->eraseFromParent();
Builder.SetInsertPoint(CondBB);
Value *Predicate = ExprBuilder.create(Cond);
Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
Builder.SetInsertPoint(ThenBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ElseBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ThenBB->begin());
create(isl_ast_node_if_get_then(If));
Builder.SetInsertPoint(ElseBB->begin());
if (isl_ast_node_if_has_else(If))
create(isl_ast_node_if_get_else(If));
Builder.SetInsertPoint(MergeBB->begin());
isl_ast_node_free(If);
}
void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
ValueMapT VMap;
struct IslAstUser *UserInfo;
isl_id *Annotation, *Id;
ScopStmt *Stmt;
Annotation = isl_ast_node_get_annotation(User);
UserInfo = (struct IslAstUser *) isl_id_get_user(Annotation);
Id = isl_pw_multi_aff_get_tuple_id(UserInfo->PMA, isl_dim_out);
Stmt = (ScopStmt *) isl_id_get_user(Id);
for (unsigned i = 0; i < isl_pw_multi_aff_dim(UserInfo->PMA, isl_dim_out);
++i) {
isl_pw_aff *Aff;
isl_ast_expr *Expr;
const Value *OldIV;
Value *V;
Aff = isl_pw_multi_aff_get_pw_aff(UserInfo->PMA, i);
Expr = isl_ast_build_expr_from_pw_aff(UserInfo->Context, Aff);
OldIV = Stmt->getInductionVariableForDimension(i);
V = ExprBuilder.create(Expr);
// CreateIntCast can introduce trunc expressions. This is correct, as the
// result will always fit into the type of the original induction variable
// (because we calculate a value of the original induction variable).
V = Builder.CreateIntCast(V, OldIV->getType(), true);
VMap[OldIV] = V;
}
BlockGenerator::generate(Builder, *Stmt, VMap, P);
isl_ast_node_free(User);
isl_id_free(Annotation);
isl_id_free(Id);
}
void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
create(isl_ast_node_list_get_ast_node(List, i));
isl_ast_node_free(Block);
isl_ast_node_list_free(List);
}
void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
switch (isl_ast_node_get_type(Node)) {
case isl_ast_node_error:
llvm_unreachable("code generation error");
case isl_ast_node_for:
createFor(Node);
return;
case isl_ast_node_if:
createIf(Node);
return;
case isl_ast_node_user:
createUser(Node);
return;
case isl_ast_node_block:
createBlock(Node);
return;
}
llvm_unreachable("Unknown isl_ast_node type");
}
void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly");
for (unsigned i = 0; i < isl_set_dim(Context, isl_dim_param); ++i) {
isl_id *Id;
const SCEV *Scev;
IntegerType *T;
Instruction *InsertLocation;
Id = isl_set_get_dim_id(Context, isl_dim_param, i);
Scev = (const SCEV*) isl_id_get_user(Id);
T = dyn_cast<IntegerType>(Scev->getType());
InsertLocation = --(Builder.GetInsertBlock()->end());
Value *V = Rewriter.expandCodeFor(Scev, T, InsertLocation);
IDToValue[Id] = V;
isl_id_free(Id);
}
isl_set_free(Context);
}
namespace {
class IslCodeGeneration : public ScopPass {
public:
static char ID;
IslCodeGeneration() : ScopPass(ID) {}
bool runOnScop(Scop &S) {
IslAstInfo &AstInfo = getAnalysis<IslAstInfo>();
assert(S.getRegion().isSimple() && "Only simple regions are supported");
BasicBlock *StartBlock = executeScopConditionally(S, this);
isl_ast_node *Ast = AstInfo.getAst();
IRBuilder<> Builder(StartBlock->begin());
IslNodeBuilder NodeBuilder(Builder, this);
NodeBuilder.addParameters(S.getContext());
NodeBuilder.create(Ast);
return true;
}
virtual void printScop(raw_ostream &OS) const {
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<IslAstInfo>();
AU.addRequired<RegionInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<ScopDetection>();
AU.addRequired<ScopInfo>();
AU.addPreserved<Dependences>();
// FIXME: We do not create LoopInfo for the newly generated loops.
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<IslAstInfo>();
AU.addPreserved<ScopDetection>();
AU.addPreserved<ScalarEvolution>();
// FIXME: We do not yet add regions for the newly generated code to the
// region tree.
AU.addPreserved<RegionInfo>();
AU.addPreserved<TempScopInfo>();
AU.addPreserved<ScopInfo>();
AU.addPreservedID(IndependentBlocksID);
}
};
}
char IslCodeGeneration::ID = 1;
INITIALIZE_PASS_BEGIN(IslCodeGeneration, "polly-codegen-isl",
"Polly - Create LLVM-IR from SCoPs", false, false)
INITIALIZE_PASS_DEPENDENCY(Dependences)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(RegionInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(ScopDetection)
INITIALIZE_PASS_END(IslCodeGeneration, "polly-codegen-isl",
"Polly - Create LLVM-IR from SCoPs", false, false)
Pass *polly::createIslCodeGenerationPass() {
return new IslCodeGeneration();
}