| /* |
| * kmp_affinity.cpp -- affinity management |
| */ |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "kmp.h" |
| #include "kmp_affinity.h" |
| #include "kmp_i18n.h" |
| #include "kmp_io.h" |
| #include "kmp_str.h" |
| #include "kmp_wrapper_getpid.h" |
| #if KMP_USE_HIER_SCHED |
| #include "kmp_dispatch_hier.h" |
| #endif |
| |
| // Store the real or imagined machine hierarchy here |
| static hierarchy_info machine_hierarchy; |
| |
| void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } |
| |
| void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { |
| kmp_uint32 depth; |
| // The test below is true if affinity is available, but set to "none". Need to |
| // init on first use of hierarchical barrier. |
| if (TCR_1(machine_hierarchy.uninitialized)) |
| machine_hierarchy.init(NULL, nproc); |
| |
| // Adjust the hierarchy in case num threads exceeds original |
| if (nproc > machine_hierarchy.base_num_threads) |
| machine_hierarchy.resize(nproc); |
| |
| depth = machine_hierarchy.depth; |
| KMP_DEBUG_ASSERT(depth > 0); |
| |
| thr_bar->depth = depth; |
| thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; |
| thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; |
| } |
| |
| #if KMP_AFFINITY_SUPPORTED |
| |
| bool KMPAffinity::picked_api = false; |
| |
| void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } |
| void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } |
| void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } |
| void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } |
| void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } |
| void KMPAffinity::operator delete(void *p) { __kmp_free(p); } |
| |
| void KMPAffinity::pick_api() { |
| KMPAffinity *affinity_dispatch; |
| if (picked_api) |
| return; |
| #if KMP_USE_HWLOC |
| // Only use Hwloc if affinity isn't explicitly disabled and |
| // user requests Hwloc topology method |
| if (__kmp_affinity_top_method == affinity_top_method_hwloc && |
| __kmp_affinity_type != affinity_disabled) { |
| affinity_dispatch = new KMPHwlocAffinity(); |
| } else |
| #endif |
| { |
| affinity_dispatch = new KMPNativeAffinity(); |
| } |
| __kmp_affinity_dispatch = affinity_dispatch; |
| picked_api = true; |
| } |
| |
| void KMPAffinity::destroy_api() { |
| if (__kmp_affinity_dispatch != NULL) { |
| delete __kmp_affinity_dispatch; |
| __kmp_affinity_dispatch = NULL; |
| picked_api = false; |
| } |
| } |
| |
| #define KMP_ADVANCE_SCAN(scan) \ |
| while (*scan != '\0') { \ |
| scan++; \ |
| } |
| |
| // Print the affinity mask to the character array in a pretty format. |
| // The format is a comma separated list of non-negative integers or integer |
| // ranges: e.g., 1,2,3-5,7,9-15 |
| // The format can also be the string "{<empty>}" if no bits are set in mask |
| char *__kmp_affinity_print_mask(char *buf, int buf_len, |
| kmp_affin_mask_t *mask) { |
| int start = 0, finish = 0, previous = 0; |
| bool first_range; |
| KMP_ASSERT(buf); |
| KMP_ASSERT(buf_len >= 40); |
| KMP_ASSERT(mask); |
| char *scan = buf; |
| char *end = buf + buf_len - 1; |
| |
| // Check for empty set. |
| if (mask->begin() == mask->end()) { |
| KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); |
| KMP_ADVANCE_SCAN(scan); |
| KMP_ASSERT(scan <= end); |
| return buf; |
| } |
| |
| first_range = true; |
| start = mask->begin(); |
| while (1) { |
| // Find next range |
| // [start, previous] is inclusive range of contiguous bits in mask |
| for (finish = mask->next(start), previous = start; |
| finish == previous + 1 && finish != mask->end(); |
| finish = mask->next(finish)) { |
| previous = finish; |
| } |
| |
| // The first range does not need a comma printed before it, but the rest |
| // of the ranges do need a comma beforehand |
| if (!first_range) { |
| KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); |
| KMP_ADVANCE_SCAN(scan); |
| } else { |
| first_range = false; |
| } |
| // Range with three or more contiguous bits in the affinity mask |
| if (previous - start > 1) { |
| KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), |
| static_cast<int>(previous)); |
| } else { |
| // Range with one or two contiguous bits in the affinity mask |
| KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); |
| KMP_ADVANCE_SCAN(scan); |
| if (previous - start > 0) { |
| KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); |
| } |
| } |
| KMP_ADVANCE_SCAN(scan); |
| // Start over with new start point |
| start = finish; |
| if (start == mask->end()) |
| break; |
| // Check for overflow |
| if (end - scan < 2) |
| break; |
| } |
| |
| // Check for overflow |
| KMP_ASSERT(scan <= end); |
| return buf; |
| } |
| #undef KMP_ADVANCE_SCAN |
| |
| // Print the affinity mask to the string buffer object in a pretty format |
| // The format is a comma separated list of non-negative integers or integer |
| // ranges: e.g., 1,2,3-5,7,9-15 |
| // The format can also be the string "{<empty>}" if no bits are set in mask |
| kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, |
| kmp_affin_mask_t *mask) { |
| int start = 0, finish = 0, previous = 0; |
| bool first_range; |
| KMP_ASSERT(buf); |
| KMP_ASSERT(mask); |
| |
| __kmp_str_buf_clear(buf); |
| |
| // Check for empty set. |
| if (mask->begin() == mask->end()) { |
| __kmp_str_buf_print(buf, "%s", "{<empty>}"); |
| return buf; |
| } |
| |
| first_range = true; |
| start = mask->begin(); |
| while (1) { |
| // Find next range |
| // [start, previous] is inclusive range of contiguous bits in mask |
| for (finish = mask->next(start), previous = start; |
| finish == previous + 1 && finish != mask->end(); |
| finish = mask->next(finish)) { |
| previous = finish; |
| } |
| |
| // The first range does not need a comma printed before it, but the rest |
| // of the ranges do need a comma beforehand |
| if (!first_range) { |
| __kmp_str_buf_print(buf, "%s", ","); |
| } else { |
| first_range = false; |
| } |
| // Range with three or more contiguous bits in the affinity mask |
| if (previous - start > 1) { |
| __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), |
| static_cast<int>(previous)); |
| } else { |
| // Range with one or two contiguous bits in the affinity mask |
| __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); |
| if (previous - start > 0) { |
| __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); |
| } |
| } |
| // Start over with new start point |
| start = finish; |
| if (start == mask->end()) |
| break; |
| } |
| return buf; |
| } |
| |
| void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { |
| KMP_CPU_ZERO(mask); |
| |
| #if KMP_GROUP_AFFINITY |
| |
| if (__kmp_num_proc_groups > 1) { |
| int group; |
| KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); |
| for (group = 0; group < __kmp_num_proc_groups; group++) { |
| int i; |
| int num = __kmp_GetActiveProcessorCount(group); |
| for (i = 0; i < num; i++) { |
| KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); |
| } |
| } |
| } else |
| |
| #endif /* KMP_GROUP_AFFINITY */ |
| |
| { |
| int proc; |
| for (proc = 0; proc < __kmp_xproc; proc++) { |
| KMP_CPU_SET(proc, mask); |
| } |
| } |
| } |
| |
| // When sorting by labels, __kmp_affinity_assign_child_nums() must first be |
| // called to renumber the labels from [0..n] and place them into the child_num |
| // vector of the address object. This is done in case the labels used for |
| // the children at one node of the hierarchy differ from those used for |
| // another node at the same level. Example: suppose the machine has 2 nodes |
| // with 2 packages each. The first node contains packages 601 and 602, and |
| // second node contains packages 603 and 604. If we try to sort the table |
| // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 |
| // because we are paying attention to the labels themselves, not the ordinal |
| // child numbers. By using the child numbers in the sort, the result is |
| // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. |
| static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, |
| int numAddrs) { |
| KMP_DEBUG_ASSERT(numAddrs > 0); |
| int depth = address2os->first.depth; |
| unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| int labCt; |
| for (labCt = 0; labCt < depth; labCt++) { |
| address2os[0].first.childNums[labCt] = counts[labCt] = 0; |
| lastLabel[labCt] = address2os[0].first.labels[labCt]; |
| } |
| int i; |
| for (i = 1; i < numAddrs; i++) { |
| for (labCt = 0; labCt < depth; labCt++) { |
| if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { |
| int labCt2; |
| for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { |
| counts[labCt2] = 0; |
| lastLabel[labCt2] = address2os[i].first.labels[labCt2]; |
| } |
| counts[labCt]++; |
| lastLabel[labCt] = address2os[i].first.labels[labCt]; |
| break; |
| } |
| } |
| for (labCt = 0; labCt < depth; labCt++) { |
| address2os[i].first.childNums[labCt] = counts[labCt]; |
| } |
| for (; labCt < (int)Address::maxDepth; labCt++) { |
| address2os[i].first.childNums[labCt] = 0; |
| } |
| } |
| __kmp_free(lastLabel); |
| __kmp_free(counts); |
| } |
| |
| // All of the __kmp_affinity_create_*_map() routines should set |
| // __kmp_affinity_masks to a vector of affinity mask objects of length |
| // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return |
| // the number of levels in the machine topology tree (zero if |
| // __kmp_affinity_type == affinity_none). |
| // |
| // All of the __kmp_affinity_create_*_map() routines should set |
| // *__kmp_affin_fullMask to the affinity mask for the initialization thread. |
| // They need to save and restore the mask, and it could be needed later, so |
| // saving it is just an optimization to avoid calling kmp_get_system_affinity() |
| // again. |
| kmp_affin_mask_t *__kmp_affin_fullMask = NULL; |
| |
| static int nCoresPerPkg, nPackages; |
| static int __kmp_nThreadsPerCore; |
| #ifndef KMP_DFLT_NTH_CORES |
| static int __kmp_ncores; |
| #endif |
| static int *__kmp_pu_os_idx = NULL; |
| |
| // __kmp_affinity_uniform_topology() doesn't work when called from |
| // places which support arbitrarily many levels in the machine topology |
| // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() |
| // __kmp_affinity_create_x2apicid_map(). |
| inline static bool __kmp_affinity_uniform_topology() { |
| return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); |
| } |
| |
| // Print out the detailed machine topology map, i.e. the physical locations |
| // of each OS proc. |
| static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, |
| int depth, int pkgLevel, |
| int coreLevel, int threadLevel) { |
| int proc; |
| |
| KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); |
| for (proc = 0; proc < len; proc++) { |
| int level; |
| kmp_str_buf_t buf; |
| __kmp_str_buf_init(&buf); |
| for (level = 0; level < depth; level++) { |
| if (level == threadLevel) { |
| __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); |
| } else if (level == coreLevel) { |
| __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); |
| } else if (level == pkgLevel) { |
| __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); |
| } else if (level > pkgLevel) { |
| __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), |
| level - pkgLevel - 1); |
| } else { |
| __kmp_str_buf_print(&buf, "L%d ", level); |
| } |
| __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); |
| } |
| KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, |
| buf.str); |
| __kmp_str_buf_free(&buf); |
| } |
| } |
| |
| #if KMP_USE_HWLOC |
| |
| static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, |
| int depth, int *levels) { |
| int proc; |
| kmp_str_buf_t buf; |
| __kmp_str_buf_init(&buf); |
| KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); |
| for (proc = 0; proc < len; proc++) { |
| __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), |
| addrP[proc].first.labels[0]); |
| if (depth > 1) { |
| int level = 1; // iterate over levels |
| int label = 1; // iterate over labels |
| if (__kmp_numa_detected) |
| // node level follows package |
| if (levels[level++] > 0) |
| __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), |
| addrP[proc].first.labels[label++]); |
| if (__kmp_tile_depth > 0) |
| // tile level follows node if any, or package |
| if (levels[level++] > 0) |
| __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), |
| addrP[proc].first.labels[label++]); |
| if (levels[level++] > 0) |
| // core level follows |
| __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), |
| addrP[proc].first.labels[label++]); |
| if (levels[level++] > 0) |
| // thread level is the latest |
| __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), |
| addrP[proc].first.labels[label++]); |
| KMP_DEBUG_ASSERT(label == depth); |
| } |
| KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); |
| __kmp_str_buf_clear(&buf); |
| } |
| __kmp_str_buf_free(&buf); |
| } |
| |
| static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; |
| |
| // This function removes the topology levels that are radix 1 and don't offer |
| // further information about the topology. The most common example is when you |
| // have one thread context per core, we don't want the extra thread context |
| // level if it offers no unique labels. So they are removed. |
| // return value: the new depth of address2os |
| static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, |
| int depth, int *levels) { |
| int level; |
| int i; |
| int radix1_detected; |
| int new_depth = depth; |
| for (level = depth - 1; level > 0; --level) { |
| // Detect if this level is radix 1 |
| radix1_detected = 1; |
| for (i = 1; i < nTh; ++i) { |
| if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { |
| // There are differing label values for this level so it stays |
| radix1_detected = 0; |
| break; |
| } |
| } |
| if (!radix1_detected) |
| continue; |
| // Radix 1 was detected |
| --new_depth; |
| levels[level] = -1; // mark level as not present in address2os array |
| if (level == new_depth) { |
| // "turn off" deepest level, just decrement the depth that removes |
| // the level from address2os array |
| for (i = 0; i < nTh; ++i) { |
| addrP[i].first.depth--; |
| } |
| } else { |
| // For other levels, we move labels over and also reduce the depth |
| int j; |
| for (j = level; j < new_depth; ++j) { |
| for (i = 0; i < nTh; ++i) { |
| addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; |
| addrP[i].first.depth--; |
| } |
| levels[j + 1] -= 1; |
| } |
| } |
| } |
| return new_depth; |
| } |
| |
| // Returns the number of objects of type 'type' below 'obj' within the topology |
| // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is |
| // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET |
| // object. |
| static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, |
| hwloc_obj_type_t type) { |
| int retval = 0; |
| hwloc_obj_t first; |
| for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, |
| obj->logical_index, type, 0); |
| first != NULL && |
| hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == |
| obj; |
| first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, |
| first)) { |
| ++retval; |
| } |
| return retval; |
| } |
| |
| static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, |
| hwloc_obj_t o, |
| kmp_hwloc_depth_t depth, |
| hwloc_obj_t *f) { |
| if (o->depth == depth) { |
| if (*f == NULL) |
| *f = o; // output first descendant found |
| return 1; |
| } |
| int sum = 0; |
| for (unsigned i = 0; i < o->arity; i++) |
| sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); |
| return sum; // will be 0 if no one found (as PU arity is 0) |
| } |
| |
| static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, |
| hwloc_obj_type_t type, |
| hwloc_obj_t *f) { |
| if (!hwloc_compare_types(o->type, type)) { |
| if (*f == NULL) |
| *f = o; // output first descendant found |
| return 1; |
| } |
| int sum = 0; |
| for (unsigned i = 0; i < o->arity; i++) |
| sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); |
| return sum; // will be 0 if no one found (as PU arity is 0) |
| } |
| |
| static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, |
| int &nActiveThreads, |
| int &num_active_cores, |
| hwloc_obj_t obj, int depth, |
| int *labels) { |
| hwloc_obj_t core = NULL; |
| hwloc_topology_t &tp = __kmp_hwloc_topology; |
| int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); |
| for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { |
| hwloc_obj_t pu = NULL; |
| KMP_DEBUG_ASSERT(core != NULL); |
| int num_active_threads = 0; |
| int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); |
| // int NT = core->arity; pu = core->first_child; // faster? |
| for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { |
| KMP_DEBUG_ASSERT(pu != NULL); |
| if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) |
| continue; // skip inactive (inaccessible) unit |
| Address addr(depth + 2); |
| KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", |
| obj->os_index, obj->logical_index, core->os_index, |
| core->logical_index, pu->os_index, pu->logical_index)); |
| for (int i = 0; i < depth; ++i) |
| addr.labels[i] = labels[i]; // package, etc. |
| addr.labels[depth] = core_id; // core |
| addr.labels[depth + 1] = pu_id; // pu |
| addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); |
| __kmp_pu_os_idx[nActiveThreads] = pu->os_index; |
| nActiveThreads++; |
| ++num_active_threads; // count active threads per core |
| } |
| if (num_active_threads) { // were there any active threads on the core? |
| ++__kmp_ncores; // count total active cores |
| ++num_active_cores; // count active cores per socket |
| if (num_active_threads > __kmp_nThreadsPerCore) |
| __kmp_nThreadsPerCore = num_active_threads; // calc maximum |
| } |
| } |
| return 0; |
| } |
| |
| // Check if NUMA node detected below the package, |
| // and if tile object is detected and return its depth |
| static int __kmp_hwloc_check_numa() { |
| hwloc_topology_t &tp = __kmp_hwloc_topology; |
| hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) |
| int depth, l2cache_depth, package_depth; |
| |
| // Get some PU |
| hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); |
| if (hT == NULL) // something has gone wrong |
| return 1; |
| |
| // check NUMA node below PACKAGE |
| hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); |
| hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); |
| KMP_DEBUG_ASSERT(hS != NULL); |
| if (hN != NULL && hN->depth > hS->depth) { |
| __kmp_numa_detected = TRUE; // socket includes node(s) |
| if (__kmp_affinity_gran == affinity_gran_node) { |
| __kmp_affinity_gran = affinity_gran_numa; |
| } |
| } |
| |
| package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE); |
| l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); |
| // check tile, get object by depth because of multiple caches possible |
| depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth; |
| hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); |
| hC = NULL; // not used, but reset it here just in case |
| if (hL != NULL && |
| __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) |
| __kmp_tile_depth = depth; // tile consists of multiple cores |
| return 0; |
| } |
| |
| static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, |
| kmp_i18n_id_t *const msg_id) { |
| hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // Save the affinity mask for the current thread. |
| kmp_affin_mask_t *oldMask; |
| KMP_CPU_ALLOC(oldMask); |
| __kmp_get_system_affinity(oldMask, TRUE); |
| __kmp_hwloc_check_numa(); |
| |
| if (!KMP_AFFINITY_CAPABLE()) { |
| // Hack to try and infer the machine topology using only the data |
| // available from cpuid on the current thread, and __kmp_xproc. |
| KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| |
| nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( |
| hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); |
| __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( |
| hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); |
| __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (__kmp_affinity_uniform_topology()) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| int depth = 3; |
| int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread |
| int labels[3] = {0}; // package [,node] [,tile] - head of lables array |
| if (__kmp_numa_detected) |
| ++depth; |
| if (__kmp_tile_depth) |
| ++depth; |
| |
| // Allocate the data structure to be returned. |
| AddrUnsPair *retval = |
| (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); |
| KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); |
| __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); |
| |
| // When affinity is off, this routine will still be called to set |
| // __kmp_ncores, as well as __kmp_nThreadsPerCore, |
| // nCoresPerPkg, & nPackages. Make sure all these vars are set |
| // correctly, and return if affinity is not enabled. |
| |
| hwloc_obj_t socket, node, tile; |
| int nActiveThreads = 0; |
| int socket_id = 0; |
| // re-calculate globals to count only accessible resources |
| __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; |
| nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; |
| for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; |
| socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), |
| socket_id++) { |
| labels[0] = socket_id; |
| if (__kmp_numa_detected) { |
| int NN; |
| int n_active_nodes = 0; |
| node = NULL; |
| NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, |
| &node); |
| for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { |
| labels[1] = node_id; |
| if (__kmp_tile_depth) { |
| // NUMA + tiles |
| int NT; |
| int n_active_tiles = 0; |
| tile = NULL; |
| NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, |
| &tile); |
| for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { |
| labels[2] = tl_id; |
| int n_active_cores = 0; |
| __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, |
| n_active_cores, tile, 3, labels); |
| if (n_active_cores) { // were there any active cores on the socket? |
| ++n_active_tiles; // count active tiles per node |
| if (n_active_cores > nCorePerTile) |
| nCorePerTile = n_active_cores; // calc maximum |
| } |
| } |
| if (n_active_tiles) { // were there any active tiles on the socket? |
| ++n_active_nodes; // count active nodes per package |
| if (n_active_tiles > nTilePerNode) |
| nTilePerNode = n_active_tiles; // calc maximum |
| } |
| } else { |
| // NUMA, no tiles |
| int n_active_cores = 0; |
| __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, |
| n_active_cores, node, 2, labels); |
| if (n_active_cores) { // were there any active cores on the socket? |
| ++n_active_nodes; // count active nodes per package |
| if (n_active_cores > nCorePerNode) |
| nCorePerNode = n_active_cores; // calc maximum |
| } |
| } |
| } |
| if (n_active_nodes) { // were there any active nodes on the socket? |
| ++nPackages; // count total active packages |
| if (n_active_nodes > nNodePerPkg) |
| nNodePerPkg = n_active_nodes; // calc maximum |
| } |
| } else { |
| if (__kmp_tile_depth) { |
| // no NUMA, tiles |
| int NT; |
| int n_active_tiles = 0; |
| tile = NULL; |
| NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, |
| &tile); |
| for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { |
| labels[1] = tl_id; |
| int n_active_cores = 0; |
| __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, |
| n_active_cores, tile, 2, labels); |
| if (n_active_cores) { // were there any active cores on the socket? |
| ++n_active_tiles; // count active tiles per package |
| if (n_active_cores > nCorePerTile) |
| nCorePerTile = n_active_cores; // calc maximum |
| } |
| } |
| if (n_active_tiles) { // were there any active tiles on the socket? |
| ++nPackages; // count total active packages |
| if (n_active_tiles > nTilePerPkg) |
| nTilePerPkg = n_active_tiles; // calc maximum |
| } |
| } else { |
| // no NUMA, no tiles |
| int n_active_cores = 0; |
| __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, |
| socket, 1, labels); |
| if (n_active_cores) { // were there any active cores on the socket? |
| ++nPackages; // count total active packages |
| if (n_active_cores > nCoresPerPkg) |
| nCoresPerPkg = n_active_cores; // calc maximum |
| } |
| } |
| } |
| } |
| |
| // If there's only one thread context to bind to, return now. |
| KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); |
| KMP_ASSERT(nActiveThreads > 0); |
| if (nActiveThreads == 1) { |
| __kmp_ncores = nPackages = 1; |
| __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| if (__kmp_affinity_verbose) { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| |
| KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(retval); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| // Form an Address object which only includes the package level. |
| Address addr(1); |
| addr.labels[0] = retval[0].first.labels[0]; |
| retval[0].first = addr; |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| __kmp_affinity_gran_levels = 0; |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); |
| } |
| |
| *address2os = retval; |
| KMP_CPU_FREE(oldMask); |
| return 1; |
| } |
| |
| // Sort the table by physical Id. |
| qsort(retval, nActiveThreads, sizeof(*retval), |
| __kmp_affinity_cmp_Address_labels); |
| |
| // Check to see if the machine topology is uniform |
| int nPUs = nPackages * __kmp_nThreadsPerCore; |
| if (__kmp_numa_detected) { |
| if (__kmp_tile_depth) { // NUMA + tiles |
| nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); |
| } else { // NUMA, no tiles |
| nPUs *= (nNodePerPkg * nCorePerNode); |
| } |
| } else { |
| if (__kmp_tile_depth) { // no NUMA, tiles |
| nPUs *= (nTilePerPkg * nCorePerTile); |
| } else { // no NUMA, no tiles |
| nPUs *= nCoresPerPkg; |
| } |
| } |
| unsigned uniform = (nPUs == nActiveThreads); |
| |
| // Print the machine topology summary. |
| if (__kmp_affinity_verbose) { |
| char mask[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (uniform) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| if (__kmp_numa_detected) { |
| if (__kmp_tile_depth) { // NUMA + tiles |
| KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, |
| nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, |
| __kmp_ncores); |
| } else { // NUMA, no tiles |
| KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, |
| nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); |
| nPUs *= (nNodePerPkg * nCorePerNode); |
| } |
| } else { |
| if (__kmp_tile_depth) { // no NUMA, tiles |
| KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, |
| nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); |
| } else { // no NUMA, no tiles |
| kmp_str_buf_t buf; |
| __kmp_str_buf_init(&buf); |
| __kmp_str_buf_print(&buf, "%d", nPackages); |
| KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| __kmp_str_buf_free(&buf); |
| } |
| } |
| } |
| |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(retval); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| int depth_full = depth; // number of levels before compressing |
| // Find any levels with radiix 1, and remove them from the map |
| // (except for the package level). |
| depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, |
| levels); |
| KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); |
| if (__kmp_affinity_gran_levels < 0) { |
| // Set the granularity level based on what levels are modeled |
| // in the machine topology map. |
| __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) |
| if (__kmp_affinity_gran > affinity_gran_thread) { |
| for (int i = 1; i <= depth_full; ++i) { |
| if (__kmp_affinity_gran <= i) // only count deeper levels |
| break; |
| if (levels[depth_full - i] > 0) |
| __kmp_affinity_gran_levels++; |
| } |
| } |
| if (__kmp_affinity_gran > affinity_gran_package) |
| __kmp_affinity_gran_levels++; // e.g. granularity = group |
| } |
| |
| if (__kmp_affinity_verbose) |
| __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); |
| |
| KMP_CPU_FREE(oldMask); |
| *address2os = retval; |
| return depth; |
| } |
| #endif // KMP_USE_HWLOC |
| |
| // If we don't know how to retrieve the machine's processor topology, or |
| // encounter an error in doing so, this routine is called to form a "flat" |
| // mapping of os thread id's <-> processor id's. |
| static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, |
| kmp_i18n_id_t *const msg_id) { |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // Even if __kmp_affinity_type == affinity_none, this routine might still |
| // called to set __kmp_ncores, as well as |
| // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| if (!KMP_AFFINITY_CAPABLE()) { |
| KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| __kmp_ncores = nPackages = __kmp_xproc; |
| __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| return 0; |
| } |
| |
| // When affinity is off, this routine will still be called to set |
| // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| // Make sure all these vars are set correctly, and return now if affinity is |
| // not enabled. |
| __kmp_ncores = nPackages = __kmp_avail_proc; |
| __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| if (__kmp_affinity_verbose) { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| __kmp_affin_fullMask); |
| |
| KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); |
| __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); |
| if (__kmp_affinity_type == affinity_none) { |
| int avail_ct = 0; |
| int i; |
| KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) |
| continue; |
| __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat |
| } |
| return 0; |
| } |
| |
| // Contruct the data structure to be returned. |
| *address2os = |
| (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); |
| int avail_ct = 0; |
| int i; |
| KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| // Skip this proc if it is not included in the machine model. |
| if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| continue; |
| } |
| __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat |
| Address addr(1); |
| addr.labels[0] = i; |
| (*address2os)[avail_ct++] = AddrUnsPair(addr, i); |
| } |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); |
| } |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| // Only the package level is modeled in the machine topology map, |
| // so the #levels of granularity is either 0 or 1. |
| if (__kmp_affinity_gran > affinity_gran_package) { |
| __kmp_affinity_gran_levels = 1; |
| } else { |
| __kmp_affinity_gran_levels = 0; |
| } |
| } |
| return 1; |
| } |
| |
| #if KMP_GROUP_AFFINITY |
| |
| // If multiple Windows* OS processor groups exist, we can create a 2-level |
| // topology map with the groups at level 0 and the individual procs at level 1. |
| // This facilitates letting the threads float among all procs in a group, |
| // if granularity=group (the default when there are multiple groups). |
| static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, |
| kmp_i18n_id_t *const msg_id) { |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // If we aren't affinity capable, then return now. |
| // The flat mapping will be used. |
| if (!KMP_AFFINITY_CAPABLE()) { |
| // FIXME set *msg_id |
| return -1; |
| } |
| |
| // Contruct the data structure to be returned. |
| *address2os = |
| (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); |
| KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); |
| __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); |
| int avail_ct = 0; |
| int i; |
| KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| // Skip this proc if it is not included in the machine model. |
| if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| continue; |
| } |
| __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat |
| Address addr(2); |
| addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); |
| addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); |
| (*address2os)[avail_ct++] = AddrUnsPair(addr, i); |
| |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], |
| addr.labels[1]); |
| } |
| } |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| if (__kmp_affinity_gran == affinity_gran_group) { |
| __kmp_affinity_gran_levels = 1; |
| } else if ((__kmp_affinity_gran == affinity_gran_fine) || |
| (__kmp_affinity_gran == affinity_gran_thread)) { |
| __kmp_affinity_gran_levels = 0; |
| } else { |
| const char *gran_str = NULL; |
| if (__kmp_affinity_gran == affinity_gran_core) { |
| gran_str = "core"; |
| } else if (__kmp_affinity_gran == affinity_gran_package) { |
| gran_str = "package"; |
| } else if (__kmp_affinity_gran == affinity_gran_node) { |
| gran_str = "node"; |
| } else { |
| KMP_ASSERT(0); |
| } |
| |
| // Warning: can't use affinity granularity \"gran\" with group topology |
| // method, using "thread" |
| __kmp_affinity_gran_levels = 0; |
| } |
| } |
| return 2; |
| } |
| |
| #endif /* KMP_GROUP_AFFINITY */ |
| |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| |
| static int __kmp_cpuid_mask_width(int count) { |
| int r = 0; |
| |
| while ((1 << r) < count) |
| ++r; |
| return r; |
| } |
| |
| class apicThreadInfo { |
| public: |
| unsigned osId; // param to __kmp_affinity_bind_thread |
| unsigned apicId; // from cpuid after binding |
| unsigned maxCoresPerPkg; // "" |
| unsigned maxThreadsPerPkg; // "" |
| unsigned pkgId; // inferred from above values |
| unsigned coreId; // "" |
| unsigned threadId; // "" |
| }; |
| |
| static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, |
| const void *b) { |
| const apicThreadInfo *aa = (const apicThreadInfo *)a; |
| const apicThreadInfo *bb = (const apicThreadInfo *)b; |
| if (aa->pkgId < bb->pkgId) |
| return -1; |
| if (aa->pkgId > bb->pkgId) |
| return 1; |
| if (aa->coreId < bb->coreId) |
| return -1; |
| if (aa->coreId > bb->coreId) |
| return 1; |
| if (aa->threadId < bb->threadId) |
| return -1; |
| if (aa->threadId > bb->threadId) |
| return 1; |
| return 0; |
| } |
| |
| // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use |
| // an algorithm which cycles through the available os threads, setting |
| // the current thread's affinity mask to that thread, and then retrieves |
| // the Apic Id for each thread context using the cpuid instruction. |
| static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, |
| kmp_i18n_id_t *const msg_id) { |
| kmp_cpuid buf; |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // Check if cpuid leaf 4 is supported. |
| __kmp_x86_cpuid(0, 0, &buf); |
| if (buf.eax < 4) { |
| *msg_id = kmp_i18n_str_NoLeaf4Support; |
| return -1; |
| } |
| |
| // The algorithm used starts by setting the affinity to each available thread |
| // and retrieving info from the cpuid instruction, so if we are not capable of |
| // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we |
| // need to do something else - use the defaults that we calculated from |
| // issuing cpuid without binding to each proc. |
| if (!KMP_AFFINITY_CAPABLE()) { |
| // Hack to try and infer the machine topology using only the data |
| // available from cpuid on the current thread, and __kmp_xproc. |
| KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| |
| // Get an upper bound on the number of threads per package using cpuid(1). |
| // On some OS/chps combinations where HT is supported by the chip but is |
| // disabled, this value will be 2 on a single core chip. Usually, it will be |
| // 2 if HT is enabled and 1 if HT is disabled. |
| __kmp_x86_cpuid(1, 0, &buf); |
| int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| if (maxThreadsPerPkg == 0) { |
| maxThreadsPerPkg = 1; |
| } |
| |
| // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| // value. |
| // |
| // The author of cpu_count.cpp treated this only an upper bound on the |
| // number of cores, but I haven't seen any cases where it was greater than |
| // the actual number of cores, so we will treat it as exact in this block of |
| // code. |
| // |
| // First, we need to check if cpuid(4) is supported on this chip. To see if |
| // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or |
| // greater. |
| __kmp_x86_cpuid(0, 0, &buf); |
| if (buf.eax >= 4) { |
| __kmp_x86_cpuid(4, 0, &buf); |
| nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| } else { |
| nCoresPerPkg = 1; |
| } |
| |
| // There is no way to reliably tell if HT is enabled without issuing the |
| // cpuid instruction from every thread, can correlating the cpuid info, so |
| // if the machine is not affinity capable, we assume that HT is off. We have |
| // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine |
| // does not support HT. |
| // |
| // - Older OSes are usually found on machines with older chips, which do not |
| // support HT. |
| // - The performance penalty for mistakenly identifying a machine as HT when |
| // it isn't (which results in blocktime being incorrecly set to 0) is |
| // greater than the penalty when for mistakenly identifying a machine as |
| // being 1 thread/core when it is really HT enabled (which results in |
| // blocktime being incorrectly set to a positive value). |
| __kmp_ncores = __kmp_xproc; |
| nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| __kmp_nThreadsPerCore = 1; |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (__kmp_affinity_uniform_topology()) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| return 0; |
| } |
| |
| // From here on, we can assume that it is safe to call |
| // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| // __kmp_affinity_type = affinity_none. |
| |
| // Save the affinity mask for the current thread. |
| kmp_affin_mask_t *oldMask; |
| KMP_CPU_ALLOC(oldMask); |
| KMP_ASSERT(oldMask != NULL); |
| __kmp_get_system_affinity(oldMask, TRUE); |
| |
| // Run through each of the available contexts, binding the current thread |
| // to it, and obtaining the pertinent information using the cpuid instr. |
| // |
| // The relevant information is: |
| // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context |
| // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. |
| // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value |
| // of this field determines the width of the core# + thread# fields in the |
| // Apic Id. It is also an upper bound on the number of threads per |
| // package, but it has been verified that situations happen were it is not |
| // exact. In particular, on certain OS/chip combinations where Intel(R) |
| // Hyper-Threading Technology is supported by the chip but has been |
| // disabled, the value of this field will be 2 (for a single core chip). |
| // On other OS/chip combinations supporting Intel(R) Hyper-Threading |
| // Technology, the value of this field will be 1 when Intel(R) |
| // Hyper-Threading Technology is disabled and 2 when it is enabled. |
| // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value |
| // of this field (+1) determines the width of the core# field in the Apic |
| // Id. The comments in "cpucount.cpp" say that this value is an upper |
| // bound, but the IA-32 architecture manual says that it is exactly the |
| // number of cores per package, and I haven't seen any case where it |
| // wasn't. |
| // |
| // From this information, deduce the package Id, core Id, and thread Id, |
| // and set the corresponding fields in the apicThreadInfo struct. |
| unsigned i; |
| apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( |
| __kmp_avail_proc * sizeof(apicThreadInfo)); |
| unsigned nApics = 0; |
| KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { |
| // Skip this proc if it is not included in the machine model. |
| if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { |
| continue; |
| } |
| KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); |
| |
| __kmp_affinity_dispatch->bind_thread(i); |
| threadInfo[nApics].osId = i; |
| |
| // The apic id and max threads per pkg come from cpuid(1). |
| __kmp_x86_cpuid(1, 0, &buf); |
| if (((buf.edx >> 9) & 1) == 0) { |
| __kmp_set_system_affinity(oldMask, TRUE); |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_ApicNotPresent; |
| return -1; |
| } |
| threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; |
| threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| if (threadInfo[nApics].maxThreadsPerPkg == 0) { |
| threadInfo[nApics].maxThreadsPerPkg = 1; |
| } |
| |
| // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| // value. |
| // |
| // First, we need to check if cpuid(4) is supported on this chip. To see if |
| // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n |
| // or greater. |
| __kmp_x86_cpuid(0, 0, &buf); |
| if (buf.eax >= 4) { |
| __kmp_x86_cpuid(4, 0, &buf); |
| threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| } else { |
| threadInfo[nApics].maxCoresPerPkg = 1; |
| } |
| |
| // Infer the pkgId / coreId / threadId using only the info obtained locally. |
| int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); |
| threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; |
| |
| int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); |
| int widthT = widthCT - widthC; |
| if (widthT < 0) { |
| // I've never seen this one happen, but I suppose it could, if the cpuid |
| // instruction on a chip was really screwed up. Make sure to restore the |
| // affinity mask before the tail call. |
| __kmp_set_system_affinity(oldMask, TRUE); |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| |
| int maskC = (1 << widthC) - 1; |
| threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; |
| |
| int maskT = (1 << widthT) - 1; |
| threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; |
| |
| nApics++; |
| } |
| |
| // We've collected all the info we need. |
| // Restore the old affinity mask for this thread. |
| __kmp_set_system_affinity(oldMask, TRUE); |
| |
| // If there's only one thread context to bind to, form an Address object |
| // with depth 1 and return immediately (or, if affinity is off, set |
| // address2os to NULL and return). |
| // |
| // If it is configured to omit the package level when there is only a single |
| // package, the logic at the end of this routine won't work if there is only |
| // a single thread - it would try to form an Address object with depth 0. |
| KMP_ASSERT(nApics > 0); |
| if (nApics == 1) { |
| __kmp_ncores = nPackages = 1; |
| __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| if (__kmp_affinity_verbose) { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| |
| KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); |
| Address addr(1); |
| addr.labels[0] = threadInfo[0].pkgId; |
| (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| __kmp_affinity_gran_levels = 0; |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); |
| } |
| |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| return 1; |
| } |
| |
| // Sort the threadInfo table by physical Id. |
| qsort(threadInfo, nApics, sizeof(*threadInfo), |
| __kmp_affinity_cmp_apicThreadInfo_phys_id); |
| |
| // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| // the chips on a system. Although coreId's are usually assigned |
| // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| // |
| // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| // total # packages) are at this point - we want to determine that now. We |
| // only have an upper bound on the first two figures. |
| // |
| // We also perform a consistency check at this point: the values returned by |
| // the cpuid instruction for any thread bound to a given package had better |
| // return the same info for maxThreadsPerPkg and maxCoresPerPkg. |
| nPackages = 1; |
| nCoresPerPkg = 1; |
| __kmp_nThreadsPerCore = 1; |
| unsigned nCores = 1; |
| |
| unsigned pkgCt = 1; // to determine radii |
| unsigned lastPkgId = threadInfo[0].pkgId; |
| unsigned coreCt = 1; |
| unsigned lastCoreId = threadInfo[0].coreId; |
| unsigned threadCt = 1; |
| unsigned lastThreadId = threadInfo[0].threadId; |
| |
| // intra-pkg consist checks |
| unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; |
| unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; |
| |
| for (i = 1; i < nApics; i++) { |
| if (threadInfo[i].pkgId != lastPkgId) { |
| nCores++; |
| pkgCt++; |
| lastPkgId = threadInfo[i].pkgId; |
| if ((int)coreCt > nCoresPerPkg) |
| nCoresPerPkg = coreCt; |
| coreCt = 1; |
| lastCoreId = threadInfo[i].coreId; |
| if ((int)threadCt > __kmp_nThreadsPerCore) |
| __kmp_nThreadsPerCore = threadCt; |
| threadCt = 1; |
| lastThreadId = threadInfo[i].threadId; |
| |
| // This is a different package, so go on to the next iteration without |
| // doing any consistency checks. Reset the consistency check vars, though. |
| prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; |
| prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; |
| continue; |
| } |
| |
| if (threadInfo[i].coreId != lastCoreId) { |
| nCores++; |
| coreCt++; |
| lastCoreId = threadInfo[i].coreId; |
| if ((int)threadCt > __kmp_nThreadsPerCore) |
| __kmp_nThreadsPerCore = threadCt; |
| threadCt = 1; |
| lastThreadId = threadInfo[i].threadId; |
| } else if (threadInfo[i].threadId != lastThreadId) { |
| threadCt++; |
| lastThreadId = threadInfo[i].threadId; |
| } else { |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| return -1; |
| } |
| |
| // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg |
| // fields agree between all the threads bounds to a given package. |
| if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || |
| (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| return -1; |
| } |
| } |
| nPackages = pkgCt; |
| if ((int)coreCt > nCoresPerPkg) |
| nCoresPerPkg = coreCt; |
| if ((int)threadCt > __kmp_nThreadsPerCore) |
| __kmp_nThreadsPerCore = threadCt; |
| |
| // When affinity is off, this routine will still be called to set |
| // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| // Make sure all these vars are set correctly, and return now if affinity is |
| // not enabled. |
| __kmp_ncores = nCores; |
| if (__kmp_affinity_verbose) { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| |
| KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (__kmp_affinity_uniform_topology()) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); |
| KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); |
| __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); |
| for (i = 0; i < nApics; ++i) { |
| __kmp_pu_os_idx[i] = threadInfo[i].osId; |
| } |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| // Now that we've determined the number of packages, the number of cores per |
| // package, and the number of threads per core, we can construct the data |
| // structure that is to be returned. |
| int pkgLevel = 0; |
| int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; |
| int threadLevel = |
| (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); |
| unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); |
| |
| KMP_ASSERT(depth > 0); |
| *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); |
| |
| for (i = 0; i < nApics; ++i) { |
| Address addr(depth); |
| unsigned os = threadInfo[i].osId; |
| int d = 0; |
| |
| if (pkgLevel >= 0) { |
| addr.labels[d++] = threadInfo[i].pkgId; |
| } |
| if (coreLevel >= 0) { |
| addr.labels[d++] = threadInfo[i].coreId; |
| } |
| if (threadLevel >= 0) { |
| addr.labels[d++] = threadInfo[i].threadId; |
| } |
| (*address2os)[i] = AddrUnsPair(addr, os); |
| } |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| // Set the granularity level based on what levels are modeled in the machine |
| // topology map. |
| __kmp_affinity_gran_levels = 0; |
| if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { |
| __kmp_affinity_gran_levels++; |
| } |
| if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { |
| __kmp_affinity_gran_levels++; |
| } |
| if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { |
| __kmp_affinity_gran_levels++; |
| } |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, |
| coreLevel, threadLevel); |
| } |
| |
| __kmp_free(threadInfo); |
| KMP_CPU_FREE(oldMask); |
| return depth; |
| } |
| |
| // Intel(R) microarchitecture code name Nehalem, Dunnington and later |
| // architectures support a newer interface for specifying the x2APIC Ids, |
| // based on cpuid leaf 11. |
| static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, |
| kmp_i18n_id_t *const msg_id) { |
| kmp_cpuid buf; |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // Check to see if cpuid leaf 11 is supported. |
| __kmp_x86_cpuid(0, 0, &buf); |
| if (buf.eax < 11) { |
| *msg_id = kmp_i18n_str_NoLeaf11Support; |
| return -1; |
| } |
| __kmp_x86_cpuid(11, 0, &buf); |
| if (buf.ebx == 0) { |
| *msg_id = kmp_i18n_str_NoLeaf11Support; |
| return -1; |
| } |
| |
| // Find the number of levels in the machine topology. While we're at it, get |
| // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to |
| // get more accurate values later by explicitly counting them, but get |
| // reasonable defaults now, in case we return early. |
| int level; |
| int threadLevel = -1; |
| int coreLevel = -1; |
| int pkgLevel = -1; |
| __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| |
| for (level = 0;; level++) { |
| if (level > 31) { |
| // FIXME: Hack for DPD200163180 |
| // |
| // If level is big then something went wrong -> exiting |
| // |
| // There could actually be 32 valid levels in the machine topology, but so |
| // far, the only machine we have seen which does not exit this loop before |
| // iteration 32 has fubar x2APIC settings. |
| // |
| // For now, just reject this case based upon loop trip count. |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| __kmp_x86_cpuid(11, level, &buf); |
| if (buf.ebx == 0) { |
| if (pkgLevel < 0) { |
| // Will infer nPackages from __kmp_xproc |
| pkgLevel = level; |
| level++; |
| } |
| break; |
| } |
| int kind = (buf.ecx >> 8) & 0xff; |
| if (kind == 1) { |
| // SMT level |
| threadLevel = level; |
| coreLevel = -1; |
| pkgLevel = -1; |
| __kmp_nThreadsPerCore = buf.ebx & 0xffff; |
| if (__kmp_nThreadsPerCore == 0) { |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| } else if (kind == 2) { |
| // core level |
| coreLevel = level; |
| pkgLevel = -1; |
| nCoresPerPkg = buf.ebx & 0xffff; |
| if (nCoresPerPkg == 0) { |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| } else { |
| if (level <= 0) { |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| if (pkgLevel >= 0) { |
| continue; |
| } |
| pkgLevel = level; |
| nPackages = buf.ebx & 0xffff; |
| if (nPackages == 0) { |
| *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| return -1; |
| } |
| } |
| } |
| int depth = level; |
| |
| // In the above loop, "level" was counted from the finest level (usually |
| // thread) to the coarsest. The caller expects that we will place the labels |
| // in (*address2os)[].first.labels[] in the inverse order, so we need to |
| // invert the vars saying which level means what. |
| if (threadLevel >= 0) { |
| threadLevel = depth - threadLevel - 1; |
| } |
| if (coreLevel >= 0) { |
| coreLevel = depth - coreLevel - 1; |
| } |
| KMP_DEBUG_ASSERT(pkgLevel >= 0); |
| pkgLevel = depth - pkgLevel - 1; |
| |
| // The algorithm used starts by setting the affinity to each available thread |
| // and retrieving info from the cpuid instruction, so if we are not capable of |
| // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we |
| // need to do something else - use the defaults that we calculated from |
| // issuing cpuid without binding to each proc. |
| if (!KMP_AFFINITY_CAPABLE()) { |
| // Hack to try and infer the machine topology using only the data |
| // available from cpuid on the current thread, and __kmp_xproc. |
| KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| |
| __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| if (__kmp_affinity_verbose) { |
| KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (__kmp_affinity_uniform_topology()) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| return 0; |
| } |
| |
| // From here on, we can assume that it is safe to call |
| // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| // __kmp_affinity_type = affinity_none. |
| |
| // Save the affinity mask for the current thread. |
| kmp_affin_mask_t *oldMask; |
| KMP_CPU_ALLOC(oldMask); |
| __kmp_get_system_affinity(oldMask, TRUE); |
| |
| // Allocate the data structure to be returned. |
| AddrUnsPair *retval = |
| (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); |
| |
| // Run through each of the available contexts, binding the current thread |
| // to it, and obtaining the pertinent information using the cpuid instr. |
| unsigned int proc; |
| int nApics = 0; |
| KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { |
| // Skip this proc if it is not included in the machine model. |
| if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { |
| continue; |
| } |
| KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); |
| |
| __kmp_affinity_dispatch->bind_thread(proc); |
| |
| // Extract labels for each level in the machine topology map from Apic ID. |
| Address addr(depth); |
| int prev_shift = 0; |
| |
| for (level = 0; level < depth; level++) { |
| __kmp_x86_cpuid(11, level, &buf); |
| unsigned apicId = buf.edx; |
| if (buf.ebx == 0) { |
| if (level != depth - 1) { |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| return -1; |
| } |
| addr.labels[depth - level - 1] = apicId >> prev_shift; |
| level++; |
| break; |
| } |
| int shift = buf.eax & 0x1f; |
| int mask = (1 << shift) - 1; |
| addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; |
| prev_shift = shift; |
| } |
| if (level != depth) { |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| return -1; |
| } |
| |
| retval[nApics] = AddrUnsPair(addr, proc); |
| nApics++; |
| } |
| |
| // We've collected all the info we need. |
| // Restore the old affinity mask for this thread. |
| __kmp_set_system_affinity(oldMask, TRUE); |
| |
| // If there's only one thread context to bind to, return now. |
| KMP_ASSERT(nApics > 0); |
| if (nApics == 1) { |
| __kmp_ncores = nPackages = 1; |
| __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| if (__kmp_affinity_verbose) { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| |
| KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| } |
| |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(retval); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| // Form an Address object which only includes the package level. |
| Address addr(1); |
| addr.labels[0] = retval[0].first.labels[pkgLevel]; |
| retval[0].first = addr; |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| __kmp_affinity_gran_levels = 0; |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); |
| } |
| |
| *address2os = retval; |
| KMP_CPU_FREE(oldMask); |
| return 1; |
| } |
| |
| // Sort the table by physical Id. |
| qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); |
| |
| // Find the radix at each of the levels. |
| unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| for (level = 0; level < depth; level++) { |
| totals[level] = 1; |
| maxCt[level] = 1; |
| counts[level] = 1; |
| last[level] = retval[0].first.labels[level]; |
| } |
| |
| // From here on, the iteration variable "level" runs from the finest level to |
| // the coarsest, i.e. we iterate forward through |
| // (*address2os)[].first.labels[] - in the previous loops, we iterated |
| // backwards. |
| for (proc = 1; (int)proc < nApics; proc++) { |
| int level; |
| for (level = 0; level < depth; level++) { |
| if (retval[proc].first.labels[level] != last[level]) { |
| int j; |
| for (j = level + 1; j < depth; j++) { |
| totals[j]++; |
| counts[j] = 1; |
| // The line below causes printing incorrect topology information in |
| // case the max value for some level (maxCt[level]) is encountered |
| // earlier than some less value while going through the array. For |
| // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then |
| // maxCt[1] == 2 |
| // whereas it must be 4. |
| // TODO!!! Check if it can be commented safely |
| // maxCt[j] = 1; |
| last[j] = retval[proc].first.labels[j]; |
| } |
| totals[level]++; |
| counts[level]++; |
| if (counts[level] > maxCt[level]) { |
| maxCt[level] = counts[level]; |
| } |
| last[level] = retval[proc].first.labels[level]; |
| break; |
| } else if (level == depth - 1) { |
| __kmp_free(last); |
| __kmp_free(maxCt); |
| __kmp_free(counts); |
| __kmp_free(totals); |
| __kmp_free(retval); |
| KMP_CPU_FREE(oldMask); |
| *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; |
| return -1; |
| } |
| } |
| } |
| |
| // When affinity is off, this routine will still be called to set |
| // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| // Make sure all these vars are set correctly, and return if affinity is not |
| // enabled. |
| if (threadLevel >= 0) { |
| __kmp_nThreadsPerCore = maxCt[threadLevel]; |
| } else { |
| __kmp_nThreadsPerCore = 1; |
| } |
| nPackages = totals[pkgLevel]; |
| |
| if (coreLevel >= 0) { |
| __kmp_ncores = totals[coreLevel]; |
| nCoresPerPkg = maxCt[coreLevel]; |
| } else { |
| __kmp_ncores = nPackages; |
| nCoresPerPkg = 1; |
| } |
| |
| // Check to see if the machine topology is uniform |
| unsigned prod = maxCt[0]; |
| for (level = 1; level < depth; level++) { |
| prod *= maxCt[level]; |
| } |
| bool uniform = (prod == totals[level - 1]); |
| |
| // Print the machine topology summary. |
| if (__kmp_affinity_verbose) { |
| char mask[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| |
| KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (uniform) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| |
| kmp_str_buf_t buf; |
| __kmp_str_buf_init(&buf); |
| |
| __kmp_str_buf_print(&buf, "%d", totals[0]); |
| for (level = 1; level <= pkgLevel; level++) { |
| __kmp_str_buf_print(&buf, " x %d", maxCt[level]); |
| } |
| KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, |
| __kmp_nThreadsPerCore, __kmp_ncores); |
| |
| __kmp_str_buf_free(&buf); |
| } |
| KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); |
| KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); |
| __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); |
| for (proc = 0; (int)proc < nApics; ++proc) { |
| __kmp_pu_os_idx[proc] = retval[proc].second; |
| } |
| if (__kmp_affinity_type == affinity_none) { |
| __kmp_free(last); |
| __kmp_free(maxCt); |
| __kmp_free(counts); |
| __kmp_free(totals); |
| __kmp_free(retval); |
| KMP_CPU_FREE(oldMask); |
| return 0; |
| } |
| |
| // Find any levels with radiix 1, and remove them from the map |
| // (except for the package level). |
| int new_depth = 0; |
| for (level = 0; level < depth; level++) { |
| if ((maxCt[level] == 1) && (level != pkgLevel)) { |
| continue; |
| } |
| new_depth++; |
| } |
| |
| // If we are removing any levels, allocate a new vector to return, |
| // and copy the relevant information to it. |
| if (new_depth != depth) { |
| AddrUnsPair *new_retval = |
| (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); |
| for (proc = 0; (int)proc < nApics; proc++) { |
| Address addr(new_depth); |
| new_retval[proc] = AddrUnsPair(addr, retval[proc].second); |
| } |
| int new_level = 0; |
| int newPkgLevel = -1; |
| int newCoreLevel = -1; |
| int newThreadLevel = -1; |
| for (level = 0; level < depth; level++) { |
| if ((maxCt[level] == 1) && (level != pkgLevel)) { |
| // Remove this level. Never remove the package level |
| continue; |
| } |
| if (level == pkgLevel) { |
| newPkgLevel = new_level; |
| } |
| if (level == coreLevel) { |
| newCoreLevel = new_level; |
| } |
| if (level == threadLevel) { |
| newThreadLevel = new_level; |
| } |
| for (proc = 0; (int)proc < nApics; proc++) { |
| new_retval[proc].first.labels[new_level] = |
| retval[proc].first.labels[level]; |
| } |
| new_level++; |
| } |
| |
| __kmp_free(retval); |
| retval = new_retval; |
| depth = new_depth; |
| pkgLevel = newPkgLevel; |
| coreLevel = newCoreLevel; |
| threadLevel = newThreadLevel; |
| } |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| // Set the granularity level based on what levels are modeled |
| // in the machine topology map. |
| __kmp_affinity_gran_levels = 0; |
| if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { |
| __kmp_affinity_gran_levels++; |
| } |
| if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { |
| __kmp_affinity_gran_levels++; |
| } |
| if (__kmp_affinity_gran > affinity_gran_package) { |
| __kmp_affinity_gran_levels++; |
| } |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, |
| threadLevel); |
| } |
| |
| __kmp_free(last); |
| __kmp_free(maxCt); |
| __kmp_free(counts); |
| __kmp_free(totals); |
| KMP_CPU_FREE(oldMask); |
| *address2os = retval; |
| return depth; |
| } |
| |
| #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| |
| #define osIdIndex 0 |
| #define threadIdIndex 1 |
| #define coreIdIndex 2 |
| #define pkgIdIndex 3 |
| #define nodeIdIndex 4 |
| |
| typedef unsigned *ProcCpuInfo; |
| static unsigned maxIndex = pkgIdIndex; |
| |
| static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, |
| const void *b) { |
| unsigned i; |
| const unsigned *aa = *(unsigned *const *)a; |
| const unsigned *bb = *(unsigned *const *)b; |
| for (i = maxIndex;; i--) { |
| if (aa[i] < bb[i]) |
| return -1; |
| if (aa[i] > bb[i]) |
| return 1; |
| if (i == osIdIndex) |
| break; |
| } |
| return 0; |
| } |
| |
| #if KMP_USE_HIER_SCHED |
| // Set the array sizes for the hierarchy layers |
| static void __kmp_dispatch_set_hierarchy_values() { |
| // Set the maximum number of L1's to number of cores |
| // Set the maximum number of L2's to to either number of cores / 2 for |
| // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing |
| // Or the number of cores for Intel(R) Xeon(R) processors |
| // Set the maximum number of NUMA nodes and L3's to number of packages |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = |
| nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; |
| #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) |
| if (__kmp_mic_type >= mic3) |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; |
| else |
| #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; |
| __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; |
| // Set the number of threads per unit |
| // Number of hardware threads per L1/L2/L3/NUMA/LOOP |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = |
| __kmp_nThreadsPerCore; |
| #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) |
| if (__kmp_mic_type >= mic3) |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| 2 * __kmp_nThreadsPerCore; |
| else |
| #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| __kmp_nThreadsPerCore; |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = |
| nCoresPerPkg * __kmp_nThreadsPerCore; |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = |
| nCoresPerPkg * __kmp_nThreadsPerCore; |
| __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = |
| nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| } |
| |
| // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) |
| // i.e., this thread's L1 or this thread's L2, etc. |
| int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { |
| int index = type + 1; |
| int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; |
| KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); |
| if (type == kmp_hier_layer_e::LAYER_THREAD) |
| return tid; |
| else if (type == kmp_hier_layer_e::LAYER_LOOP) |
| return 0; |
| KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); |
| if (tid >= num_hw_threads) |
| tid = tid % num_hw_threads; |
| return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; |
| } |
| |
| // Return the number of t1's per t2 |
| int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { |
| int i1 = t1 + 1; |
| int i2 = t2 + 1; |
| KMP_DEBUG_ASSERT(i1 <= i2); |
| KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); |
| KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); |
| KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); |
| // (nthreads/t2) / (nthreads/t1) = t1 / t2 |
| return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; |
| } |
| #endif // KMP_USE_HIER_SCHED |
| |
| // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the |
| // affinity map. |
| static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, |
| int *line, |
| kmp_i18n_id_t *const msg_id, |
| FILE *f) { |
| *address2os = NULL; |
| *msg_id = kmp_i18n_null; |
| |
| // Scan of the file, and count the number of "processor" (osId) fields, |
| // and find the highest value of <n> for a node_<n> field. |
| char buf[256]; |
| unsigned num_records = 0; |
| while (!feof(f)) { |
| buf[sizeof(buf) - 1] = 1; |
| if (!fgets(buf, sizeof(buf), f)) { |
| // Read errors presumably because of EOF |
| break; |
| } |
| |
| char s1[] = "processor"; |
| if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| num_records++; |
| continue; |
| } |
| |
| // FIXME - this will match "node_<n> <garbage>" |
| unsigned level; |
| if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { |
| if (nodeIdIndex + level >= maxIndex) { |
| maxIndex = nodeIdIndex + level; |
| } |
| continue; |
| } |
| } |
| |
| // Check for empty file / no valid processor records, or too many. The number |
| // of records can't exceed the number of valid bits in the affinity mask. |
| if (num_records == 0) { |
| *line = 0; |
| *msg_id = kmp_i18n_str_NoProcRecords; |
| return -1; |
| } |
| if (num_records > (unsigned)__kmp_xproc) { |
| *line = 0; |
| *msg_id = kmp_i18n_str_TooManyProcRecords; |
| return -1; |
| } |
| |
| // Set the file pointer back to the begginning, so that we can scan the file |
| // again, this time performing a full parse of the data. Allocate a vector of |
| // ProcCpuInfo object, where we will place the data. Adding an extra element |
| // at the end allows us to remove a lot of extra checks for termination |
| // conditions. |
| if (fseek(f, 0, SEEK_SET) != 0) { |
| *line = 0; |
| *msg_id = kmp_i18n_str_CantRewindCpuinfo; |
| return -1; |
| } |
| |
| // Allocate the array of records to store the proc info in. The dummy |
| // element at the end makes the logic in filling them out easier to code. |
| unsigned **threadInfo = |
| (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); |
| unsigned i; |
| for (i = 0; i <= num_records; i++) { |
| threadInfo[i] = |
| (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| } |
| |
| #define CLEANUP_THREAD_INFO \ |
| for (i = 0; i <= num_records; i++) { \ |
| __kmp_free(threadInfo[i]); \ |
| } \ |
| __kmp_free(threadInfo); |
| |
| // A value of UINT_MAX means that we didn't find the field |
| unsigned __index; |
| |
| #define INIT_PROC_INFO(p) \ |
| for (__index = 0; __index <= maxIndex; __index++) { \ |
| (p)[__index] = UINT_MAX; \ |
| } |
| |
| for (i = 0; i <= num_records; i++) { |
| INIT_PROC_INFO(threadInfo[i]); |
| } |
| |
| unsigned num_avail = 0; |
| *line = 0; |
| while (!feof(f)) { |
| // Create an inner scoping level, so that all the goto targets at the end of |
| // the loop appear in an outer scoping level. This avoids warnings about |
| // jumping past an initialization to a target in the same block. |
| { |
| buf[sizeof(buf) - 1] = 1; |
| bool long_line = false; |
| if (!fgets(buf, sizeof(buf), f)) { |
| // Read errors presumably because of EOF |
| // If there is valid data in threadInfo[num_avail], then fake |
| // a blank line in ensure that the last address gets parsed. |
| bool valid = false; |
| for (i = 0; i <= maxIndex; i++) { |
| if (threadInfo[num_avail][i] != UINT_MAX) { |
| valid = true; |
| } |
| } |
| if (!valid) { |
| break; |
| } |
| buf[0] = 0; |
| } else if (!buf[sizeof(buf) - 1]) { |
| // The line is longer than the buffer. Set a flag and don't |
| // emit an error if we were going to ignore the line, anyway. |
| long_line = true; |
| |
| #define CHECK_LINE \ |
| if (long_line) { \ |
| CLEANUP_THREAD_INFO; \ |
| *msg_id = kmp_i18n_str_LongLineCpuinfo; \ |
| return -1; \ |
| } |
| } |
| (*line)++; |
| |
| char s1[] = "processor"; |
| if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| CHECK_LINE; |
| char *p = strchr(buf + sizeof(s1) - 1, ':'); |
| unsigned val; |
| if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) |
| goto no_val; |
| if (threadInfo[num_avail][osIdIndex] != UINT_MAX) |
| #if KMP_ARCH_AARCH64 |
| // Handle the old AArch64 /proc/cpuinfo layout differently, |
| // it contains all of the 'processor' entries listed in a |
| // single 'Processor' section, therefore the normal looking |
| // for duplicates in that section will always fail. |
| num_avail++; |
| #else |
| goto dup_field; |
| #endif |
| threadInfo[num_avail][osIdIndex] = val; |
| #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) |
| char path[256]; |
| KMP_SNPRINTF( |
| path, sizeof(path), |
| "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", |
| threadInfo[num_avail][osIdIndex]); |
| __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); |
| |
| KMP_SNPRINTF(path, sizeof(path), |
| "/sys/devices/system/cpu/cpu%u/topology/core_id", |
| threadInfo[num_avail][osIdIndex]); |
| __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); |
| continue; |
| #else |
| } |
| char s2[] = "physical id"; |
| if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { |
| CHECK_LINE; |
| char *p = strchr(buf + sizeof(s2) - 1, ':'); |
| unsigned val; |
| if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) |
| goto no_val; |
| if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) |
| goto dup_field; |
| threadInfo[num_avail][pkgIdIndex] = val; |
| continue; |
| } |
| char s3[] = "core id"; |
| if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { |
| CHECK_LINE; |
| char *p = strchr(buf + sizeof(s3) - 1, ':'); |
| unsigned val; |
| if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) |
| goto no_val; |
| if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) |
| goto dup_field; |
| threadInfo[num_avail][coreIdIndex] = val; |
| continue; |
| #endif // KMP_OS_LINUX && USE_SYSFS_INFO |
| } |
| char s4[] = "thread id"; |
| if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { |
| CHECK_LINE; |
| char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| unsigned val; |
| if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) |
| goto no_val; |
| if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) |
| goto dup_field; |
| threadInfo[num_avail][threadIdIndex] = val; |
| continue; |
| } |
| unsigned level; |
| if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { |
| CHECK_LINE; |
| char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| unsigned val; |
| if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) |
| goto no_val; |
| KMP_ASSERT(nodeIdIndex + level <= maxIndex); |
| if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) |
| goto dup_field; |
| threadInfo[num_avail][nodeIdIndex + level] = val; |
| continue; |
| } |
| |
| // We didn't recognize the leading token on the line. There are lots of |
| // leading tokens that we don't recognize - if the line isn't empty, go on |
| // to the next line. |
| if ((*buf != 0) && (*buf != '\n')) { |
| // If the line is longer than the buffer, read characters |
| // until we find a newline. |
| if (long_line) { |
| int ch; |
| while (((ch = fgetc(f)) != EOF) && (ch != '\n')) |
| ; |
| } |
| continue; |
| } |
| |
| // A newline has signalled the end of the processor record. |
| // Check that there aren't too many procs specified. |
| if ((int)num_avail == __kmp_xproc) { |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_TooManyEntries; |
| return -1; |
| } |
| |
| // Check for missing fields. The osId field must be there, and we |
| // currently require that the physical id field is specified, also. |
| if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_MissingProcField; |
| return -1; |
| } |
| if (threadInfo[0][pkgIdIndex] == UINT_MAX) { |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_MissingPhysicalIDField; |
| return -1; |
| } |
| |
| // Skip this proc if it is not included in the machine model. |
| if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], |
| __kmp_affin_fullMask)) { |
| INIT_PROC_INFO(threadInfo[num_avail]); |
| continue; |
| } |
| |
| // We have a successful parse of this proc's info. |
| // Increment the counter, and prepare for the next proc. |
| num_avail++; |
| KMP_ASSERT(num_avail <= num_records); |
| INIT_PROC_INFO(threadInfo[num_avail]); |
| } |
| continue; |
| |
| no_val: |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_MissingValCpuinfo; |
| return -1; |
| |
| dup_field: |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; |
| return -1; |
| } |
| *line = 0; |
| |
| #if KMP_MIC && REDUCE_TEAM_SIZE |
| unsigned teamSize = 0; |
| #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| |
| // check for num_records == __kmp_xproc ??? |
| |
| // If there's only one thread context to bind to, form an Address object with |
| // depth 1 and return immediately (or, if affinity is off, set address2os to |
| // NULL and return). |
| // |
| // If it is configured to omit the package level when there is only a single |
| // package, the logic at the end of this routine won't work if there is only a |
| // single thread - it would try to form an Address object with depth 0. |
| KMP_ASSERT(num_avail > 0); |
| KMP_ASSERT(num_avail <= num_records); |
| if (num_avail == 1) { |
| __kmp_ncores = 1; |
| __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| if (__kmp_affinity_verbose) { |
| if (!KMP_AFFINITY_CAPABLE()) { |
| KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| __kmp_affin_fullMask); |
| KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| } else { |
| KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| } |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } |
| int index; |
| kmp_str_buf_t buf; |
| __kmp_str_buf_init(&buf); |
| __kmp_str_buf_print(&buf, "1"); |
| for (index = maxIndex - 1; index > pkgIdIndex; index--) { |
| __kmp_str_buf_print(&buf, " x 1"); |
| } |
| KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); |
| __kmp_str_buf_free(&buf); |
| } |
| |
| if (__kmp_affinity_type == affinity_none) { |
| CLEANUP_THREAD_INFO; |
| return 0; |
| } |
| |
| *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); |
| Address addr(1); |
| addr.labels[0] = threadInfo[0][pkgIdIndex]; |
| (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); |
| |
| if (__kmp_affinity_gran_levels < 0) { |
| __kmp_affinity_gran_levels = 0; |
| } |
| |
| if (__kmp_affinity_verbose) { |
| __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); |
| } |
| |
| CLEANUP_THREAD_INFO; |
| return 1; |
| } |
| |
| // Sort the threadInfo table by physical Id. |
| qsort(threadInfo, num_avail, sizeof(*threadInfo), |
| __kmp_affinity_cmp_ProcCpuInfo_phys_id); |
| |
| // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| // the chips on a system. Although coreId's are usually assigned |
| // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| // |
| // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| // total # packages) are at this point - we want to determine that now. We |
| // only have an upper bound on the first two figures. |
| unsigned *counts = |
| (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| unsigned *maxCt = |
| (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| unsigned *totals = |
| (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| unsigned *lastId = |
| (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); |
| |
| bool assign_thread_ids = false; |
| unsigned threadIdCt; |
| unsigned index; |
| |
| restart_radix_check: |
| threadIdCt = 0; |
| |
| // Initialize the counter arrays with data from threadInfo[0]. |
| if (assign_thread_ids) { |
| if (threadInfo[0][threadIdIndex] == UINT_MAX) { |
| threadInfo[0][threadIdIndex] = threadIdCt++; |
| } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { |
| threadIdCt = threadInfo[0][threadIdIndex] + 1; |
| } |
| } |
| for (index = 0; index <= maxIndex; index++) { |
| counts[index] = 1; |
| maxCt[index] = 1; |
| totals[index] = 1; |
| lastId[index] = threadInfo[0][index]; |
| ; |
| } |
| |
| // Run through the rest of the OS procs. |
| for (i = 1; i < num_avail; i++) { |
| // Find the most significant index whose id differs from the id for the |
| // previous OS proc. |
| for (index = maxIndex; index >= threadIdIndex; index--) { |
| if (assign_thread_ids && (index == threadIdIndex)) { |
| // Auto-assign the thread id field if it wasn't specified. |
| if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| threadInfo[i][threadIdIndex] = threadIdCt++; |
| } |
| // Apparently the thread id field was specified for some entries and not |
| // others. Start the thread id counter off at the next higher thread id. |
| else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| } |
| } |
| if (threadInfo[i][index] != lastId[index]) { |
| // Run through all indices which are less significant, and reset the |
| // counts to 1. At all levels up to and including index, we need to |
| // increment the totals and record the last id. |
| unsigned index2; |
| for (index2 = threadIdIndex; index2 < index; index2++) { |
| totals[index2]++; |
| if (counts[index2] > maxCt[index2]) { |
| maxCt[index2] = counts[index2]; |
| } |
| counts[index2] = 1; |
| lastId[index2] = threadInfo[i][index2]; |
| } |
| counts[index]++; |
| totals[index]++; |
| lastId[index] = threadInfo[i][index]; |
| |
| if (assign_thread_ids && (index > threadIdIndex)) { |
| |
| #if KMP_MIC && REDUCE_TEAM_SIZE |
| // The default team size is the total #threads in the machine |
| // minus 1 thread for every core that has 3 or more threads. |
| teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| |
| // Restart the thread counter, as we are on a new core. |
| threadIdCt = 0; |
| |
| // Auto-assign the thread id field if it wasn't specified. |
| if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| threadInfo[i][threadIdIndex] = threadIdCt++; |
| } |
| |
| // Aparrently the thread id field was specified for some entries and |
| // not others. Start the thread id counter off at the next higher |
| // thread id. |
| else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| } |
| } |
| break; |
| } |
| } |
| if (index < threadIdIndex) { |
| // If thread ids were specified, it is an error if they are not unique. |
| // Also, check that we waven't already restarted the loop (to be safe - |
| // shouldn't need to). |
| if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { |
| __kmp_free(lastId); |
| __kmp_free(totals); |
| __kmp_free(maxCt); |
| __kmp_free(counts); |
| CLEANUP_THREAD_INFO; |
| *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| return -1; |
| } |
| |
| // If the thread ids were not specified and we see entries entries that |
| // are duplicates, start the loop over and assign the thread ids manually. |
| assign_thread_ids = true; |
| goto restart_radix_check; |
| } |
| } |
| |
| #if KMP_MIC && REDUCE_TEAM_SIZE |
| // The default team size is the total #threads in the machine |
| // minus 1 thread for every core that has 3 or more threads. |
| teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| |
| for (index = threadIdIndex; index <= maxIndex; index++) { |
| if (counts[index] > maxCt[index]) { |
| maxCt[index] = counts[index]; |
| } |
| } |
| |
| __kmp_nThreadsPerCore = maxCt[threadIdIndex]; |
| nCoresPerPkg = maxCt[coreIdIndex]; |
| nPackages = totals[pkgIdIndex]; |
| |
| // Check to see if the machine topology is uniform |
| unsigned prod = totals[maxIndex]; |
| for (index = threadIdIndex; index < maxIndex; index++) { |
| prod *= maxCt[index]; |
| } |
| bool uniform = (prod == totals[threadIdIndex]); |
| |
| // When affinity is off, this routine will still be called to set |
| // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| // Make sure all these vars are set correctly, and return now if affinity is |
| // not enabled. |
| __kmp_ncores = totals[coreIdIndex]; |
| |
| if (__kmp_affinity_verbose) { |
| if (!KMP_AFFINITY_CAPABLE()) { |
| KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); |
| KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| if (uniform) { |
| KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| } else { |
| KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| } |
| } else { |
| char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| __kmp_affin_fullMask); |
| KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); |
| if (__kmp_affinity_respect_mask) { |
| KMP_INFORM(InitOSProcSetRespect,<
|