blob: fca87d9d5e9f23b1e7b45efa1d67f73dd1f6aec6 [file] [log] [blame]
/*
* kmp_affinity.cpp -- affinity management
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
#include "kmp_affinity.h"
// Store the real or imagined machine hierarchy here
static hierarchy_info machine_hierarchy;
void __kmp_cleanup_hierarchy() {
machine_hierarchy.fini();
}
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
kmp_uint32 depth;
// The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
if (TCR_1(machine_hierarchy.uninitialized))
machine_hierarchy.init(NULL, nproc);
// Adjust the hierarchy in case num threads exceeds original
if (nproc > machine_hierarchy.base_num_threads)
machine_hierarchy.resize(nproc);
depth = machine_hierarchy.depth;
KMP_DEBUG_ASSERT(depth > 0);
thr_bar->depth = depth;
thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
}
#if KMP_AFFINITY_SUPPORTED
//
// Print the affinity mask to the character array in a pretty format.
//
#if KMP_USE_HWLOC
char *
__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
{
int num_chars_to_write, num_chars_written;
char* scan;
KMP_ASSERT(buf_len >= 40);
// bufsize of 0 just retrieves the needed buffer size.
num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
// need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
// * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
// take into account the '\0' character.
if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
KMP_SNPRINTF(buf, buf_len, "{<empty>}");
} else if(num_chars_to_write < buf_len - 3) {
// no problem fitting the mask into buf_len number of characters
buf[0] = '{';
// use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
buf[num_chars_written+1] = '}';
buf[num_chars_written+2] = '\0';
} else {
// Need to truncate the affinity mask string and add ellipsis.
// To do this, we first write out the '{' + str(mask)
buf[0] = '{';
hwloc_bitmap_list_snprintf(buf+1, buf_len-1, (hwloc_bitmap_t)mask);
// then, what we do here is go to the 7th to last character, then go backwards until we are NOT
// on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't
// overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
// { 45, 67,...} instead.
scan = buf + buf_len - 7;
while(*scan >= '0' && *scan <= '9' && scan >= buf)
scan--;
*(scan+1) = '.';
*(scan+2) = '.';
*(scan+3) = '.';
*(scan+4) = '}';
*(scan+5) = '\0';
}
return buf;
}
#else
char *
__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
{
KMP_ASSERT(buf_len >= 40);
char *scan = buf;
char *end = buf + buf_len - 1;
//
// Find first element / check for empty set.
//
size_t i;
for (i = 0; i < KMP_CPU_SETSIZE; i++) {
if (KMP_CPU_ISSET(i, mask)) {
break;
}
}
if (i == KMP_CPU_SETSIZE) {
KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
while (*scan != '\0') scan++;
KMP_ASSERT(scan <= end);
return buf;
}
KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
while (*scan != '\0') scan++;
i++;
for (; i < KMP_CPU_SETSIZE; i++) {
if (! KMP_CPU_ISSET(i, mask)) {
continue;
}
//
// Check for buffer overflow. A string of the form ",<n>" will have
// at most 10 characters, plus we want to leave room to print ",...}"
// if the set is too large to print for a total of 15 characters.
// We already left room for '\0' in setting end.
//
if (end - scan < 15) {
break;
}
KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
while (*scan != '\0') scan++;
}
if (i < KMP_CPU_SETSIZE) {
KMP_SNPRINTF(scan, end-scan+1, ",...");
while (*scan != '\0') scan++;
}
KMP_SNPRINTF(scan, end-scan+1, "}");
while (*scan != '\0') scan++;
KMP_ASSERT(scan <= end);
return buf;
}
#endif // KMP_USE_HWLOC
void
__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
{
KMP_CPU_ZERO(mask);
# if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
int group;
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
for (group = 0; group < __kmp_num_proc_groups; group++) {
int i;
int num = __kmp_GetActiveProcessorCount(group);
for (i = 0; i < num; i++) {
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
}
}
}
else
# endif /* KMP_GROUP_AFFINITY */
{
int proc;
for (proc = 0; proc < __kmp_xproc; proc++) {
KMP_CPU_SET(proc, mask);
}
}
}
//
// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
// called to renumber the labels from [0..n] and place them into the child_num
// vector of the address object. This is done in case the labels used for
// the children at one node of the hierarchy differ from those used for
// another node at the same level. Example: suppose the machine has 2 nodes
// with 2 packages each. The first node contains packages 601 and 602, and
// second node contains packages 603 and 604. If we try to sort the table
// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
// because we are paying attention to the labels themselves, not the ordinal
// child numbers. By using the child numbers in the sort, the result is
// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
//
static void
__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
int numAddrs)
{
KMP_DEBUG_ASSERT(numAddrs > 0);
int depth = address2os->first.depth;
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
* sizeof(unsigned));
int labCt;
for (labCt = 0; labCt < depth; labCt++) {
address2os[0].first.childNums[labCt] = counts[labCt] = 0;
lastLabel[labCt] = address2os[0].first.labels[labCt];
}
int i;
for (i = 1; i < numAddrs; i++) {
for (labCt = 0; labCt < depth; labCt++) {
if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
int labCt2;
for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
counts[labCt2] = 0;
lastLabel[labCt2] = address2os[i].first.labels[labCt2];
}
counts[labCt]++;
lastLabel[labCt] = address2os[i].first.labels[labCt];
break;
}
}
for (labCt = 0; labCt < depth; labCt++) {
address2os[i].first.childNums[labCt] = counts[labCt];
}
for (; labCt < (int)Address::maxDepth; labCt++) {
address2os[i].first.childNums[labCt] = 0;
}
}
__kmp_free(lastLabel);
__kmp_free(counts);
}
//
// All of the __kmp_affinity_create_*_map() routines should set
// __kmp_affinity_masks to a vector of affinity mask objects of length
// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
// return the number of levels in the machine topology tree (zero if
// __kmp_affinity_type == affinity_none).
//
// All of the __kmp_affinity_create_*_map() routines should set *__kmp_affin_fullMask
// to the affinity mask for the initialization thread. They need to save and
// restore the mask, and it could be needed later, so saving it is just an
// optimization to avoid calling kmp_get_system_affinity() again.
//
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
static int nCoresPerPkg, nPackages;
static int __kmp_nThreadsPerCore;
#ifndef KMP_DFLT_NTH_CORES
static int __kmp_ncores;
#endif
static int *__kmp_pu_os_idx = NULL;
//
// __kmp_affinity_uniform_topology() doesn't work when called from
// places which support arbitrarily many levels in the machine topology
// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
// __kmp_affinity_create_x2apicid_map().
//
inline static bool
__kmp_affinity_uniform_topology()
{
return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
}
//
// Print out the detailed machine topology map, i.e. the physical locations
// of each OS proc.
//
static void
__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
int pkgLevel, int coreLevel, int threadLevel)
{
int proc;
KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
for (proc = 0; proc < len; proc++) {
int level;
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
for (level = 0; level < depth; level++) {
if (level == threadLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
}
else if (level == coreLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
}
else if (level == pkgLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
}
else if (level > pkgLevel) {
__kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
level - pkgLevel - 1);
}
else {
__kmp_str_buf_print(&buf, "L%d ", level);
}
__kmp_str_buf_print(&buf, "%d ",
address2os[proc].first.labels[level]);
}
KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
buf.str);
__kmp_str_buf_free(&buf);
}
}
#if KMP_USE_HWLOC
// This function removes the topology levels that are radix 1 and don't offer
// further information about the topology. The most common example is when you
// have one thread context per core, we don't want the extra thread context
// level if it offers no unique labels. So they are removed.
// return value: the new depth of address2os
static int
__kmp_affinity_remove_radix_one_levels(AddrUnsPair *address2os, int nActiveThreads, int depth, int* pkgLevel, int* coreLevel, int* threadLevel) {
int level;
int i;
int radix1_detected;
for (level = depth-1; level >= 0; --level) {
// Always keep the package level
if (level == *pkgLevel)
continue;
// Detect if this level is radix 1
radix1_detected = 1;
for (i = 1; i < nActiveThreads; ++i) {
if (address2os[0].first.labels[level] != address2os[i].first.labels[level]) {
// There are differing label values for this level so it stays
radix1_detected = 0;
break;
}
}
if (!radix1_detected)
continue;
// Radix 1 was detected
if (level == *threadLevel) {
// If only one thread per core, then just decrement
// the depth which removes the threadlevel from address2os
for (i = 0; i < nActiveThreads; ++i) {
address2os[i].first.depth--;
}
*threadLevel = -1;
} else if (level == *coreLevel) {
// For core level, we move the thread labels over if they are still
// valid (*threadLevel != -1), and also reduce the depth another level
for (i = 0; i < nActiveThreads; ++i) {
if (*threadLevel != -1) {
address2os[i].first.labels[*coreLevel] = address2os[i].first.labels[*threadLevel];
}
address2os[i].first.depth--;
}
*coreLevel = -1;
}
}
return address2os[0].first.depth;
}
// Returns the number of objects of type 'type' below 'obj' within the topology tree structure.
// e.g., if obj is a HWLOC_OBJ_SOCKET object, and type is HWLOC_OBJ_PU, then
// this will return the number of PU's under the SOCKET object.
static int
__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, hwloc_obj_type_t type) {
int retval = 0;
hwloc_obj_t first;
for(first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, obj->logical_index, type, 0);
first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == obj;
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, first))
{
++retval;
}
return retval;
}
static int
__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id)
{
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// Save the affinity mask for the current thread.
//
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
__kmp_get_system_affinity(oldMask, TRUE);
int depth = 3;
int pkgLevel = 0;
int coreLevel = 1;
int threadLevel = 2;
if (! KMP_AFFINITY_CAPABLE())
{
//
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
//
KMP_ASSERT(__kmp_affinity_type == affinity_none);
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0), HWLOC_OBJ_CORE);
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Allocate the data structure to be returned.
//
AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
//
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return if affinity is not enabled.
//
hwloc_obj_t pu;
hwloc_obj_t core;
hwloc_obj_t socket;
int nActiveThreads = 0;
int socket_identifier = 0;
// re-calculate globals to count only accessible resources
__kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
for(socket = hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0);
socket != NULL;
socket = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, socket),
socket_identifier++)
{
int core_identifier = 0;
int num_active_cores = 0;
for(core = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, socket->type, socket->logical_index, HWLOC_OBJ_CORE, 0);
core != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, socket->type, core) == socket;
core = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, core),
core_identifier++)
{
int pu_identifier = 0;
int num_active_threads = 0;
for(pu = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, core->type, core->logical_index, HWLOC_OBJ_PU, 0);
pu != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, core->type, pu) == core;
pu = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PU, pu),
pu_identifier++)
{
Address addr(3);
if(! KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
continue; // skip inactive (inaccessible) unit
KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
socket->os_index, socket->logical_index, core->os_index, core->logical_index, pu->os_index,pu->logical_index));
addr.labels[0] = socket_identifier; // package
addr.labels[1] = core_identifier; // core
addr.labels[2] = pu_identifier; // pu
retval[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
__kmp_pu_os_idx[nActiveThreads] = pu->os_index; // keep os index for each active pu
nActiveThreads++;
++num_active_threads; // count active threads per core
}
if (num_active_threads) { // were there any active threads on the core?
++__kmp_ncores; // count total active cores
++num_active_cores; // count active cores per socket
if (num_active_threads > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = num_active_threads; // calc maximum
}
}
if (num_active_cores) { // were there any active cores on the socket?
++nPackages; // count total active packages
if (num_active_cores > nCoresPerPkg)
nCoresPerPkg = num_active_cores; // calc maximum
}
}
//
// If there's only one thread context to bind to, return now.
//
KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
KMP_ASSERT(nActiveThreads > 0);
if (nActiveThreads == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Form an Address object which only includes the package level.
//
Address addr(1);
addr.labels[0] = retval[0].first.labels[pkgLevel];
retval[0].first = addr;
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
}
*address2os = retval;
KMP_CPU_FREE(oldMask);
return 1;
}
//
// Sort the table by physical Id.
//
qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
//
// Check to see if the machine topology is uniform
//
unsigned uniform = (nPackages * nCoresPerPkg * __kmp_nThreadsPerCore == nActiveThreads);
//
// Print the machine topology summary.
//
if (__kmp_affinity_verbose) {
char mask[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", nPackages);
//for (level = 1; level <= pkgLevel; level++) {
// __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
// }
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
__kmp_str_buf_free(&buf);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Find any levels with radiix 1, and remove them from the map
// (except for the package level).
//
depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, &pkgLevel, &coreLevel, &threadLevel);
if (__kmp_affinity_gran_levels < 0) {
//
// Set the granularity level based on what levels are modeled
// in the machine topology map.
//
__kmp_affinity_gran_levels = 0;
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
__kmp_affinity_gran_levels++;
}
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
__kmp_affinity_gran_levels++;
}
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, nActiveThreads, depth, pkgLevel,
coreLevel, threadLevel);
}
KMP_CPU_FREE(oldMask);
*address2os = retval;
return depth;
}
#endif // KMP_USE_HWLOC
//
// If we don't know how to retrieve the machine's processor topology, or
// encounter an error in doing so, this routine is called to form a "flat"
// mapping of os thread id's <-> processor id's.
//
static int
__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id)
{
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// Even if __kmp_affinity_type == affinity_none, this routine might still
// called to set __kmp_ncores, as well as
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
//
if (! KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_ncores = nPackages = __kmp_xproc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
//
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return now if affinity is not enabled.
//
__kmp_ncores = nPackages = __kmp_avail_proc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask);
KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
if (__kmp_affinity_type == affinity_none) {
int avail_ct = 0;
unsigned int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask))
continue;
__kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
}
return 0;
}
//
// Contruct the data structure to be returned.
//
*address2os = (AddrUnsPair*)
__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
int avail_ct = 0;
unsigned int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
//
// Skip this proc if it is not included in the machine model.
//
if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Address addr(1);
addr.labels[0] = i;
(*address2os)[avail_ct++] = AddrUnsPair(addr,i);
}
if (__kmp_affinity_verbose) {
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
}
if (__kmp_affinity_gran_levels < 0) {
//
// Only the package level is modeled in the machine topology map,
// so the #levels of granularity is either 0 or 1.
//
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels = 1;
}
else {
__kmp_affinity_gran_levels = 0;
}
}
return 1;
}
# if KMP_GROUP_AFFINITY
//
// If multiple Windows* OS processor groups exist, we can create a 2-level
// topology map with the groups at level 0 and the individual procs at
// level 1.
//
// This facilitates letting the threads float among all procs in a group,
// if granularity=group (the default when there are multiple groups).
//
static int
__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id)
{
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// If we don't have multiple processor groups, return now.
// The flat mapping will be used.
//
if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(__kmp_affin_fullMask) >= 0)) {
// FIXME set *msg_id
return -1;
}
//
// Contruct the data structure to be returned.
//
*address2os = (AddrUnsPair*)
__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
//
// Skip this proc if it is not included in the machine model.
//
if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Address addr(2);
addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
(*address2os)[avail_ct++] = AddrUnsPair(addr,i);
if (__kmp_affinity_verbose) {
KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
addr.labels[1]);
}
}
if (__kmp_affinity_gran_levels < 0) {
if (__kmp_affinity_gran == affinity_gran_group) {
__kmp_affinity_gran_levels = 1;
}
else if ((__kmp_affinity_gran == affinity_gran_fine)
|| (__kmp_affinity_gran == affinity_gran_thread)) {
__kmp_affinity_gran_levels = 0;
}
else {
const char *gran_str = NULL;
if (__kmp_affinity_gran == affinity_gran_core) {
gran_str = "core";
}
else if (__kmp_affinity_gran == affinity_gran_package) {
gran_str = "package";
}
else if (__kmp_affinity_gran == affinity_gran_node) {
gran_str = "node";
}
else {
KMP_ASSERT(0);
}
// Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
__kmp_affinity_gran_levels = 0;
}
}
return 2;
}
# endif /* KMP_GROUP_AFFINITY */
# if KMP_ARCH_X86 || KMP_ARCH_X86_64
static int
__kmp_cpuid_mask_width(int count) {
int r = 0;
while((1<<r) < count)
++r;
return r;
}
class apicThreadInfo {
public:
unsigned osId; // param to __kmp_affinity_bind_thread
unsigned apicId; // from cpuid after binding
unsigned maxCoresPerPkg; // ""
unsigned maxThreadsPerPkg; // ""
unsigned pkgId; // inferred from above values
unsigned coreId; // ""
unsigned threadId; // ""
};
static int
__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
{
const apicThreadInfo *aa = (const apicThreadInfo *)a;
const apicThreadInfo *bb = (const apicThreadInfo *)b;
if (aa->osId < bb->osId) return -1;
if (aa->osId > bb->osId) return 1;
return 0;
}
static int
__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
{
const apicThreadInfo *aa = (const apicThreadInfo *)a;
const apicThreadInfo *bb = (const apicThreadInfo *)b;
if (aa->pkgId < bb->pkgId) return -1;
if (aa->pkgId > bb->pkgId) return 1;
if (aa->coreId < bb->coreId) return -1;
if (aa->coreId > bb->coreId) return 1;
if (aa->threadId < bb->threadId) return -1;
if (aa->threadId > bb->threadId) return 1;
return 0;
}
//
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
// an algorithm which cycles through the available os threads, setting
// the current thread's affinity mask to that thread, and then retrieves
// the Apic Id for each thread context using the cpuid instruction.
//
static int
__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id)
{
kmp_cpuid buf;
int rc;
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// Check if cpuid leaf 4 is supported.
//
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax < 4) {
*msg_id = kmp_i18n_str_NoLeaf4Support;
return -1;
}
//
// The algorithm used starts by setting the affinity to each available
// thread and retrieving info from the cpuid instruction, so if we are
// not capable of calling __kmp_get_system_affinity() and
// _kmp_get_system_affinity(), then we need to do something else - use
// the defaults that we calculated from issuing cpuid without binding
// to each proc.
//
if (! KMP_AFFINITY_CAPABLE()) {
//
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
//
KMP_ASSERT(__kmp_affinity_type == affinity_none);
//
// Get an upper bound on the number of threads per package using
// cpuid(1).
//
// On some OS/chps combinations where HT is supported by the chip
// but is disabled, this value will be 2 on a single core chip.
// Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
//
__kmp_x86_cpuid(1, 0, &buf);
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (maxThreadsPerPkg == 0) {
maxThreadsPerPkg = 1;
}
//
// The num cores per pkg comes from cpuid(4).
// 1 must be added to the encoded value.
//
// The author of cpu_count.cpp treated this only an upper bound
// on the number of cores, but I haven't seen any cases where it
// was greater than the actual number of cores, so we will treat
// it as exact in this block of code.
//
// First, we need to check if cpuid(4) is supported on this chip.
// To see if cpuid(n) is supported, issue cpuid(0) and check if eax
// has the value n or greater.
//
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
}
else {
nCoresPerPkg = 1;
}
//
// There is no way to reliably tell if HT is enabled without issuing
// the cpuid instruction from every thread, can correlating the cpuid
// info, so if the machine is not affinity capable, we assume that HT
// is off. We have seen quite a few machines where maxThreadsPerPkg
// is 2, yet the machine does not support HT.
//
// - Older OSes are usually found on machines with older chips, which
// do not support HT.
//
// - The performance penalty for mistakenly identifying a machine as
// HT when it isn't (which results in blocktime being incorrecly set
// to 0) is greater than the penalty when for mistakenly identifying
// a machine as being 1 thread/core when it is really HT enabled
// (which results in blocktime being incorrectly set to a positive
// value).
//
__kmp_ncores = __kmp_xproc;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
__kmp_nThreadsPerCore = 1;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
//
//
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(),
// even if __kmp_affinity_type = affinity_none.
//
//
// Save the affinity mask for the current thread.
//
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
KMP_ASSERT(oldMask != NULL);
__kmp_get_system_affinity(oldMask, TRUE);
//
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
//
// The relevant information is:
//
// Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
//
// Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
// value of this field determines the width of the core# + thread#
// fields in the Apic Id. It is also an upper bound on the number
// of threads per package, but it has been verified that situations
// happen were it is not exact. In particular, on certain OS/chip
// combinations where Intel(R) Hyper-Threading Technology is supported
// by the chip but has
// been disabled, the value of this field will be 2 (for a single core
// chip). On other OS/chip combinations supporting
// Intel(R) Hyper-Threading Technology, the value of
// this field will be 1 when Intel(R) Hyper-Threading Technology is
// disabled and 2 when it is enabled.
//
// Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
// value of this field (+1) determines the width of the core# field in
// the Apic Id. The comments in "cpucount.cpp" say that this value is
// an upper bound, but the IA-32 architecture manual says that it is
// exactly the number of cores per package, and I haven't seen any
// case where it wasn't.
//
// From this information, deduce the package Id, core Id, and thread Id,
// and set the corresponding fields in the apicThreadInfo struct.
//
unsigned i;
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
__kmp_avail_proc * sizeof(apicThreadInfo));
unsigned nApics = 0;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
//
// Skip this proc if it is not included in the machine model.
//
if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
__kmp_affinity_bind_thread(i);
threadInfo[nApics].osId = i;
//
// The apic id and max threads per pkg come from cpuid(1).
//
__kmp_x86_cpuid(1, 0, &buf);
if (! (buf.edx >> 9) & 1) {
__kmp_set_system_affinity(oldMask, TRUE);
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_ApicNotPresent;
return -1;
}
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
threadInfo[nApics].maxThreadsPerPkg = 1;
}
//
// Max cores per pkg comes from cpuid(4).
// 1 must be added to the encoded value.
//
// First, we need to check if cpuid(4) is supported on this chip.
// To see if cpuid(n) is supported, issue cpuid(0) and check if eax
// has the value n or greater.
//
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
}
else {
threadInfo[nApics].maxCoresPerPkg = 1;
}
//
// Infer the pkgId / coreId / threadId using only the info
// obtained locally.
//
int widthCT = __kmp_cpuid_mask_width(
threadInfo[nApics].maxThreadsPerPkg);
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
int widthC = __kmp_cpuid_mask_width(
threadInfo[nApics].maxCoresPerPkg);
int widthT = widthCT - widthC;
if (widthT < 0) {
//
// I've never seen this one happen, but I suppose it could, if
// the cpuid instruction on a chip was really screwed up.
// Make sure to restore the affinity mask before the tail call.
//
__kmp_set_system_affinity(oldMask, TRUE);
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
int maskC = (1 << widthC) - 1;
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
&maskC;
int maskT = (1 << widthT) - 1;
threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
nApics++;
}
//
// We've collected all the info we need.
// Restore the old affinity mask for this thread.
//
__kmp_set_system_affinity(oldMask, TRUE);
//
// If there's only one thread context to bind to, form an Address object
// with depth 1 and return immediately (or, if affinity is off, set
// address2os to NULL and return).
//
// If it is configured to omit the package level when there is only a
// single package, the logic at the end of this routine won't work if
// there is only a single thread - it would try to form an Address
// object with depth 0.
//
KMP_ASSERT(nApics > 0);
if (nApics == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 0;
}
*address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
Address addr(1);
addr.labels[0] = threadInfo[0].pkgId;
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
}
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 1;
}
//
// Sort the threadInfo table by physical Id.
//
qsort(threadInfo, nApics, sizeof(*threadInfo),
__kmp_affinity_cmp_apicThreadInfo_phys_id);
//
// The table is now sorted by pkgId / coreId / threadId, but we really
// don't know the radix of any of the fields. pkgId's may be sparsely
// assigned among the chips on a system. Although coreId's are usually
// assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore
// (or the total # packages) are at this point - we want to determine
// that now. We only have an upper bound on the first two figures.
//
// We also perform a consistency check at this point: the values returned
// by the cpuid instruction for any thread bound to a given package had
// better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
//
nPackages = 1;
nCoresPerPkg = 1;
__kmp_nThreadsPerCore = 1;
unsigned nCores = 1;
unsigned pkgCt = 1; // to determine radii
unsigned lastPkgId = threadInfo[0].pkgId;
unsigned coreCt = 1;
unsigned lastCoreId = threadInfo[0].coreId;
unsigned threadCt = 1;
unsigned lastThreadId = threadInfo[0].threadId;
// intra-pkg consist checks
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
for (i = 1; i < nApics; i++) {
if (threadInfo[i].pkgId != lastPkgId) {
nCores++;
pkgCt++;
lastPkgId = threadInfo[i].pkgId;
if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
coreCt = 1;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
//
// This is a different package, so go on to the next iteration
// without doing any consistency checks. Reset the consistency
// check vars, though.
//
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
continue;
}
if (threadInfo[i].coreId != lastCoreId) {
nCores++;
coreCt++;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
}
else if (threadInfo[i].threadId != lastThreadId) {
threadCt++;
lastThreadId = threadInfo[i].threadId;
}
else {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
return -1;
}
//
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
// fields agree between all the threads bounds to a given package.
//
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
|| (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
}
nPackages = pkgCt;
if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
//
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return now if affinity is not enabled.
//
__kmp_ncores = nCores;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (i = 0; i < nApics; ++i) {
__kmp_pu_os_idx[i] = threadInfo[i].osId;
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Now that we've determined the number of packages, the number of cores
// per package, and the number of threads per core, we can construct the
// data structure that is to be returned.
//
int pkgLevel = 0;
int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
KMP_ASSERT(depth > 0);
*address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
for (i = 0; i < nApics; ++i) {
Address addr(depth);
unsigned os = threadInfo[i].osId;
int d = 0;
if (pkgLevel >= 0) {
addr.labels[d++] = threadInfo[i].pkgId;
}
if (coreLevel >= 0) {
addr.labels[d++] = threadInfo[i].coreId;
}
if (threadLevel >= 0) {
addr.labels[d++] = threadInfo[i].threadId;
}
(*address2os)[i] = AddrUnsPair(addr, os);
}
if (__kmp_affinity_gran_levels < 0) {
//
// Set the granularity level based on what levels are modeled
// in the machine topology map.
//
__kmp_affinity_gran_levels = 0;
if ((threadLevel >= 0)
&& (__kmp_affinity_gran > affinity_gran_thread)) {
__kmp_affinity_gran_levels++;
}
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
__kmp_affinity_gran_levels++;
}
if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
coreLevel, threadLevel);
}
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return depth;
}
//
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
// architectures support a newer interface for specifying the x2APIC Ids,
// based on cpuid leaf 11.
//
static int
__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id)
{
kmp_cpuid buf;
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// Check to see if cpuid leaf 11 is supported.
//
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax < 11) {
*msg_id = kmp_i18n_str_NoLeaf11Support;
return -1;
}
__kmp_x86_cpuid(11, 0, &buf);
if (buf.ebx == 0) {
*msg_id = kmp_i18n_str_NoLeaf11Support;
return -1;
}
//
// Find the number of levels in the machine topology. While we're at it,
// get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
// try to get more accurate values later by explicitly counting them,
// but get reasonable defaults now, in case we return early.
//
int level;
int threadLevel = -1;
int coreLevel = -1;
int pkgLevel = -1;
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
for (level = 0;; level++) {
if (level > 31) {
//
// FIXME: Hack for DPD200163180
//
// If level is big then something went wrong -> exiting
//
// There could actually be 32 valid levels in the machine topology,
// but so far, the only machine we have seen which does not exit
// this loop before iteration 32 has fubar x2APIC settings.
//
// For now, just reject this case based upon loop trip count.
//
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
__kmp_x86_cpuid(11, level, &buf);
if (buf.ebx == 0) {
if (pkgLevel < 0) {
//
// Will infer nPackages from __kmp_xproc
//
pkgLevel = level;
level++;
}
break;
}
int kind = (buf.ecx >> 8) & 0xff;
if (kind == 1) {
//
// SMT level
//
threadLevel = level;
coreLevel = -1;
pkgLevel = -1;
__kmp_nThreadsPerCore = buf.ebx & 0xff;
if (__kmp_nThreadsPerCore == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
}
else if (kind == 2) {
//
// core level
//
coreLevel = level;
pkgLevel = -1;
nCoresPerPkg = buf.ebx & 0xff;
if (nCoresPerPkg == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
}
else {
if (level <= 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
if (pkgLevel >= 0) {
continue;
}
pkgLevel = level;
nPackages = buf.ebx & 0xff;
if (nPackages == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
}
}
int depth = level;
//
// In the above loop, "level" was counted from the finest level (usually
// thread) to the coarsest. The caller expects that we will place the
// labels in (*address2os)[].first.labels[] in the inverse order, so
// we need to invert the vars saying which level means what.
//
if (threadLevel >= 0) {
threadLevel = depth - threadLevel - 1;
}
if (coreLevel >= 0) {
coreLevel = depth - coreLevel - 1;
}
KMP_DEBUG_ASSERT(pkgLevel >= 0);
pkgLevel = depth - pkgLevel - 1;
//
// The algorithm used starts by setting the affinity to each available
// thread and retrieving info from the cpuid instruction, so if we are
// not capable of calling __kmp_get_system_affinity() and
// _kmp_get_system_affinity(), then we need to do something else - use
// the defaults that we calculated from issuing cpuid without binding
// to each proc.
//
if (! KMP_AFFINITY_CAPABLE())
{
//
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
//
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
//
//
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(),
// even if __kmp_affinity_type = affinity_none.
//
//
// Save the affinity mask for the current thread.
//
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
__kmp_get_system_affinity(oldMask, TRUE);
//
// Allocate the data structure to be returned.
//
AddrUnsPair *retval = (AddrUnsPair *)
__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
//
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
//
unsigned int proc;
int nApics = 0;
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
//
// Skip this proc if it is not included in the machine model.
//
if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
__kmp_affinity_bind_thread(proc);
//
// Extrach the labels for each level in the machine topology map
// from the Apic ID.
//
Address addr(depth);
int prev_shift = 0;
for (level = 0; level < depth; level++) {
__kmp_x86_cpuid(11, level, &buf);
unsigned apicId = buf.edx;
if (buf.ebx == 0) {
if (level != depth - 1) {
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
addr.labels[depth - level - 1] = apicId >> prev_shift;
level++;
break;
}
int shift = buf.eax & 0x1f;
int mask = (1 << shift) - 1;
addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
prev_shift = shift;
}
if (level != depth) {
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
retval[nApics] = AddrUnsPair(addr, proc);
nApics++;
}
//
// We've collected all the info we need.
// Restore the old affinity mask for this thread.
//
__kmp_set_system_affinity(oldMask, TRUE);
//
// If there's only one thread context to bind to, return now.
//
KMP_ASSERT(nApics > 0);
if (nApics == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Form an Address object which only includes the package level.
//
Address addr(1);
addr.labels[0] = retval[0].first.labels[pkgLevel];
retval[0].first = addr;
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
}
*address2os = retval;
KMP_CPU_FREE(oldMask);
return 1;
}
//
// Sort the table by physical Id.
//
qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
//
// Find the radix at each of the levels.
//
unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
for (level = 0; level < depth; level++) {
totals[level] = 1;
maxCt[level] = 1;
counts[level] = 1;
last[level] = retval[0].first.labels[level];
}
//
// From here on, the iteration variable "level" runs from the finest
// level to the coarsest, i.e. we iterate forward through
// (*address2os)[].first.labels[] - in the previous loops, we iterated
// backwards.
//
for (proc = 1; (int)proc < nApics; proc++) {
int level;
for (level = 0; level < depth; level++) {
if (retval[proc].first.labels[level] != last[level]) {
int j;
for (j = level + 1; j < depth; j++) {
totals[j]++;
counts[j] = 1;
// The line below causes printing incorrect topology information
// in case the max value for some level (maxCt[level]) is encountered earlier than
// some less value while going through the array.
// For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
// whereas it must be 4.
// TODO!!! Check if it can be commented safely
//maxCt[j] = 1;
last[j] = retval[proc].first.labels[j];
}
totals[level]++;
counts[level]++;
if (counts[level] > maxCt[level]) {
maxCt[level] = counts[level];
}
last[level] = retval[proc].first.labels[level];
break;
}
else if (level == depth - 1) {
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
return -1;
}
}
}
//
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return if affinity is not enabled.
//
if (threadLevel >= 0) {
__kmp_nThreadsPerCore = maxCt[threadLevel];
}
else {
__kmp_nThreadsPerCore = 1;
}
nPackages = totals[pkgLevel];
if (coreLevel >= 0) {
__kmp_ncores = totals[coreLevel];
nCoresPerPkg = maxCt[coreLevel];
}
else {
__kmp_ncores = nPackages;
nCoresPerPkg = 1;
}
//
// Check to see if the machine topology is uniform
//
unsigned prod = maxCt[0];
for (level = 1; level < depth; level++) {
prod *= maxCt[level];
}
bool uniform = (prod == totals[level - 1]);
//
// Print the machine topology summary.
//
if (__kmp_affinity_verbose) {
char mask[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", totals[0]);
for (level = 1; level <= pkgLevel; level++) {
__kmp_str_buf_print(&buf, " x %d", maxCt[level]);
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
__kmp_str_buf_free(&buf);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (proc = 0; (int)proc < nApics; ++proc) {
__kmp_pu_os_idx[proc] = retval[proc].second;
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
//
// Find any levels with radiix 1, and remove them from the map
// (except for the package level).
//
int new_depth = 0;
for (level = 0; level < depth; level++) {
if ((maxCt[level] == 1) && (level != pkgLevel)) {
continue;
}
new_depth++;
}
//
// If we are removing any levels, allocate a new vector to return,
// and copy the relevant information to it.
//
if (new_depth != depth) {
AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
sizeof(AddrUnsPair) * nApics);
for (proc = 0; (int)proc < nApics; proc++) {
Address addr(new_depth);
new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
}
int new_level = 0;
int newPkgLevel = -1;
int newCoreLevel = -1;
int newThreadLevel = -1;
int i;
for (level = 0; level < depth; level++) {
if ((maxCt[level] == 1)
&& (level != pkgLevel)) {
//
// Remove this level. Never remove the package level
//
continue;
}
if (level == pkgLevel) {
newPkgLevel = level;
}
if (level == coreLevel) {
newCoreLevel = level;
}
if (level == threadLevel) {
newThreadLevel = level;
}
for (proc = 0; (int)proc < nApics; proc++) {
new_retval[proc].first.labels[new_level]
= retval[proc].first.labels[level];
}
new_level++;
}
__kmp_free(retval);
retval = new_retval;
depth = new_depth;
pkgLevel = newPkgLevel;
coreLevel = newCoreLevel;
threadLevel = newThreadLevel;
}
if (__kmp_affinity_gran_levels < 0) {
//
// Set the granularity level based on what levels are modeled
// in the machine topology map.
//
__kmp_affinity_gran_levels = 0;
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
__kmp_affinity_gran_levels++;
}
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
__kmp_affinity_gran_levels++;
}
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
coreLevel, threadLevel);
}
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
KMP_CPU_FREE(oldMask);
*address2os = retval;
return depth;
}
# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#define osIdIndex 0
#define threadIdIndex 1
#define coreIdIndex 2
#define pkgIdIndex 3
#define nodeIdIndex 4
typedef unsigned *ProcCpuInfo;
static unsigned maxIndex = pkgIdIndex;
static int
__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
{
const unsigned *aa = (const unsigned *)a;
const unsigned *bb = (const unsigned *)b;
if (aa[osIdIndex] < bb[osIdIndex]) return -1;
if (aa[osIdIndex] > bb[osIdIndex]) return 1;
return 0;
};
static int
__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
{
unsigned i;
const unsigned *aa = *((const unsigned **)a);
const unsigned *bb = *((const unsigned **)b);
for (i = maxIndex; ; i--) {
if (aa[i] < bb[i]) return -1;
if (aa[i] > bb[i]) return 1;
if (i == osIdIndex) break;
}
return 0;
}
//
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
// affinity map.
//
static int
__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
kmp_i18n_id_t *const msg_id, FILE *f)
{
*address2os = NULL;
*msg_id = kmp_i18n_null;
//
// Scan of the file, and count the number of "processor" (osId) fields,
// and find the highest value of <n> for a node_<n> field.
//
char buf[256];
unsigned num_records = 0;
while (! feof(f)) {
buf[sizeof(buf) - 1] = 1;
if (! fgets(buf, sizeof(buf), f)) {
//
// Read errors presumably because of EOF
//
break;
}
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
num_records++;
continue;
}
//
// FIXME - this will match "node_<n> <garbage>"
//
unsigned level;
if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
if (nodeIdIndex + level >= maxIndex) {
maxIndex = nodeIdIndex + level;
}
continue;
}
}
//
// Check for empty file / no valid processor records, or too many.
// The number of records can't exceed the number of valid bits in the
// affinity mask.
//
if (num_records == 0) {
*line = 0;
*msg_id = kmp_i18n_str_NoProcRecords;
return -1;
}
if (num_records > (unsigned)__kmp_xproc) {
*line = 0;
*msg_id = kmp_i18n_str_TooManyProcRecords;
return -1;
}
//
// Set the file pointer back to the begginning, so that we can scan the
// file again, this time performing a full parse of the data.
// Allocate a vector of ProcCpuInfo object, where we will place the data.
// Adding an extra element at the end allows us to remove a lot of extra
// checks for termination conditions.
//
if (fseek(f, 0, SEEK_SET) != 0) {
*line = 0;
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
return -1;
}
//
// Allocate the array of records to store the proc info in. The dummy
// element at the end makes the logic in filling them out easier to code.
//
unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
* sizeof(unsigned *));
unsigned i;
for (i = 0; i <= num_records; i++) {
threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
* sizeof(unsigned));
}
#define CLEANUP_THREAD_INFO \
for (i = 0; i <= num_records; i++) { \
__kmp_free(threadInfo[i]); \
} \
__kmp_free(threadInfo);
//
// A value of UINT_MAX means that we didn't find the field
//
unsigned __index;
#define INIT_PROC_INFO(p) \
for (__index = 0; __index <= maxIndex; __index++) { \
(p)[__index] = UINT_MAX; \
}
for (i = 0; i <= num_records; i++) {
INIT_PROC_INFO(threadInfo[i]);
}
unsigned num_avail = 0;
*line = 0;
while (! feof(f)) {
//
// Create an inner scoping level, so that all the goto targets at the
// end of the loop appear in an outer scoping level. This avoids
// warnings about jumping past an initialization to a target in the
// same block.
//
{
buf[sizeof(buf) - 1] = 1;
bool long_line = false;
if (! fgets(buf, sizeof(buf), f)) {
//
// Read errors presumably because of EOF
//
// If there is valid data in threadInfo[num_avail], then fake
// a blank line in ensure that the last address gets parsed.
//
bool valid = false;
for (i = 0; i <= maxIndex; i++) {
if (threadInfo[num_avail][i] != UINT_MAX) {
valid = true;
}
}
if (! valid) {
break;
}
buf[0] = 0;
} else if (!buf[sizeof(buf) - 1]) {
//
// The line is longer than the buffer. Set a flag and don't
// emit an error if we were going to ignore the line, anyway.
//
long_line = true;
#define CHECK_LINE \
if (long_line) { \
CLEANUP_THREAD_INFO; \
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
return -1; \
}
}
(*line)++;
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s1) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
threadInfo[num_avail][osIdIndex] = val;
#if KMP_OS_LINUX && USE_SYSFS_INFO
char path[256];
KMP_SNPRINTF(path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
KMP_SNPRINTF(path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/core_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
continue;
#else
}
char s2[] = "physical id";
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s2) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
threadInfo[num_avail][pkgIdIndex] = val;
continue;
}
char s3[] = "core id";
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s3) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
threadInfo[num_avail][coreIdIndex] = val;
continue;
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
}
char s4[] = "thread id";
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
threadInfo[num_avail][threadIdIndex] = val;
continue;
}
unsigned level;
if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
KMP_ASSERT(nodeIdIndex + level <= maxIndex);
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
threadInfo[num_avail][nodeIdIndex + level] = val;
continue;
}
//
// We didn't recognize the leading token on the line.
// There are lots of leading tokens that we don't recognize -
// if the line isn't empty, go on to the next line.
//
if ((*buf != 0) && (*buf != '\n')) {
//
// If the line is longer than the buffer, read characters
// until we find a newline.
//
if (long_line) {
int ch;
while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
}
continue;
}
//
// A newline has signalled the end of the processor record.
// Check that there aren't too many procs specified.
//
if ((int)num_avail == __kmp_xproc) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_TooManyEntries;
return -1;
}
//
// Check for missing fields. The osId field must be there, and we
// currently require that the physical id field is specified, also.
//
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingProcField;
return -1;
}
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
return -1;
}
//
// Skip this proc if it is not included in the machine model.
//
if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], __kmp_affin_fullMask)) {
INIT_PROC_INFO(threadInfo[num_avail]);
continue;
}
//
// We have a successful parse of this proc's info.
// Increment the counter, and prepare for the next proc.
//
num_avail++;
KMP_ASSERT(num_avail <= num_records);
INIT_PROC_INFO(threadInfo[num_avail]);
}
continue;
no_val:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingValCpuinfo;
return -1;
dup_field:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
return -1;
}
*line = 0;
# if KMP_MIC && REDUCE_TEAM_SIZE
unsigned teamSize = 0;
# endif // KMP_MIC && REDUCE_TEAM_SIZE
// check for num_records == __kmp_xproc ???
//
// If there's only one thread context to bind to, form an Address object
// with depth 1 and return immediately (or, if affinity is off, set
// address2os to NULL and return).
//
// If it is configured to omit the package level when there is only a
// single package, the logic at the end of this routine won't work if
// there is only a single thread - it would try to form an Address
// object with depth 0.
//
KMP_ASSERT(num_avail > 0);
KMP_ASSERT(num_avail <= num_records);
if (num_avail == 1) {
__kmp_ncores = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
if (__kmp_affinity_verbose) {
if (! KMP_AFFINITY_CAPABLE()) {
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
}
else {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
}
int index;
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "1");
for (index = maxIndex - 1; index > pkgIdIndex; index--) {
__kmp_str_buf_print(&buf, " x 1");
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
__kmp_str_buf_free(&buf);
}
if (__kmp_affinity_type == affinity_none) {
CLEANUP_THREAD_INFO;
return 0;
}
*address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
Address addr(1);
addr.labels[0] = threadInfo[0][pkgIdIndex];
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
}
CLEANUP_THREAD_INFO;
return 1;
}
//
// Sort the threadInfo table by physical Id.
//
qsort(threadInfo, num_avail, sizeof(*threadInfo),
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
//
// The table is now sorted by pkgId / coreId / threadId, but we really
// don't know the radix of any of the fields. pkgId's may be sparsely
// assigned among the chips on a system. Although coreId's are usually
// assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore
// (or the total # packages) are at this point - we want to determine
// that now. We only have an upper bound on the first two figures.
//
unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
* sizeof(unsigned));
unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
* sizeof(unsigned));
unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
* sizeof(unsigned));
unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
* sizeof(unsigned));
bool assign_thread_ids = false;
unsigned threadIdCt;
unsigned index;
restart_radix_check:
threadIdCt = 0;
//
// Initialize the counter arrays with data from threadInfo[0].
//
if (assign_thread_ids) {
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
threadInfo[0][threadIdIndex] = threadIdCt++;
}
else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
threadIdCt = threadInfo[0][threadIdIndex] + 1;
}
}
for (index = 0; index <= maxIndex; index++) {
counts[index] = 1;
maxCt[index] = 1;
totals[index] = 1;
lastId[index] = threadInfo[0][index];;
}
//
// Run through the rest of the OS procs.
//
for (i = 1; i < num_avail; i++) {
//
// Find the most significant index whose id differs
// from the id for the previous OS proc.
//
for (index = maxIndex; index >= threadIdIndex; index--) {
if (assign_thread_ids && (index == threadIdIndex)) {
//
// Auto-assign the thread id field if it wasn't specified.
//
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
//
// Aparrently the thread id field was specified for some
// entries and not others. Start the thread id counter
// off at the next higher thread id.
//
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
if (threadInfo[i][index] != lastId[index]) {
//
// Run through all indices which are less significant,
// and reset the counts to 1.
//
// At all levels up to and including index, we need to
// increment the totals and record the last id.
//
unsigned index2;
for (index2 = threadIdIndex; index2 < index; index2++) {
totals[index2]++;
if (counts[index2] > maxCt[index2]) {
maxCt[index2] = counts[index2];
}
counts[index2] = 1;
lastId[index2] = threadInfo[i][index2];
}
counts[index]++;
totals[index]++;
lastId[index] = threadInfo[i][index];
if (assign_thread_ids && (index > threadIdIndex)) {
# if KMP_MIC && REDUCE_TEAM_SIZE
//
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
//
teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
# endif // KMP_MIC && REDUCE_TEAM_SIZE
//
// Restart the thread counter, as we are on a new core.
//
threadIdCt = 0;
//
// Auto-assign the thread id field if it wasn't specified.
//
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
//
// Aparrently the thread id field was specified for some
// entries and not others. Start the thread id counter
// off at the next higher thread id.
//
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
break;
}
}
if (index < threadIdIndex) {
//
// If thread ids were specified, it is an error if they are not
// unique. Also, check that we waven't already restarted the
// loop (to be safe - shouldn't need to).
//
if ((threadInfo[i][threadIdIndex] != UINT_MAX)
|| assign_thread_ids) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
return -1;
}
//
// If the thread ids were not specified and we see entries
// entries that are duplicates, start the loop over and
// assign the thread ids manually.
//
assign_thread_ids = true;
goto restart_radix_check;
}
}
# if KMP_MIC && REDUCE_TEAM_SIZE
//
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
//
teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
# endif // KMP_MIC && REDUCE_TEAM_SIZE
for (index = threadIdIndex; index <= maxIndex; index++) {
if (counts[index] > maxCt[index]) {
maxCt[index] = counts[index];
}
}
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
nCoresPerPkg = maxCt[coreIdIndex];
nPackages = totals[pkgIdIndex];
//
// Check to see if the machine topology is uniform
//
unsigned prod = totals[maxIndex];
for (index = threadIdIndex; index < maxIndex; index++) {
prod *= maxCt[index];
}
bool uniform = (prod == totals[threadIdIndex]);
//
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return now if affinity is not enabled.
//
__kmp_ncores = totals[coreIdIndex];
if (__kmp_affinity_verbose) {
if (! KMP_AFFINITY_CAPABLE()) {
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
}
else {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask);
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
}
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
__kmp_str_buf_print(&buf, " x %d", maxCt[index]);
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
maxCt[threadIdIndex], __kmp_ncores);
__kmp_str_buf_free(&buf);
}
# if KMP_MIC && REDUCE_TEAM_SIZE
//
// Set the default team size.
//
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
__kmp_dflt_team_nth = teamSize;
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
__kmp_dflt_team_nth));
}
# endif // KMP_MIC && REDUCE_TEAM_SIZE
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc);
__kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (i = 0; i < num_avail; ++i) { // fill the os indices
__kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
return 0;
}
//
// Count the number of levels which have more nodes at that level than
// at the parent's level (with there being an implicit root node of
// the top level). This is equivalent to saying that there is at least
// one node at this level which has a sibling. These levels are in the
// map, and the package level is always in the map.
//
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
int level = 0;
for (index = threadIdIndex; index < maxIndex; index++) {
KMP_ASSERT(totals[index] >= totals[index + 1]);
inMap[index] = (totals[index] > totals[index + 1]);
}
inMap[maxIndex] = (totals[maxIndex] > 1);
inMap[pkgIdIndex] = true;
int depth = 0;
for (index = threadIdIndex; index <= maxIndex; index++) {
if (inMap[index]) {
depth++;
}
}
KMP_ASSERT(depth > 0);
//
// Construct the data structure that is to be returned.
//
*address2os = (AddrUnsPair*)
__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
int pkgLevel = -1;
int coreLevel = -1;
int threadLevel = -1;
for (i = 0; i < num_avail; ++i) {
Address addr(depth);
unsigned os = threadInfo[i][osIdIndex];
int src_index;
int dst_index = 0;
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
if (! inMap[src_index]) {
continue;
}
addr.labels[dst_index] = threadInfo[i][src_index];
if (src_index == pkgIdIndex) {
pkgLevel = dst_index;
}
else if (src_index == coreIdIndex) {
coreLevel = dst_index;
}
else if (src_index == threadIdIndex) {
threadLevel = dst_index;
}
dst_index++;
}
(*address2os)[i] = AddrUnsPair(addr, os);
}
if (__kmp_affinity_gran_levels < 0) {
//
// Set the granularity level based on what levels are modeled
// in the machine topology map.
//
unsigned src_index;
__kmp_affinity_gran_levels = 0;
for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
if (! inMap[src_index]) {
continue;
}
switch (src_index) {
case threadIdIndex:
if (__kmp_affinity_gran > affinity_gran_thread) {
__kmp_affinity_gran_levels++;
}
break;
case coreIdIndex:
if (__kmp_affinity_gran > affinity_gran_core) {
__kmp_affinity_gran_levels++;
}
break;
case pkgIdIndex:
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels++;
}
break;
}
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
coreLevel, threadLevel);
}
__kmp_free(inMap);
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
return depth;
}
//
// Create and return a table of affinity masks, indexed by OS thread ID.
// This routine handles OR'ing together all t