| //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the target machine instructions to the code generator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_TARGETINSTRINFO_H |
| #define LLVM_TARGET_TARGETINSTRINFO_H |
| |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/Support/DataTypes.h" |
| #include <vector> |
| #include <cassert> |
| |
| namespace llvm { |
| |
| class MachineInstr; |
| class TargetMachine; |
| class MachineCodeForInstruction; |
| class TargetRegisterClass; |
| class LiveVariables; |
| |
| //--------------------------------------------------------------------------- |
| // Data types used to define information about a single machine instruction |
| //--------------------------------------------------------------------------- |
| |
| typedef short MachineOpCode; |
| typedef unsigned InstrSchedClass; |
| |
| //--------------------------------------------------------------------------- |
| // struct TargetInstrDescriptor: |
| // Predefined information about each machine instruction. |
| // Designed to initialized statically. |
| // |
| |
| const unsigned M_BRANCH_FLAG = 1 << 0; |
| const unsigned M_CALL_FLAG = 1 << 1; |
| const unsigned M_RET_FLAG = 1 << 2; |
| const unsigned M_BARRIER_FLAG = 1 << 3; |
| const unsigned M_DELAY_SLOT_FLAG = 1 << 4; |
| const unsigned M_LOAD_FLAG = 1 << 5; |
| const unsigned M_STORE_FLAG = 1 << 6; |
| |
| // M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be |
| // changed into a 3-address instruction if the first two operands cannot be |
| // assigned to the same register. The target must implement the |
| // TargetInstrInfo::convertToThreeAddress method for this instruction. |
| const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7; |
| |
| // This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y, |
| // Z), which produces the same result if Y and Z are exchanged. |
| const unsigned M_COMMUTABLE = 1 << 8; |
| |
| // M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic |
| // block? Typically this is things like return and branch instructions. |
| // Various passes use this to insert code into the bottom of a basic block, but |
| // before control flow occurs. |
| const unsigned M_TERMINATOR_FLAG = 1 << 9; |
| |
| // M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom |
| // insertion support when the DAG scheduler is inserting it into a machine basic |
| // block. |
| const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10; |
| |
| // M_VARIABLE_OPS - Set if this instruction can have a variable number of extra |
| // operands in addition to the minimum number operands specified. |
| const unsigned M_VARIABLE_OPS = 1 << 11; |
| |
| // M_PREDICATED - Set if this instruction has a predicate that controls its |
| // execution. |
| const unsigned M_PREDICATED = 1 << 12; |
| |
| // M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized |
| // at any time, e.g. constant generation, load from constant pool. |
| const unsigned M_REMATERIALIZIBLE = 1 << 13; |
| |
| |
| // Machine operand flags |
| // M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it |
| // requires a callback to look up its register class. |
| const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0; |
| |
| /// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate |
| /// operand that controls an M_PREDICATED instruction. |
| const unsigned M_PREDICATE_OPERAND = 1 << 1; |
| |
| namespace TOI { |
| // Operand constraints: only "tied_to" for now. |
| enum OperandConstraint { |
| TIED_TO = 0 // Must be allocated the same register as. |
| }; |
| } |
| |
| /// TargetOperandInfo - This holds information about one operand of a machine |
| /// instruction, indicating the register class for register operands, etc. |
| /// |
| class TargetOperandInfo { |
| public: |
| /// RegClass - This specifies the register class enumeration of the operand |
| /// if the operand is a register. If not, this contains 0. |
| unsigned short RegClass; |
| unsigned short Flags; |
| /// Lower 16 bits are used to specify which constraints are set. The higher 16 |
| /// bits are used to specify the value of constraints (4 bits each). |
| unsigned int Constraints; |
| /// Currently no other information. |
| }; |
| |
| |
| class TargetInstrDescriptor { |
| public: |
| MachineOpCode Opcode; // The opcode. |
| unsigned short numOperands; // Num of args (may be more if variable_ops). |
| const char * Name; // Assembly language mnemonic for the opcode. |
| InstrSchedClass schedClass; // enum identifying instr sched class |
| unsigned Flags; // flags identifying machine instr class |
| unsigned TSFlags; // Target Specific Flag values |
| const unsigned *ImplicitUses; // Registers implicitly read by this instr |
| const unsigned *ImplicitDefs; // Registers implicitly defined by this instr |
| const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands. |
| |
| /// getOperandConstraint - Returns the value of the specific constraint if |
| /// it is set. Returns -1 if it is not set. |
| int getOperandConstraint(unsigned OpNum, |
| TOI::OperandConstraint Constraint) const { |
| assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) && |
| "Invalid operand # of TargetInstrInfo"); |
| if (OpNum < numOperands && |
| (OpInfo[OpNum].Constraints & (1 << Constraint))) { |
| unsigned Pos = 16 + Constraint * 4; |
| return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; |
| } |
| return -1; |
| } |
| |
| /// findTiedToSrcOperand - Returns the operand that is tied to the specified |
| /// dest operand. Returns -1 if there isn't one. |
| int findTiedToSrcOperand(unsigned OpNum) const; |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| /// |
| /// TargetInstrInfo - Interface to description of machine instructions |
| /// |
| class TargetInstrInfo { |
| const TargetInstrDescriptor* desc; // raw array to allow static init'n |
| unsigned NumOpcodes; // number of entries in the desc array |
| unsigned numRealOpCodes; // number of non-dummy op codes |
| |
| TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT |
| void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT |
| public: |
| TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes); |
| virtual ~TargetInstrInfo(); |
| |
| // Invariant opcodes: All instruction sets have these as their low opcodes. |
| enum { |
| PHI = 0, |
| INLINEASM = 1, |
| LABEL = 2 |
| }; |
| |
| unsigned getNumOpcodes() const { return NumOpcodes; } |
| |
| /// get - Return the machine instruction descriptor that corresponds to the |
| /// specified instruction opcode. |
| /// |
| const TargetInstrDescriptor& get(MachineOpCode Opcode) const { |
| assert((unsigned)Opcode < NumOpcodes); |
| return desc[Opcode]; |
| } |
| |
| const char *getName(MachineOpCode Opcode) const { |
| return get(Opcode).Name; |
| } |
| |
| int getNumOperands(MachineOpCode Opcode) const { |
| return get(Opcode).numOperands; |
| } |
| |
| InstrSchedClass getSchedClass(MachineOpCode Opcode) const { |
| return get(Opcode).schedClass; |
| } |
| |
| const unsigned *getImplicitUses(MachineOpCode Opcode) const { |
| return get(Opcode).ImplicitUses; |
| } |
| |
| const unsigned *getImplicitDefs(MachineOpCode Opcode) const { |
| return get(Opcode).ImplicitDefs; |
| } |
| |
| |
| // |
| // Query instruction class flags according to the machine-independent |
| // flags listed above. |
| // |
| bool isReturn(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_RET_FLAG; |
| } |
| |
| bool isPredicated(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_PREDICATED; |
| } |
| bool isReMaterializable(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_REMATERIALIZIBLE; |
| } |
| bool isCommutableInstr(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_COMMUTABLE; |
| } |
| bool isTerminatorInstr(unsigned Opcode) const { |
| return get(Opcode).Flags & M_TERMINATOR_FLAG; |
| } |
| |
| bool isBranch(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_BRANCH_FLAG; |
| } |
| |
| /// isBarrier - Returns true if the specified instruction stops control flow |
| /// from executing the instruction immediately following it. Examples include |
| /// unconditional branches and return instructions. |
| bool isBarrier(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_BARRIER_FLAG; |
| } |
| |
| bool isCall(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_CALL_FLAG; |
| } |
| bool isLoad(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_LOAD_FLAG; |
| } |
| bool isStore(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_STORE_FLAG; |
| } |
| |
| /// hasDelaySlot - Returns true if the specified instruction has a delay slot |
| /// which must be filled by the code generator. |
| bool hasDelaySlot(unsigned Opcode) const { |
| return get(Opcode).Flags & M_DELAY_SLOT_FLAG; |
| } |
| |
| /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires |
| /// custom insertion support when the DAG scheduler is inserting it into a |
| /// machine basic block. |
| bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const { |
| return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION; |
| } |
| |
| bool hasVariableOperands(MachineOpCode Opcode) const { |
| return get(Opcode).Flags & M_VARIABLE_OPS; |
| } |
| |
| /// getOperandConstraint - Returns the value of the specific constraint if |
| /// it is set. Returns -1 if it is not set. |
| int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum, |
| TOI::OperandConstraint Constraint) const { |
| return get(Opcode).getOperandConstraint(OpNum, Constraint); |
| } |
| |
| /// Return true if the instruction is a register to register move |
| /// and leave the source and dest operands in the passed parameters. |
| virtual bool isMoveInstr(const MachineInstr& MI, |
| unsigned& sourceReg, |
| unsigned& destReg) const { |
| return false; |
| } |
| |
| /// isLoadFromStackSlot - If the specified machine instruction is a direct |
| /// load from a stack slot, return the virtual or physical register number of |
| /// the destination along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than loading from the stack slot. |
| virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{ |
| return 0; |
| } |
| |
| /// isStoreToStackSlot - If the specified machine instruction is a direct |
| /// store to a stack slot, return the virtual or physical register number of |
| /// the source reg along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than storing to the stack slot. |
| virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { |
| return 0; |
| } |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into one or moretrue |
| /// three-address instructions on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the last new instruction. |
| /// |
| virtual MachineInstr * |
| convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const { |
| return 0; |
| } |
| |
| /// commuteInstruction - If a target has any instructions that are commutable, |
| /// but require converting to a different instruction or making non-trivial |
| /// changes to commute them, this method can overloaded to do this. The |
| /// default implementation of this method simply swaps the first two operands |
| /// of MI and returns it. |
| /// |
| /// If a target wants to make more aggressive changes, they can construct and |
| /// return a new machine instruction. If an instruction cannot commute, it |
| /// can also return null. |
| /// |
| virtual MachineInstr *commuteInstruction(MachineInstr *MI) const; |
| |
| /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning |
| /// true if it cannot be understood (e.g. it's a switch dispatch or isn't |
| /// implemented for a target). Upon success, this returns false and returns |
| /// with the following information in various cases: |
| /// |
| /// 1. If this block ends with no branches (it just falls through to its succ) |
| /// just return false, leaving TBB/FBB null. |
| /// 2. If this block ends with only an unconditional branch, it sets TBB to be |
| /// the destination block. |
| /// 3. If this block ends with an conditional branch, it returns the 'true' |
| /// destination in TBB, the 'false' destination in FBB, and a list of |
| /// operands that evaluate the condition. These operands can be passed to |
| /// other TargetInstrInfo methods to create new branches. |
| /// |
| /// Note that RemoveBranch and InsertBranch must be implemented to support |
| /// cases where this method returns success. |
| /// |
| virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| std::vector<MachineOperand> &Cond) const { |
| return true; |
| } |
| |
| /// RemoveBranch - Remove the branching code at the end of the specific MBB. |
| /// this is only invoked in cases where AnalyzeBranch returns success. |
| virtual void RemoveBranch(MachineBasicBlock &MBB) const { |
| assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); |
| } |
| |
| /// InsertBranch - Insert a branch into the end of the specified |
| /// MachineBasicBlock. This operands to this method are the same as those |
| /// returned by AnalyzeBranch. This is invoked in cases where AnalyzeBranch |
| /// returns success and when an unconditional branch (TBB is non-null, FBB is |
| /// null, Cond is empty) needs to be inserted. |
| virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const std::vector<MachineOperand> &Cond) const { |
| assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); |
| } |
| |
| /// BlockHasNoFallThrough - Return true if the specified block does not |
| /// fall-through into its successor block. This is primarily used when a |
| /// branch is unanalyzable. It is useful for things like unconditional |
| /// indirect branches (jump tables). |
| virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const { |
| return false; |
| } |
| |
| /// ReverseBranchCondition - Reverses the branch condition of the specified |
| /// condition list, returning false on success and true if it cannot be |
| /// reversed. |
| virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const { |
| return true; |
| } |
| |
| /// insertNoop - Insert a noop into the instruction stream at the specified |
| /// point. |
| virtual void insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| assert(0 && "Target didn't implement insertNoop!"); |
| abort(); |
| } |
| |
| /// getPointerRegClass - Returns a TargetRegisterClass used for pointer |
| /// values. |
| virtual const TargetRegisterClass *getPointerRegClass() const { |
| assert(0 && "Target didn't implement getPointerRegClass!"); |
| abort(); |
| return 0; // Must return a value in order to compile with VS 2005 |
| } |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |