blob: 2e73dff24b9b8fcf3628a6aab171b0c23d3edb8a [file] [log] [blame]
; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine-branches \
; RUN: -polly-invariant-load-hoisting=true \
; RUN: -polly-allow-nonaffine-loops=true \
; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST
; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine \
; RUN: -polly-invariant-load-hoisting=true \
; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \
; RUN: -analyze < %s | FileCheck %s \
; RUN: --check-prefix=ALL
;
; Negative test for INNERMOST.
; At the moment we will optimistically assume A[i] in the conditional before the inner
; loop might be invariant and expand the SCoP from the loop to include the conditional. However,
; during SCoP generation we will realize that A[i] is in not always invariant.
;
; Possible solutions could be:
; - Do not optimistically assume it to be invariant (as before this commit), however we would loose
; a lot of invariant cases due to possible aliasing.
; - Reduce the size of the SCoP if an assumed invariant access is in fact not invariant instead of
; rejecting the whole region.
;
; INNERMOST: Function: f
; INNERMOST-NEXT: Region: %bb4---%bb3
; INNERMOST-NEXT: Max Loop Depth: 1
; INNERMOST-NEXT: Invariant Accesses: {
; INNERMOST-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb4[] -> MemRef_A[p_2] };
; INNERMOST-NEXT: Execution Context: [tmp6, N, p_2] -> { : (tmp6 > 0 and p_2 >= N) or (tmp6 < 0 and p_2 >= N) or tmp6 = 0 }
; INNERMOST-NEXT: }
; INNERMOST-NEXT: Context:
; INNERMOST-NEXT: [tmp6, N, p_2] -> { : -2147483648 <= tmp6 <= 2147483647 and -2147483648 <= N <= 2147483647 and 0 <= p_2 <= 1024 }
; INNERMOST-NEXT: Assumed Context:
; INNERMOST-NEXT: [tmp6, N, p_2] -> { : }
; INNERMOST-NEXT: Invalid Context:
; INNERMOST-NEXT: [tmp6, N, p_2] -> { : p_2 < N and (tmp6 < 0 or tmp6 > 0) }
; INNERMOST-NEXT: p0: %tmp6
; INNERMOST-NEXT: p1: %N
; INNERMOST-NEXT: p2: {0,+,1}<nuw><nsw><%bb3>
; INNERMOST-NEXT: Arrays {
; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4
; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8
; INNERMOST-NEXT: }
; INNERMOST-NEXT: Arrays (Bounds as pw_affs) {
; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4
; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8
; INNERMOST-NEXT: }
; INNERMOST-NEXT: Alias Groups (0):
; INNERMOST-NEXT: n/a
; INNERMOST-NEXT: Statements {
; INNERMOST-NEXT: Stmt_bb11
; INNERMOST-NEXT: Domain :=
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] : 0 <= i0 < N and (tmp6 < 0 or tmp6 > 0) };
; INNERMOST-NEXT: Schedule :=
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> [0, i0] : tmp6 < 0 or tmp6 > 0 };
; INNERMOST-NEXT: ReadAccess := [Reduction Type: +] [Scalar: 0]
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> MemRef_A[i0] };
; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: +] [Scalar: 0]
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> MemRef_A[i0] };
; INNERMOST-NEXT: Stmt_bb18
; INNERMOST-NEXT: Domain :=
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] };
; INNERMOST-NEXT: Schedule :=
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] -> [1, 0] };
; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] -> MemRef_indvars_iv_next2[] };
; INNERMOST-NEXT: }
;
; ALL: Function: f
; ALL-NEXT: Region: %bb3---%bb19
; ALL-NEXT: Max Loop Depth: 1
; ALL-NEXT: Invariant Accesses: {
; ALL-NEXT: }
; ALL-NEXT: Context:
; ALL-NEXT: { : }
; ALL-NEXT: Assumed Context:
; ALL-NEXT: { : }
; ALL-NEXT: Invalid Context:
; ALL-NEXT: { : false }
; ALL-NEXT: Arrays {
; ALL-NEXT: i32 MemRef_A[*]; // Element size 4
; ALL-NEXT: }
; ALL-NEXT: Arrays (Bounds as pw_affs) {
; ALL-NEXT: i32 MemRef_A[*]; // Element size 4
; ALL-NEXT: }
; ALL-NEXT: Alias Groups (0):
; ALL-NEXT: n/a
; ALL-NEXT: Statements {
; ALL-NEXT: Stmt_bb4__TO__bb17
; ALL-NEXT: Domain :=
; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] : 0 <= i0 <= 1023 };
; ALL-NEXT: Schedule :=
; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> [i0] };
; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[i0] };
; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 };
; ALL-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 };
; ALL-NEXT: }
;
; void f(int *A, int N) {
; for (int i = 0; i < 1024; i++)
; if (A[i])
; for (int j = 0; j < N; j++)
; A[j]++;
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @f(i32* %A, i32 %N) {
bb:
%tmp = sext i32 %N to i64
br label %bb3
bb3: ; preds = %bb18, %bb
%indvars.iv1 = phi i64 [ %indvars.iv.next2, %bb18 ], [ 0, %bb ]
%exitcond = icmp ne i64 %indvars.iv1, 1024
br i1 %exitcond, label %bb4, label %bb19
bb4: ; preds = %bb3
%tmp5 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv1
%tmp6 = load i32, i32* %tmp5, align 4
%tmp7 = icmp eq i32 %tmp6, 0
br i1 %tmp7, label %bb17, label %bb8
bb8: ; preds = %bb4
br label %bb9
bb9: ; preds = %bb15, %bb8
%indvars.iv = phi i64 [ %indvars.iv.next, %bb15 ], [ 0, %bb8 ]
%tmp10 = icmp slt i64 %indvars.iv, %tmp
br i1 %tmp10, label %bb11, label %bb16
bb11: ; preds = %bb9
%tmp12 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
%tmp13 = load i32, i32* %tmp12, align 4
%tmp14 = add nsw i32 %tmp13, 1
store i32 %tmp14, i32* %tmp12, align 4
br label %bb15
bb15: ; preds = %bb11
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
br label %bb9
bb16: ; preds = %bb9
br label %bb17
bb17: ; preds = %bb4, %bb16
br label %bb18
bb18: ; preds = %bb17
%indvars.iv.next2 = add nuw nsw i64 %indvars.iv1, 1
br label %bb3
bb19: ; preds = %bb3
ret void
}