blob: bc5861f36c90a505263b095cd12c9dcdbf5ec400 [file] [log] [blame]
/*
* Copyright 2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_local_space_private.h>
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_aff_private.h>
#include <isl_vec_private.h>
#include <isl_seq.h>
#include <isl_local.h>
isl_ctx *isl_local_space_get_ctx(__isl_keep isl_local_space *ls)
{
return ls ? ls->dim->ctx : NULL;
}
/* Return a hash value that digests "ls".
*/
uint32_t isl_local_space_get_hash(__isl_keep isl_local_space *ls)
{
uint32_t hash, space_hash, div_hash;
if (!ls)
return 0;
hash = isl_hash_init();
space_hash = isl_space_get_hash(ls->dim);
isl_hash_hash(hash, space_hash);
div_hash = isl_mat_get_hash(ls->div);
isl_hash_hash(hash, div_hash);
return hash;
}
__isl_give isl_local_space *isl_local_space_alloc_div(__isl_take isl_space *dim,
__isl_take isl_mat *div)
{
isl_ctx *ctx;
isl_local_space *ls = NULL;
if (!dim || !div)
goto error;
ctx = isl_space_get_ctx(dim);
ls = isl_calloc_type(ctx, struct isl_local_space);
if (!ls)
goto error;
ls->ref = 1;
ls->dim = dim;
ls->div = div;
return ls;
error:
isl_mat_free(div);
isl_space_free(dim);
isl_local_space_free(ls);
return NULL;
}
__isl_give isl_local_space *isl_local_space_alloc(__isl_take isl_space *dim,
unsigned n_div)
{
isl_ctx *ctx;
isl_mat *div;
unsigned total;
if (!dim)
return NULL;
total = isl_space_dim(dim, isl_dim_all);
ctx = isl_space_get_ctx(dim);
div = isl_mat_alloc(ctx, n_div, 1 + 1 + total + n_div);
return isl_local_space_alloc_div(dim, div);
}
__isl_give isl_local_space *isl_local_space_from_space(__isl_take isl_space *dim)
{
return isl_local_space_alloc(dim, 0);
}
__isl_give isl_local_space *isl_local_space_copy(__isl_keep isl_local_space *ls)
{
if (!ls)
return NULL;
ls->ref++;
return ls;
}
__isl_give isl_local_space *isl_local_space_dup(__isl_keep isl_local_space *ls)
{
if (!ls)
return NULL;
return isl_local_space_alloc_div(isl_space_copy(ls->dim),
isl_mat_copy(ls->div));
}
__isl_give isl_local_space *isl_local_space_cow(__isl_take isl_local_space *ls)
{
if (!ls)
return NULL;
if (ls->ref == 1)
return ls;
ls->ref--;
return isl_local_space_dup(ls);
}
__isl_null isl_local_space *isl_local_space_free(
__isl_take isl_local_space *ls)
{
if (!ls)
return NULL;
if (--ls->ref > 0)
return NULL;
isl_space_free(ls->dim);
isl_mat_free(ls->div);
free(ls);
return NULL;
}
/* Is the local space that of a parameter domain?
*/
isl_bool isl_local_space_is_params(__isl_keep isl_local_space *ls)
{
if (!ls)
return isl_bool_error;
return isl_space_is_params(ls->dim);
}
/* Is the local space that of a set?
*/
isl_bool isl_local_space_is_set(__isl_keep isl_local_space *ls)
{
return ls ? isl_space_is_set(ls->dim) : isl_bool_error;
}
/* Do "ls1" and "ls2" have the same space?
*/
isl_bool isl_local_space_has_equal_space(__isl_keep isl_local_space *ls1,
__isl_keep isl_local_space *ls2)
{
if (!ls1 || !ls2)
return isl_bool_error;
return isl_space_is_equal(ls1->dim, ls2->dim);
}
/* Return true if the two local spaces are identical, with identical
* expressions for the integer divisions.
*/
isl_bool isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
__isl_keep isl_local_space *ls2)
{
isl_bool equal;
equal = isl_local_space_has_equal_space(ls1, ls2);
if (equal < 0 || !equal)
return equal;
if (!isl_local_space_divs_known(ls1))
return isl_bool_false;
if (!isl_local_space_divs_known(ls2))
return isl_bool_false;
return isl_mat_is_equal(ls1->div, ls2->div);
}
/* Compare two isl_local_spaces.
*
* Return -1 if "ls1" is "smaller" than "ls2", 1 if "ls1" is "greater"
* than "ls2" and 0 if they are equal.
*/
int isl_local_space_cmp(__isl_keep isl_local_space *ls1,
__isl_keep isl_local_space *ls2)
{
int cmp;
if (ls1 == ls2)
return 0;
if (!ls1)
return -1;
if (!ls2)
return 1;
cmp = isl_space_cmp(ls1->dim, ls2->dim);
if (cmp != 0)
return cmp;
return isl_local_cmp(ls1->div, ls2->div);
}
int isl_local_space_dim(__isl_keep isl_local_space *ls,
enum isl_dim_type type)
{
if (!ls)
return 0;
if (type == isl_dim_div)
return ls->div->n_row;
if (type == isl_dim_all)
return isl_space_dim(ls->dim, isl_dim_all) + ls->div->n_row;
return isl_space_dim(ls->dim, type);
}
unsigned isl_local_space_offset(__isl_keep isl_local_space *ls,
enum isl_dim_type type)
{
isl_space *dim;
if (!ls)
return 0;
dim = ls->dim;
switch (type) {
case isl_dim_cst: return 0;
case isl_dim_param: return 1;
case isl_dim_in: return 1 + dim->nparam;
case isl_dim_out: return 1 + dim->nparam + dim->n_in;
case isl_dim_div: return 1 + dim->nparam + dim->n_in + dim->n_out;
default: return 0;
}
}
/* Return the position of the dimension of the given type and name
* in "ls".
* Return -1 if no such dimension can be found.
*/
int isl_local_space_find_dim_by_name(__isl_keep isl_local_space *ls,
enum isl_dim_type type, const char *name)
{
if (!ls)
return -1;
if (type == isl_dim_div)
return -1;
return isl_space_find_dim_by_name(ls->dim, type, name);
}
/* Does the given dimension have a name?
*/
isl_bool isl_local_space_has_dim_name(__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos)
{
return ls ? isl_space_has_dim_name(ls->dim, type, pos) : isl_bool_error;
}
const char *isl_local_space_get_dim_name(__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos)
{
return ls ? isl_space_get_dim_name(ls->dim, type, pos) : NULL;
}
isl_bool isl_local_space_has_dim_id(__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos)
{
return ls ? isl_space_has_dim_id(ls->dim, type, pos) : isl_bool_error;
}
__isl_give isl_id *isl_local_space_get_dim_id(__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos)
{
return ls ? isl_space_get_dim_id(ls->dim, type, pos) : NULL;
}
/* Return the argument of the integer division at position "pos" in "ls".
* All local variables in "ls" are known to have a (complete) explicit
* representation.
*/
static __isl_give isl_aff *extract_div(__isl_keep isl_local_space *ls, int pos)
{
isl_aff *aff;
aff = isl_aff_alloc(isl_local_space_copy(ls));
if (!aff)
return NULL;
isl_seq_cpy(aff->v->el, ls->div->row[pos], aff->v->size);
return aff;
}
/* Return the argument of the integer division at position "pos" in "ls".
* The integer division at that position is known to have a complete
* explicit representation, but some of the others do not.
* Remove them first because the domain of an isl_aff
* is not allowed to have unknown local variables.
*/
static __isl_give isl_aff *drop_unknown_divs_and_extract_div(
__isl_keep isl_local_space *ls, int pos)
{
int i, n;
isl_bool unknown;
isl_aff *aff;
ls = isl_local_space_copy(ls);
n = isl_local_space_dim(ls, isl_dim_div);
for (i = n - 1; i >= 0; --i) {
unknown = isl_local_space_div_is_marked_unknown(ls, i);
if (unknown < 0)
ls = isl_local_space_free(ls);
else if (!unknown)
continue;
ls = isl_local_space_drop_dims(ls, isl_dim_div, i, 1);
if (pos > i)
--pos;
}
aff = extract_div(ls, pos);
isl_local_space_free(ls);
return aff;
}
/* Return the argument of the integer division at position "pos" in "ls".
* The integer division is assumed to have a complete explicit
* representation. If some of the other integer divisions
* do not have an explicit representation, then they need
* to be removed first because the domain of an isl_aff
* is not allowed to have unknown local variables.
*/
__isl_give isl_aff *isl_local_space_get_div(__isl_keep isl_local_space *ls,
int pos)
{
isl_bool known;
if (!ls)
return NULL;
if (pos < 0 || pos >= ls->div->n_row)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"index out of bounds", return NULL);
known = isl_local_space_div_is_known(ls, pos);
if (known < 0)
return NULL;
if (!known)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"expression of div unknown", return NULL);
if (!isl_local_space_is_set(ls))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"cannot represent divs of map spaces", return NULL);
known = isl_local_space_divs_known(ls);
if (known < 0)
return NULL;
if (known)
return extract_div(ls, pos);
else
return drop_unknown_divs_and_extract_div(ls, pos);
}
__isl_give isl_space *isl_local_space_get_space(__isl_keep isl_local_space *ls)
{
if (!ls)
return NULL;
return isl_space_copy(ls->dim);
}
/* Return the space of "ls".
* This may be either a copy or the space itself
* if there is only one reference to "ls".
* This allows the space to be modified inplace
* if both the local space and its space have only a single reference.
* The caller is not allowed to modify "ls" between this call and
* a subsequent call to isl_local_space_restore_space.
* The only exception is that isl_local_space_free can be called instead.
*/
__isl_give isl_space *isl_local_space_take_space(__isl_keep isl_local_space *ls)
{
isl_space *space;
if (!ls)
return NULL;
if (ls->ref != 1)
return isl_local_space_get_space(ls);
space = ls->dim;
ls->dim = NULL;
return space;
}
/* Set the space of "ls" to "space", where the space of "ls" may be missing
* due to a preceding call to isl_local_space_take_space.
* However, in this case, "ls" only has a single reference and
* then the call to isl_local_space_cow has no effect.
*/
__isl_give isl_local_space *isl_local_space_restore_space(
__isl_take isl_local_space *ls, __isl_take isl_space *space)
{
if (!ls || !space)
goto error;
if (ls->dim == space) {
isl_space_free(space);
return ls;
}
ls = isl_local_space_cow(ls);
if (!ls)
goto error;
isl_space_free(ls->dim);
ls->dim = space;
return ls;
error:
isl_local_space_free(ls);
isl_space_free(space);
return NULL;
}
/* Replace the identifier of the tuple of type "type" by "id".
*/
__isl_give isl_local_space *isl_local_space_set_tuple_id(
__isl_take isl_local_space *ls,
enum isl_dim_type type, __isl_take isl_id *id)
{
ls = isl_local_space_cow(ls);
if (!ls)
goto error;
ls->dim = isl_space_set_tuple_id(ls->dim, type, id);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
error:
isl_id_free(id);
return NULL;
}
__isl_give isl_local_space *isl_local_space_set_dim_name(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos, const char *s)
{
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_set_dim_name(ls->dim, type, pos, s);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
__isl_give isl_local_space *isl_local_space_set_dim_id(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos, __isl_take isl_id *id)
{
ls = isl_local_space_cow(ls);
if (!ls)
goto error;
ls->dim = isl_space_set_dim_id(ls->dim, type, pos, id);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
error:
isl_id_free(id);
return NULL;
}
/* Construct a zero-dimensional local space with the given parameter domain.
*/
__isl_give isl_local_space *isl_local_space_set_from_params(
__isl_take isl_local_space *ls)
{
isl_space *space;
space = isl_local_space_take_space(ls);
space = isl_space_set_from_params(space);
ls = isl_local_space_restore_space(ls, space);
return ls;
}
__isl_give isl_local_space *isl_local_space_reset_space(
__isl_take isl_local_space *ls, __isl_take isl_space *dim)
{
ls = isl_local_space_cow(ls);
if (!ls || !dim)
goto error;
isl_space_free(ls->dim);
ls->dim = dim;
return ls;
error:
isl_local_space_free(ls);
isl_space_free(dim);
return NULL;
}
/* Reorder the columns of the given div definitions according to the
* given reordering.
* The order of the divs themselves is assumed not to change.
*/
static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
__isl_take isl_reordering *r)
{
int i, j;
isl_mat *mat;
int extra;
if (!div || !r)
goto error;
extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
if (!mat)
goto error;
for (i = 0; i < div->n_row; ++i) {
isl_seq_cpy(mat->row[i], div->row[i], 2);
isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
for (j = 0; j < r->len; ++j)
isl_int_set(mat->row[i][2 + r->pos[j]],
div->row[i][2 + j]);
}
isl_reordering_free(r);
isl_mat_free(div);
return mat;
error:
isl_reordering_free(r);
isl_mat_free(div);
return NULL;
}
/* Reorder the dimensions of "ls" according to the given reordering.
* The reordering r is assumed to have been extended with the local
* variables, leaving them in the same order.
*/
__isl_give isl_local_space *isl_local_space_realign(
__isl_take isl_local_space *ls, __isl_take isl_reordering *r)
{
ls = isl_local_space_cow(ls);
if (!ls || !r)
goto error;
ls->div = reorder_divs(ls->div, isl_reordering_copy(r));
if (!ls->div)
goto error;
ls = isl_local_space_reset_space(ls, isl_space_copy(r->dim));
isl_reordering_free(r);
return ls;
error:
isl_local_space_free(ls);
isl_reordering_free(r);
return NULL;
}
__isl_give isl_local_space *isl_local_space_add_div(
__isl_take isl_local_space *ls, __isl_take isl_vec *div)
{
ls = isl_local_space_cow(ls);
if (!ls || !div)
goto error;
if (ls->div->n_col != div->size)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"incompatible dimensions", goto error);
ls->div = isl_mat_add_zero_cols(ls->div, 1);
ls->div = isl_mat_add_rows(ls->div, 1);
if (!ls->div)
goto error;
isl_seq_cpy(ls->div->row[ls->div->n_row - 1], div->el, div->size);
isl_int_set_si(ls->div->row[ls->div->n_row - 1][div->size], 0);
isl_vec_free(div);
return ls;
error:
isl_local_space_free(ls);
isl_vec_free(div);
return NULL;
}
__isl_give isl_local_space *isl_local_space_replace_divs(
__isl_take isl_local_space *ls, __isl_take isl_mat *div)
{
ls = isl_local_space_cow(ls);
if (!ls || !div)
goto error;
isl_mat_free(ls->div);
ls->div = div;
return ls;
error:
isl_mat_free(div);
isl_local_space_free(ls);
return NULL;
}
/* Copy row "s" of "src" to row "d" of "dst", applying the expansion
* defined by "exp".
*/
static void expand_row(__isl_keep isl_mat *dst, int d,
__isl_keep isl_mat *src, int s, int *exp)
{
int i;
unsigned c = src->n_col - src->n_row;
isl_seq_cpy(dst->row[d], src->row[s], c);
isl_seq_clr(dst->row[d] + c, dst->n_col - c);
for (i = 0; i < s; ++i)
isl_int_set(dst->row[d][c + exp[i]], src->row[s][c + i]);
}
/* Compare (known) divs.
* Return non-zero if at least one of the two divs is unknown.
* In particular, if both divs are unknown, we respect their
* current order. Otherwise, we sort the known div after the unknown
* div only if the known div depends on the unknown div.
*/
static int cmp_row(isl_int *row_i, isl_int *row_j, int i, int j,
unsigned n_row, unsigned n_col)
{
int li, lj;
int unknown_i, unknown_j;
unknown_i = isl_int_is_zero(row_i[0]);
unknown_j = isl_int_is_zero(row_j[0]);
if (unknown_i && unknown_j)
return i - j;
if (unknown_i)
li = n_col - n_row + i;
else
li = isl_seq_last_non_zero(row_i, n_col);
if (unknown_j)
lj = n_col - n_row + j;
else
lj = isl_seq_last_non_zero(row_j, n_col);
if (li != lj)
return li - lj;
return isl_seq_cmp(row_i, row_j, n_col);
}
/* Call cmp_row for divs in a matrix.
*/
int isl_mat_cmp_div(__isl_keep isl_mat *div, int i, int j)
{
return cmp_row(div->row[i], div->row[j], i, j, div->n_row, div->n_col);
}
/* Call cmp_row for divs in a basic map.
*/
static int bmap_cmp_row(__isl_keep isl_basic_map *bmap, int i, int j,
unsigned total)
{
return cmp_row(bmap->div[i], bmap->div[j], i, j, bmap->n_div, total);
}
/* Sort the divs in "bmap".
*
* We first make sure divs are placed after divs on which they depend.
* Then we perform a simple insertion sort based on the same ordering
* that is used in isl_merge_divs.
*/
__isl_give isl_basic_map *isl_basic_map_sort_divs(
__isl_take isl_basic_map *bmap)
{
int i, j;
unsigned total;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
if (bmap->n_div <= 1)
return bmap;
total = 2 + isl_basic_map_total_dim(bmap);
for (i = 1; i < bmap->n_div; ++i) {
for (j = i - 1; j >= 0; --j) {
if (bmap_cmp_row(bmap, j, j + 1, total) <= 0)
break;
isl_basic_map_swap_div(bmap, j, j + 1);
}
}
return bmap;
}
/* Sort the divs in the basic maps of "map".
*/
__isl_give isl_map *isl_map_sort_divs(__isl_take isl_map *map)
{
return isl_map_inline_foreach_basic_map(map, &isl_basic_map_sort_divs);
}
/* Combine the two lists of divs into a single list.
* For each row i in div1, exp1[i] is set to the position of the corresponding
* row in the result. Similarly for div2 and exp2.
* This function guarantees
* exp1[i] >= i
* exp1[i+1] > exp1[i]
* For optimal merging, the two input list should have been sorted.
*/
__isl_give isl_mat *isl_merge_divs(__isl_keep isl_mat *div1,
__isl_keep isl_mat *div2, int *exp1, int *exp2)
{
int i, j, k;
isl_mat *div = NULL;
unsigned d;
if (!div1 || !div2)
return NULL;
d = div1->n_col - div1->n_row;
div = isl_mat_alloc(div1->ctx, 1 + div1->n_row + div2->n_row,
d + div1->n_row + div2->n_row);
if (!div)
return NULL;
for (i = 0, j = 0, k = 0; i < div1->n_row && j < div2->n_row; ++k) {
int cmp;
expand_row(div, k, div1, i, exp1);
expand_row(div, k + 1, div2, j, exp2);
cmp = isl_mat_cmp_div(div, k, k + 1);
if (cmp == 0) {
exp1[i++] = k;
exp2[j++] = k;
} else if (cmp < 0) {
exp1[i++] = k;
} else {
exp2[j++] = k;
isl_seq_cpy(div->row[k], div->row[k + 1], div->n_col);
}
}
for (; i < div1->n_row; ++i, ++k) {
expand_row(div, k, div1, i, exp1);
exp1[i] = k;
}
for (; j < div2->n_row; ++j, ++k) {
expand_row(div, k, div2, j, exp2);
exp2[j] = k;
}
div->n_row = k;
div->n_col = d + k;
return div;
}
/* Swap divs "a" and "b" in "ls".
*/
__isl_give isl_local_space *isl_local_space_swap_div(
__isl_take isl_local_space *ls, int a, int b)
{
int offset;
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
if (a < 0 || a >= ls->div->n_row || b < 0 || b >= ls->div->n_row)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"index out of bounds", return isl_local_space_free(ls));
offset = ls->div->n_col - ls->div->n_row;
ls->div = isl_mat_swap_cols(ls->div, offset + a, offset + b);
ls->div = isl_mat_swap_rows(ls->div, a, b);
if (!ls->div)
return isl_local_space_free(ls);
return ls;
}
/* Construct a local space that contains all the divs in either
* "ls1" or "ls2".
*/
__isl_give isl_local_space *isl_local_space_intersect(
__isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2)
{
isl_ctx *ctx;
int *exp1 = NULL;
int *exp2 = NULL;
isl_mat *div = NULL;
isl_bool equal;
if (!ls1 || !ls2)
goto error;
ctx = isl_local_space_get_ctx(ls1);
if (!isl_space_is_equal(ls1->dim, ls2->dim))
isl_die(ctx, isl_error_invalid,
"spaces should be identical", goto error);
if (ls2->div->n_row == 0) {
isl_local_space_free(ls2);
return ls1;
}
if (ls1->div->n_row == 0) {
isl_local_space_free(ls1);
return ls2;
}
exp1 = isl_alloc_array(ctx, int, ls1->div->n_row);
exp2 = isl_alloc_array(ctx, int, ls2->div->n_row);
if (!exp1 || !exp2)
goto error;
div = isl_merge_divs(ls1->div, ls2->div, exp1, exp2);
if (!div)
goto error;
equal = isl_mat_is_equal(ls1->div, div);
if (equal < 0)
goto error;
if (!equal)
ls1 = isl_local_space_cow(ls1);
if (!ls1)
goto error;
free(exp1);
free(exp2);
isl_local_space_free(ls2);
isl_mat_free(ls1->div);
ls1->div = div;
return ls1;
error:
free(exp1);
free(exp2);
isl_mat_free(div);
isl_local_space_free(ls1);
isl_local_space_free(ls2);
return NULL;
}
/* Is the local variable "div" of "ls" marked as not having
* an explicit representation?
* Note that even if this variable is not marked in this way and therefore
* does have an explicit representation, this representation may still
* depend (indirectly) on other local variables that do not
* have an explicit representation.
*/
isl_bool isl_local_space_div_is_marked_unknown(__isl_keep isl_local_space *ls,
int div)
{
if (!ls)
return isl_bool_error;
return isl_local_div_is_marked_unknown(ls->div, div);
}
/* Does "ls" have a complete explicit representation for div "div"?
*/
isl_bool isl_local_space_div_is_known(__isl_keep isl_local_space *ls, int div)
{
if (!ls)
return isl_bool_error;
return isl_local_div_is_known(ls->div, div);
}
/* Does "ls" have an explicit representation for all local variables?
*/
isl_bool isl_local_space_divs_known(__isl_keep isl_local_space *ls)
{
int i;
if (!ls)
return isl_bool_error;
for (i = 0; i < ls->div->n_row; ++i) {
isl_bool unknown = isl_local_space_div_is_marked_unknown(ls, i);
if (unknown < 0 || unknown)
return isl_bool_not(unknown);
}
return isl_bool_true;
}
__isl_give isl_local_space *isl_local_space_domain(
__isl_take isl_local_space *ls)
{
ls = isl_local_space_drop_dims(ls, isl_dim_out,
0, isl_local_space_dim(ls, isl_dim_out));
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_domain(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
__isl_give isl_local_space *isl_local_space_range(
__isl_take isl_local_space *ls)
{
ls = isl_local_space_drop_dims(ls, isl_dim_in,
0, isl_local_space_dim(ls, isl_dim_in));
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_range(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
/* Construct a local space for a map that has the given local
* space as domain and that has a zero-dimensional range.
*/
__isl_give isl_local_space *isl_local_space_from_domain(
__isl_take isl_local_space *ls)
{
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_from_domain(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
__isl_give isl_local_space *isl_local_space_add_dims(
__isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n)
{
int pos;
if (!ls)
return NULL;
pos = isl_local_space_dim(ls, type);
return isl_local_space_insert_dims(ls, type, pos, n);
}
/* Remove common factor of non-constant terms and denominator.
*/
static void normalize_div(__isl_keep isl_local_space *ls, int div)
{
isl_ctx *ctx = ls->div->ctx;
unsigned total = ls->div->n_col - 2;
isl_seq_gcd(ls->div->row[div] + 2, total, &ctx->normalize_gcd);
isl_int_gcd(ctx->normalize_gcd,
ctx->normalize_gcd, ls->div->row[div][0]);
if (isl_int_is_one(ctx->normalize_gcd))
return;
isl_seq_scale_down(ls->div->row[div] + 2, ls->div->row[div] + 2,
ctx->normalize_gcd, total);
isl_int_divexact(ls->div->row[div][0], ls->div->row[div][0],
ctx->normalize_gcd);
isl_int_fdiv_q(ls->div->row[div][1], ls->div->row[div][1],
ctx->normalize_gcd);
}
/* Exploit the equalities in "eq" to simplify the expressions of
* the integer divisions in "ls".
* The integer divisions in "ls" are assumed to appear as regular
* dimensions in "eq".
*/
__isl_give isl_local_space *isl_local_space_substitute_equalities(
__isl_take isl_local_space *ls, __isl_take isl_basic_set *eq)
{
int i, j, k;
unsigned total;
unsigned n_div;
if (!ls || !eq)
goto error;
total = isl_space_dim(eq->dim, isl_dim_all);
if (isl_local_space_dim(ls, isl_dim_all) != total)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"spaces don't match", goto error);
total++;
n_div = eq->n_div;
for (i = 0; i < eq->n_eq; ++i) {
j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
if (j < 0 || j == 0 || j >= total)
continue;
for (k = 0; k < ls->div->n_row; ++k) {
if (isl_int_is_zero(ls->div->row[k][1 + j]))
continue;
ls = isl_local_space_cow(ls);
if (!ls)
goto error;
ls->div = isl_mat_cow(ls->div);
if (!ls->div)
goto error;
isl_seq_elim(ls->div->row[k] + 1, eq->eq[i], j, total,
&ls->div->row[k][0]);
normalize_div(ls, k);
}
}
isl_basic_set_free(eq);
return ls;
error:
isl_basic_set_free(eq);
isl_local_space_free(ls);
return NULL;
}
/* Plug in the affine expressions "subs" of length "subs_len" (including
* the denominator and the constant term) into the variable at position "pos"
* of the "n" div expressions starting at "first".
*
* Let i be the dimension to replace and let "subs" be of the form
*
* f/d
*
* Any integer division starting at "first" with a non-zero coefficient for i,
*
* floor((a i + g)/m)
*
* is replaced by
*
* floor((a f + d g)/(m d))
*/
__isl_give isl_local_space *isl_local_space_substitute_seq(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos, isl_int *subs, int subs_len,
int first, int n)
{
int i;
isl_int v;
if (n == 0)
return ls;
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->div = isl_mat_cow(ls->div);
if (!ls->div)
return isl_local_space_free(ls);
if (first + n > ls->div->n_row)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"index out of bounds", return isl_local_space_free(ls));
pos += isl_local_space_offset(ls, type);
isl_int_init(v);
for (i = first; i < first + n; ++i) {
if (isl_int_is_zero(ls->div->row[i][1 + pos]))
continue;
isl_seq_substitute(ls->div->row[i], pos, subs,
ls->div->n_col, subs_len, v);
normalize_div(ls, i);
}
isl_int_clear(v);
return ls;
}
/* Plug in "subs" for dimension "type", "pos" in the integer divisions
* of "ls".
*
* Let i be the dimension to replace and let "subs" be of the form
*
* f/d
*
* Any integer division with a non-zero coefficient for i,
*
* floor((a i + g)/m)
*
* is replaced by
*
* floor((a f + d g)/(m d))
*/
__isl_give isl_local_space *isl_local_space_substitute(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs)
{
ls = isl_local_space_cow(ls);
if (!ls || !subs)
return isl_local_space_free(ls);
if (!isl_space_is_equal(ls->dim, subs->ls->dim))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"spaces don't match", return isl_local_space_free(ls));
if (isl_local_space_dim(subs->ls, isl_dim_div) != 0)
isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported,
"cannot handle divs yet",
return isl_local_space_free(ls));
return isl_local_space_substitute_seq(ls, type, pos, subs->v->el,
subs->v->size, 0, ls->div->n_row);
}
isl_bool isl_local_space_is_named_or_nested(__isl_keep isl_local_space *ls,
enum isl_dim_type type)
{
if (!ls)
return isl_bool_error;
return isl_space_is_named_or_nested(ls->dim, type);
}
__isl_give isl_local_space *isl_local_space_drop_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned first, unsigned n)
{
isl_ctx *ctx;
if (!ls)
return NULL;
if (n == 0 && !isl_local_space_is_named_or_nested(ls, type))
return ls;
ctx = isl_local_space_get_ctx(ls);
if (first + n > isl_local_space_dim(ls, type))
isl_die(ctx, isl_error_invalid, "range out of bounds",
return isl_local_space_free(ls));
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
if (type == isl_dim_div) {
ls->div = isl_mat_drop_rows(ls->div, first, n);
} else {
ls->dim = isl_space_drop_dims(ls->dim, type, first, n);
if (!ls->dim)
return isl_local_space_free(ls);
}
first += 1 + isl_local_space_offset(ls, type);
ls->div = isl_mat_drop_cols(ls->div, first, n);
if (!ls->div)
return isl_local_space_free(ls);
return ls;
}
__isl_give isl_local_space *isl_local_space_insert_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned first, unsigned n)
{
isl_ctx *ctx;
if (!ls)
return NULL;
if (n == 0 && !isl_local_space_is_named_or_nested(ls, type))
return ls;
ctx = isl_local_space_get_ctx(ls);
if (first > isl_local_space_dim(ls, type))
isl_die(ctx, isl_error_invalid, "position out of bounds",
return isl_local_space_free(ls));
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
if (type == isl_dim_div) {
ls->div = isl_mat_insert_zero_rows(ls->div, first, n);
} else {
ls->dim = isl_space_insert_dims(ls->dim, type, first, n);
if (!ls->dim)
return isl_local_space_free(ls);
}
first += 1 + isl_local_space_offset(ls, type);
ls->div = isl_mat_insert_zero_cols(ls->div, first, n);
if (!ls->div)
return isl_local_space_free(ls);
return ls;
}
/* Check if the constraints pointed to by "constraint" is a div
* constraint corresponding to div "div" in "ls".
*
* That is, if div = floor(f/m), then check if the constraint is
*
* f - m d >= 0
* or
* -(f-(m-1)) + m d >= 0
*/
isl_bool isl_local_space_is_div_constraint(__isl_keep isl_local_space *ls,
isl_int *constraint, unsigned div)
{
unsigned pos;
if (!ls)
return isl_bool_error;
if (isl_int_is_zero(ls->div->row[div][0]))
return isl_bool_false;
pos = isl_local_space_offset(ls, isl_dim_div) + div;
if (isl_int_eq(constraint[pos], ls->div->row[div][0])) {
int neg;
isl_int_sub(ls->div->row[div][1],
ls->div->row[div][1], ls->div->row[div][0]);
isl_int_add_ui(ls->div->row[div][1], ls->div->row[div][1], 1);
neg = isl_seq_is_neg(constraint, ls->div->row[div]+1, pos);
isl_int_sub_ui(ls->div->row[div][1], ls->div->row[div][1], 1);
isl_int_add(ls->div->row[div][1],
ls->div->row[div][1], ls->div->row[div][0]);
if (!neg)
return isl_bool_false;
if (isl_seq_first_non_zero(constraint+pos+1,
ls->div->n_row-div-1) != -1)
return isl_bool_false;
} else if (isl_int_abs_eq(constraint[pos], ls->div->row[div][0])) {
if (!isl_seq_eq(constraint, ls->div->row[div]+1, pos))
return isl_bool_false;
if (isl_seq_first_non_zero(constraint+pos+1,
ls->div->n_row-div-1) != -1)
return isl_bool_false;
} else
return isl_bool_false;
return isl_bool_true;
}
/*
* Set active[i] to 1 if the dimension at position i is involved
* in the linear expression l.
*/
int *isl_local_space_get_active(__isl_keep isl_local_space *ls, isl_int *l)
{
int i, j;
isl_ctx *ctx;
int *active = NULL;
unsigned total;
unsigned offset;
ctx = isl_local_space_get_ctx(ls);
total = isl_local_space_dim(ls, isl_dim_all);
active = isl_calloc_array(ctx, int, total);
if (total && !active)
return NULL;
for (i = 0; i < total; ++i)
active[i] = !isl_int_is_zero(l[i]);
offset = isl_local_space_offset(ls, isl_dim_div) - 1;
for (i = ls->div->n_row - 1; i >= 0; --i) {
if (!active[offset + i])
continue;
for (j = 0; j < total; ++j)
active[j] |= !isl_int_is_zero(ls->div->row[i][2 + j]);
}
return active;
}
/* Given a local space "ls" of a set, create a local space
* for the lift of the set. In particular, the result
* is of the form [dim -> local[..]], with ls->div->n_row variables in the
* range of the wrapped map.
*/
__isl_give isl_local_space *isl_local_space_lift(
__isl_take isl_local_space *ls)
{
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_lift(ls->dim, ls->div->n_row);
ls->div = isl_mat_drop_rows(ls->div, 0, ls->div->n_row);
if (!ls->dim || !ls->div)
return isl_local_space_free(ls);
return ls;
}
/* Construct a basic map that maps a set living in local space "ls"
* to the corresponding lifted local space.
*/
__isl_give isl_basic_map *isl_local_space_lifting(
__isl_take isl_local_space *ls)
{
isl_basic_map *lifting;
isl_basic_set *bset;
if (!ls)
return NULL;
if (!isl_local_space_is_set(ls))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"lifting only defined on set spaces", goto error);
bset = isl_basic_set_from_local_space(ls);
lifting = isl_basic_set_unwrap(isl_basic_set_lift(bset));
lifting = isl_basic_map_domain_map(lifting);
lifting = isl_basic_map_reverse(lifting);
return lifting;
error:
isl_local_space_free(ls);
return NULL;
}
/* Compute the preimage of "ls" under the function represented by "ma".
* In other words, plug in "ma" in "ls". The result is a local space
* that is part of the domain space of "ma".
*
* If the divs in "ls" are represented as
*
* floor((a_i(p) + b_i x + c_i(divs))/n_i)
*
* and ma is represented by
*
* x = D(p) + F(y) + G(divs')
*
* then the resulting divs are
*
* floor((a_i(p) + b_i D(p) + b_i F(y) + B_i G(divs') + c_i(divs))/n_i)
*
* We first copy over the divs from "ma" and then
* we add the modified divs from "ls".
*/
__isl_give isl_local_space *isl_local_space_preimage_multi_aff(
__isl_take isl_local_space *ls, __isl_take isl_multi_aff *ma)
{
int i;
isl_space *space;
isl_local_space *res = NULL;
int n_div_ls, n_div_ma;
isl_int f, c1, c2, g;
ma = isl_multi_aff_align_divs(ma);
if (!ls || !ma)
goto error;
if (!isl_space_is_range_internal(ls->dim, ma->space))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"spaces don't match", goto error);
n_div_ls = isl_local_space_dim(ls, isl_dim_div);
n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0;
space = isl_space_domain(isl_multi_aff_get_space(ma));
res = isl_local_space_alloc(space, n_div_ma + n_div_ls);
if (!res)
goto error;
if (n_div_ma) {
isl_mat_free(res->div);
res->div = isl_mat_copy(ma->p[0]->ls->div);
res->div = isl_mat_add_zero_cols(res->div, n_div_ls);
res->div = isl_mat_add_rows(res->div, n_div_ls);
if (!res->div)
goto error;
}
isl_int_init(f);
isl_int_init(c1);
isl_int_init(c2);
isl_int_init(g);
for (i = 0; i < ls->div->n_row; ++i) {
if (isl_int_is_zero(ls->div->row[i][0])) {
isl_int_set_si(res->div->row[n_div_ma + i][0], 0);
continue;
}
isl_seq_preimage(res->div->row[n_div_ma + i], ls->div->row[i],
ma, 0, 0, n_div_ma, n_div_ls, f, c1, c2, g, 1);
normalize_div(res, n_div_ma + i);
}
isl_int_clear(f);
isl_int_clear(c1);
isl_int_clear(c2);
isl_int_clear(g);
isl_local_space_free(ls);
isl_multi_aff_free(ma);
return res;
error:
isl_local_space_free(ls);
isl_multi_aff_free(ma);
isl_local_space_free(res);
return NULL;
}
/* Move the "n" dimensions of "src_type" starting at "src_pos" of "ls"
* to dimensions of "dst_type" at "dst_pos".
*
* Moving to/from local dimensions is not allowed.
* We currently assume that the dimension type changes.
*/
__isl_give isl_local_space *isl_local_space_move_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos, unsigned n)
{
unsigned g_dst_pos;
unsigned g_src_pos;
if (!ls)
return NULL;
if (n == 0 &&
!isl_local_space_is_named_or_nested(ls, src_type) &&
!isl_local_space_is_named_or_nested(ls, dst_type))
return ls;
if (src_pos + n > isl_local_space_dim(ls, src_type))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"range out of bounds", return isl_local_space_free(ls));
if (dst_pos > isl_local_space_dim(ls, dst_type))
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"position out of bounds",
return isl_local_space_free(ls));
if (src_type == isl_dim_div)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"cannot move divs", return isl_local_space_free(ls));
if (dst_type == isl_dim_div)
isl_die(isl_local_space_get_ctx(ls), isl_error_invalid,
"cannot move to divs", return isl_local_space_free(ls));
if (dst_type == src_type && dst_pos == src_pos)
return ls;
if (dst_type == src_type)
isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported,
"moving dims within the same type not supported",
return isl_local_space_free(ls));
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
g_src_pos = 1 + isl_local_space_offset(ls, src_type) + src_pos;
g_dst_pos = 1 + isl_local_space_offset(ls, dst_type) + dst_pos;
if (dst_type > src_type)
g_dst_pos -= n;
ls->div = isl_mat_move_cols(ls->div, g_dst_pos, g_src_pos, n);
if (!ls->div)
return isl_local_space_free(ls);
ls->dim = isl_space_move_dims(ls->dim, dst_type, dst_pos,
src_type, src_pos, n);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
/* Remove any internal structure of the domain of "ls".
* If there is any such internal structure in the input,
* then the name of the corresponding space is also removed.
*/
__isl_give isl_local_space *isl_local_space_flatten_domain(
__isl_take isl_local_space *ls)
{
if (!ls)
return NULL;
if (!ls->dim->nested[0])
return ls;
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_flatten_domain(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
/* Remove any internal structure of the range of "ls".
* If there is any such internal structure in the input,
* then the name of the corresponding space is also removed.
*/
__isl_give isl_local_space *isl_local_space_flatten_range(
__isl_take isl_local_space *ls)
{
if (!ls)
return NULL;
if (!ls->dim->nested[1])
return ls;
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_flatten_range(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}
/* Given the local space "ls" of a map, return the local space of a set
* that lives in a space that wraps the space of "ls" and that has
* the same divs.
*/
__isl_give isl_local_space *isl_local_space_wrap(__isl_take isl_local_space *ls)
{
ls = isl_local_space_cow(ls);
if (!ls)
return NULL;
ls->dim = isl_space_wrap(ls->dim);
if (!ls->dim)
return isl_local_space_free(ls);
return ls;
}