blob: 68a9ea668f1b432af48358741dadc9e664d56784 [file] [log] [blame]
/*
* Copyright 2011,2015 Sven Verdoolaege. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as
* representing official policies, either expressed or implied, of
* Sven Verdoolaege.
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <clang/AST/Attr.h>
#include <clang/Basic/SourceManager.h>
#include "isl_config.h"
#include "extract_interface.h"
#include "generator.h"
const char *isl_class::get_prefix = "get_";
const char *isl_class::set_callback_prefix = "set_";
/* Should "method" be considered to be a static method?
* That is, is the first argument something other than
* an instance of the class?
*/
bool isl_class::is_static(FunctionDecl *method) const
{
ParmVarDecl *param;
QualType type;
if (method->getNumParams() < 1)
return true;
param = method->getParamDecl(0);
type = param->getOriginalType();
if (!generator::is_isl_type(type))
return true;
return generator::extract_type(type) != name;
}
/* Should "method" be considered to be a static method?
* That is, is the first argument something other than
* an instance of the class?
*/
bool generator::is_static(const isl_class &clazz, FunctionDecl *method)
{
return clazz.is_static(method);
}
/* Does "fd" modify an object of "clazz"?
* That is, is it an object method that takes the object and
* returns (gives) an object of the same type?
*/
bool generator::is_mutator(const isl_class &clazz, FunctionDecl *fd)
{
ParmVarDecl *param;
QualType type, return_type;
if (fd->getNumParams() < 1)
return false;
if (is_static(clazz, fd))
return false;
if (!gives(fd))
return false;
param = fd->getParamDecl(0);
if (!takes(param))
return false;
type = param->getOriginalType();
return_type = fd->getReturnType();
return return_type == type;
}
/* Find the FunctionDecl with name "name",
* returning NULL if there is no such FunctionDecl.
* If "required" is set, then error out if no FunctionDecl can be found.
*/
FunctionDecl *generator::find_by_name(const string &name, bool required)
{
map<string, FunctionDecl *>::iterator i;
i = functions_by_name.find(name);
if (i != functions_by_name.end())
return i->second;
if (required)
die("No " + name + " function found");
return NULL;
}
/* List of conversion functions that are used to automatically convert
* the second argument of the conversion function to its function result.
*/
const std::set<std::string> generator::automatic_conversion_functions = {
"isl_id_read_from_str",
"isl_val_int_from_si",
};
/* Extract information about the automatic conversion function "fd",
* storing the results in this->conversions.
*
* A function used for automatic conversion has exactly two arguments,
* an isl_ctx and a non-isl object, and it returns an isl object.
* Store a mapping from the isl object return type
* to the non-isl object source type.
*/
void generator::extract_automatic_conversion(FunctionDecl *fd)
{
QualType return_type = fd->getReturnType();
const Type *type = return_type.getTypePtr();
if (fd->getNumParams() != 2)
die("Expecting two arguments");
if (!is_isl_ctx(fd->getParamDecl(0)->getOriginalType()))
die("Expecting isl_ctx first argument");
if (!is_isl_type(return_type))
die("Expecting isl object return type");
conversions[type] = fd->getParamDecl(1);
}
/* Extract information about all automatic conversion functions
* for the given class, storing the results in this->conversions.
*
* In particular, look through all exported constructors for the class and
* check if any of them is explicitly marked as a conversion function.
*/
void generator::extract_class_automatic_conversions(const isl_class &clazz)
{
const function_set &constructors = clazz.constructors;
function_set::iterator fi;
for (fi = constructors.begin(); fi != constructors.end(); ++fi) {
FunctionDecl *fd = *fi;
string name = fd->getName().str();
if (automatic_conversion_functions.count(name) != 0)
extract_automatic_conversion(fd);
}
}
/* Extract information about all automatic conversion functions,
* storing the results in this->conversions.
*/
void generator::extract_automatic_conversions()
{
map<string, isl_class>::iterator ci;
for (ci = classes.begin(); ci != classes.end(); ++ci)
extract_class_automatic_conversions(ci->second);
}
/* Add a subclass derived from "decl" called "sub_name" to the set of classes,
* keeping track of the _to_str, _copy and _free functions, if any, separately.
* "sub_name" is either the name of the class itself or
* the name of a type based subclass.
* If the class is a proper subclass, then "super_name" is the name
* of its immediate superclass.
*/
void generator::add_subclass(RecordDecl *decl, const string &super_name,
const string &sub_name)
{
string name = decl->getName().str();
classes[sub_name].name = name;
classes[sub_name].superclass_name = super_name;
classes[sub_name].subclass_name = sub_name;
classes[sub_name].type = decl;
classes[sub_name].fn_to_str = find_by_name(name + "_to_str", false);
classes[sub_name].fn_copy = find_by_name(name + "_copy", true);
classes[sub_name].fn_free = find_by_name(name + "_free", true);
}
/* Add a class derived from "decl" to the set of classes,
* keeping track of the _to_str, _copy and _free functions, if any, separately.
*/
void generator::add_class(RecordDecl *decl)
{
return add_subclass(decl, "", decl->getName().str());
}
/* Given a function "fn_type" that returns the subclass type
* of a C object, create subclasses for each of the (non-negative)
* return values.
*
* The function "fn_type" is also stored in the superclass,
* along with all pairs of type values and subclass names.
*/
void generator::add_type_subclasses(FunctionDecl *fn_type)
{
QualType return_type = fn_type->getReturnType();
const EnumType *enum_type = return_type->getAs<EnumType>();
EnumDecl *decl = enum_type->getDecl();
isl_class *c = method2class(fn_type);
DeclContext::decl_iterator i;
c->fn_type = fn_type;
for (i = decl->decls_begin(); i != decl->decls_end(); ++i) {
EnumConstantDecl *ecd = dyn_cast<EnumConstantDecl>(*i);
int val = (int) ecd->getInitVal().getSExtValue();
string name = ecd->getNameAsString();
if (val < 0)
continue;
c->type_subclasses[val] = name;
add_subclass(c->type, c->subclass_name, name);
}
}
/* Add information about the enum values in "decl", set by "fd",
* to c->set_enums. "prefix" is the prefix of the generated method names.
* In particular, it has the name of the enum type removed.
*
* In particular, for each non-negative enum value, keep track of
* the value, the name and the corresponding method name.
*/
static void add_set_enum(isl_class *c, const string &prefix, EnumDecl *decl,
FunctionDecl *fd)
{
DeclContext::decl_iterator i;
for (i = decl->decls_begin(); i != decl->decls_end(); ++i) {
EnumConstantDecl *ecd = dyn_cast<EnumConstantDecl>(*i);
int val = (int) ecd->getInitVal().getSExtValue();
string name = ecd->getNameAsString();
string method_name;
if (val < 0)
continue;
method_name = prefix + name.substr(4);
c->set_enums[fd].push_back(set_enum(val, name, method_name));
}
}
/* Check if "fd" sets an enum value and, if so, add information
* about the enum values to c->set_enums.
*
* A function is considered to set an enum value if:
* - the function returns an object of the same type
* - the last argument is of type enum
* - the name of the function ends with the name of the enum
*/
static bool handled_sets_enum(isl_class *c, FunctionDecl *fd)
{
unsigned n;
ParmVarDecl *param;
const EnumType *enum_type;
EnumDecl *decl;
string enum_name;
string fd_name;
string prefix;
size_t pos;
if (!generator::is_mutator(*c, fd))
return false;
n = fd->getNumParams();
if (n < 2)
return false;
param = fd->getParamDecl(n - 1);
enum_type = param->getType()->getAs<EnumType>();
if (!enum_type)
return false;
decl = enum_type->getDecl();
enum_name = decl->getName().str();
enum_name = enum_name.substr(4);
fd_name = c->method_name(fd);
pos = fd_name.find(enum_name);
if (pos == std::string::npos)
return false;
prefix = fd_name.substr(0, pos);
add_set_enum(c, prefix, decl, fd);
return true;
}
/* Return the callback argument of a function setting
* a persistent callback.
* This callback is in the second argument (position 1).
*/
ParmVarDecl *generator::persistent_callback_arg(FunctionDecl *fd)
{
return fd->getParamDecl(1);
}
/* Does the given function set a persistent callback?
* The following heuristics are used to determine this property:
* - the function returns an object of the same type
* - its name starts with "set_"
* - it has exactly three arguments
* - the second (position 1) of which is a callback
*/
static bool sets_persistent_callback(isl_class *c, FunctionDecl *fd)
{
ParmVarDecl *param;
if (!generator::is_mutator(*c, fd))
return false;
if (fd->getNumParams() != 3)
return false;
param = generator::persistent_callback_arg(fd);
if (!generator::is_callback(param->getType()))
return false;
return prefixcmp(c->method_name(fd).c_str(),
c->set_callback_prefix) == 0;
}
/* Does this function take any enum arguments?
*/
static bool takes_enums(FunctionDecl *fd)
{
unsigned n;
n = fd->getNumParams();
for (unsigned i = 0; i < n; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
if (param->getType()->getAs<EnumType>())
return true;
}
return false;
}
/* Sorting function that places declaration of functions
* with a shorter name first.
*/
static bool less_name(const FunctionDecl *a, const FunctionDecl *b)
{
return a->getName().size() < b->getName().size();
}
/* Collect all functions that belong to a certain type, separating
* constructors from methods that set an enum value,
* methods that set a persistent callback and
* from regular methods, while keeping track of the _to_str,
* _copy and _free functions, if any, separately.
* Methods that accept any enum arguments that are not specifically handled
* are not supported.
* If there are any overloaded
* functions, then they are grouped based on their name after removing the
* argument type suffix.
* Check for functions that describe subclasses before considering
* any other functions in order to be able to detect those other
* functions as belonging to the subclasses.
* Sort the names of the functions based on their lengths
* to ensure that nested subclasses are handled later.
*/
generator::generator(SourceManager &SM, set<RecordDecl *> &exported_types,
set<FunctionDecl *> exported_functions, set<FunctionDecl *> functions) :
SM(SM)
{
set<FunctionDecl *>::iterator in;
set<RecordDecl *>::iterator it;
vector<FunctionDecl *> type_subclasses;
vector<FunctionDecl *>::iterator iv;
for (in = functions.begin(); in != functions.end(); ++in) {
FunctionDecl *decl = *in;
functions_by_name[decl->getName().str()] = decl;
}
for (it = exported_types.begin(); it != exported_types.end(); ++it)
add_class(*it);
for (in = exported_functions.begin(); in != exported_functions.end();
++in) {
if (is_subclass(*in))
type_subclasses.push_back(*in);
}
std::sort(type_subclasses.begin(), type_subclasses.end(), &less_name);
for (iv = type_subclasses.begin(); iv != type_subclasses.end(); ++iv) {
add_type_subclasses(*iv);
}
for (in = exported_functions.begin(); in != exported_functions.end();
++in) {
FunctionDecl *method = *in;
isl_class *c;
if (is_subclass(method))
continue;
c = method2class(method);
if (!c)
continue;
if (is_constructor(method)) {
c->constructors.insert(method);
} else if (handled_sets_enum(c, method)) {
} else if (sets_persistent_callback(c, method)) {
c->persistent_callbacks.insert(method);
} else if (takes_enums(method)) {
std::string name = method->getName().str();
die(name + " has unhandled enum argument");
} else {
string fullname = c->name_without_type_suffixes(method);
c->methods[fullname].insert(method);
}
}
extract_automatic_conversions();
}
/* Print error message "msg" and abort.
*/
void generator::die(const char *msg)
{
fprintf(stderr, "%s\n", msg);
abort();
}
/* Print error message "msg" and abort.
*/
void generator::die(string msg)
{
die(msg.c_str());
}
/* Return a sequence of the types of which the given type declaration is
* marked as being a subtype.
* The order of the types is the opposite of the order in which they
* appear in the source. In particular, the first annotation
* is the one that is closest to the annotated type and the corresponding
* type is then also the first that will appear in the sequence of types.
* This is also the order in which the annotations appear
* in the AttrVec returned by Decl::getAttrs() in older versions of clang.
* In newer versions of clang, the order is that in which
* the attribute appears in the source.
* Use the position of the "isl_export" attribute to determine
* whether this is an old (with reversed order) or a new version.
* The "isl_export" attribute is automatically added
* after each "isl_subclass" attribute. If it appears in the list before
* any "isl_subclass" is encountered, then this must be a reversed list.
*/
std::vector<string> generator::find_superclasses(Decl *decl)
{
vector<string> super;
bool reversed = false;
if (!decl->hasAttrs())
return super;
string sub = "isl_subclass";
size_t len = sub.length();
AttrVec attrs = decl->getAttrs();
for (AttrVec::const_iterator i = attrs.begin(); i != attrs.end(); ++i) {
const AnnotateAttr *ann = dyn_cast<AnnotateAttr>(*i);
if (!ann)
continue;
string s = ann->getAnnotation().str();
if (s == "isl_export" && super.size() == 0)
reversed = true;
if (s.substr(0, len) == sub) {
s = s.substr(len + 1, s.length() - len - 2);
if (reversed)
super.push_back(s);
else
super.insert(super.begin(), s);
}
}
return super;
}
/* Is "decl" marked as describing subclasses?
*/
bool generator::is_subclass(FunctionDecl *decl)
{
return find_superclasses(decl).size() > 0;
}
/* Is decl marked as being part of an overloaded method?
*/
bool generator::is_overload(Decl *decl)
{
return has_annotation(decl, "isl_overload");
}
/* Is decl marked as a constructor?
*/
bool generator::is_constructor(Decl *decl)
{
return has_annotation(decl, "isl_constructor");
}
/* Is decl marked as consuming a reference?
*/
bool generator::takes(Decl *decl)
{
return has_annotation(decl, "isl_take");
}
/* Is decl marked as preserving a reference?
*/
bool generator::keeps(Decl *decl)
{
return has_annotation(decl, "isl_keep");
}
/* Is decl marked as returning a reference that is required to be freed.
*/
bool generator::gives(Decl *decl)
{
return has_annotation(decl, "isl_give");
}
/* Return the class that has a name that best matches the initial part
* of the name of function "fd" or NULL if no such class could be found.
*/
isl_class *generator::method2class(FunctionDecl *fd)
{
string best;
map<string, isl_class>::iterator ci;
string name = fd->getNameAsString();
for (ci = classes.begin(); ci != classes.end(); ++ci) {
size_t len = ci->first.length();
if (len > best.length() && name.substr(0, len) == ci->first &&
name[len] == '_')
best = ci->first;
}
if (classes.find(best) == classes.end()) {
cerr << "Unable to find class of " << name << endl;
return NULL;
}
return &classes[best];
}
/* Is "type" the type "isl_ctx *"?
*/
bool generator::is_isl_ctx(QualType type)
{
if (!type->isPointerType())
return false;
type = type->getPointeeType();
if (type.getAsString() != "isl_ctx")
return false;
return true;
}
/* Is the first argument of "fd" of type "isl_ctx *"?
*/
bool generator::first_arg_is_isl_ctx(FunctionDecl *fd)
{
ParmVarDecl *param;
if (fd->getNumParams() < 1)
return false;
param = fd->getParamDecl(0);
return is_isl_ctx(param->getOriginalType());
}
namespace {
struct ClangAPI {
/* Return the first location in the range returned by
* clang::SourceManager::getImmediateExpansionRange.
* Older versions of clang return a pair of SourceLocation objects.
* More recent versions return a CharSourceRange.
*/
static SourceLocation range_begin(
const std::pair<SourceLocation,SourceLocation> &p) {
return p.first;
}
static SourceLocation range_begin(const CharSourceRange &range) {
return range.getBegin();
}
};
}
/* Does the callback argument "param" take its argument at position "pos"?
*
* The memory management annotations of arguments to function pointers
* are not recorded by clang, so the information cannot be extracted
* from the type of "param".
* Instead, go to the location in the source where the callback argument
* is declared, look for the right argument of the callback itself and
* then check if it has an "__isl_take" memory management annotation.
*
* If the return value of the function has a memory management annotation,
* then the spelling of "param" will point to the spelling
* of this memory management annotation. Since the macro is defined
* on the command line (in main), this location does not have a file entry.
* In this case, move up one level in the macro expansion to the location
* where the memory management annotation is used.
*/
bool generator::callback_takes_argument(ParmVarDecl *param,
int pos)
{
SourceLocation loc;
const char *s, *end, *next;
bool takes, keeps;
loc = param->getSourceRange().getBegin();
if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(loc))))
loc = ClangAPI::range_begin(SM.getImmediateExpansionRange(loc));
s = SM.getCharacterData(loc);
if (!s)
die("No character data");
s = strchr(s, '(');
if (!s)
die("Cannot find function pointer");
s = strchr(s + 1, '(');
if (!s)
die("Cannot find function pointer arguments");
end = strchr(s + 1, ')');
if (!end)
die("Cannot find end of function pointer arguments");
while (pos-- > 0) {
s = strchr(s + 1, ',');
if (!s || s > end)
die("Cannot find function pointer argument");
}
next = strchr(s + 1, ',');
if (next && next < end)
end = next;
s = strchr(s + 1, '_');
if (!s || s > end)
die("Cannot find function pointer argument annotation");
takes = prefixcmp(s, "__isl_take") == 0;
keeps = prefixcmp(s, "__isl_keep") == 0;
if (!takes && !keeps)
die("Cannot find function pointer argument annotation");
return takes;
}
/* Is "type" that of a pointer to an isl_* structure?
*/
bool generator::is_isl_type(QualType type)
{
if (type->isPointerType()) {
string s;
type = type->getPointeeType();
if (type->isFunctionType())
return false;
s = type.getAsString();
return s.substr(0, 4) == "isl_";
}
return false;
}
/* Is "type" one of the integral types with a negative value
* indicating an error condition?
*/
bool generator::is_isl_neg_error(QualType type)
{
return is_isl_bool(type) || is_isl_stat(type) || is_isl_size(type);
}
/* Is "type" the primitive type with the given name?
*/
static bool is_isl_primitive(QualType type, const char *name)
{
string s;
if (type->isPointerType())
return false;
s = type.getAsString();
return s == name;
}
/* Is "type" the type isl_bool?
*/
bool generator::is_isl_bool(QualType type)
{
return is_isl_primitive(type, "isl_bool");
}
/* Is "type" the type isl_stat?
*/
bool generator::is_isl_stat(QualType type)
{
return is_isl_primitive(type, "isl_stat");
}
/* Is "type" the type isl_size?
*/
bool generator::is_isl_size(QualType type)
{
return is_isl_primitive(type, "isl_size");
}
/* Is "type" that of a pointer to a function?
*/
bool generator::is_callback(QualType type)
{
if (!type->isPointerType())
return false;
type = type->getPointeeType();
return type->isFunctionType();
}
/* Is "type" that of "char *" of "const char *"?
*/
bool generator::is_string(QualType type)
{
if (type->isPointerType()) {
string s = type->getPointeeType().getAsString();
return s == "const char" || s == "char";
}
return false;
}
/* Is "type" that of "long"?
*/
bool generator::is_long(QualType type)
{
const BuiltinType *builtin = type->getAs<BuiltinType>();
return builtin && builtin->getKind() == BuiltinType::Long;
}
/* Is "type" that of "unsigned int"?
*/
static bool is_unsigned_int(QualType type)
{
const BuiltinType *builtin = type->getAs<BuiltinType>();
return builtin && builtin->getKind() == BuiltinType::UInt;
}
/* Return the name of the type that "type" points to.
* The input "type" is assumed to be a pointer type.
*/
string generator::extract_type(QualType type)
{
if (type->isPointerType())
return type->getPointeeType().getAsString();
die("Cannot extract type from non-pointer type");
}
/* Given the type of a function pointer, return the corresponding
* function prototype.
*/
const FunctionProtoType *generator::extract_prototype(QualType type)
{
return type->getPointeeType()->getAs<FunctionProtoType>();
}
/* Return the function name suffix for the type of "param".
*
* If the type of "param" is an isl object type,
* then the suffix is the name of the type with the "isl" prefix removed,
* but keeping the "_".
* If the type is an unsigned integer, then the type suffix is "_ui".
*/
static std::string type_suffix(ParmVarDecl *param)
{
QualType type;
type = param->getOriginalType();
if (generator::is_isl_type(type))
return generator::extract_type(type).substr(3);
else if (is_unsigned_int(type))
return "_ui";
generator::die("Unsupported type suffix");
}
/* If "suffix" is a suffix of "s", then return "s" with the suffix removed.
* Otherwise, simply return "s".
*/
static std::string drop_suffix(const std::string &s, const std::string &suffix)
{
size_t len, suffix_len;
len = s.length();
suffix_len = suffix.length();
if (len >= suffix_len && s.substr(len - suffix_len) == suffix)
return s.substr(0, len - suffix_len);
else
return s;
}
/* If "method" is overloaded, then return its name with the suffixes
* corresponding to the types of the final arguments removed.
* Otherwise, simply return the name of the function.
* Start from the final argument and keep removing suffixes
* matching arguments, independently of whether previously considered
* arguments matched.
*/
string isl_class::name_without_type_suffixes(FunctionDecl *method)
{
int num_params;
string name;
name = method->getName().str();
if (!generator::is_overload(method))
return name;
num_params = method->getNumParams();
for (int i = num_params - 1; i >= 0; --i) {
ParmVarDecl *param;
string type;
param = method->getParamDecl(i);
type = type_suffix(param);
name = drop_suffix(name, type);
}
return name;
}
/* Is function "fd" with the given name a "get" method?
*
* A "get" method is an instance method
* with a name that starts with the get method prefix.
*/
bool isl_class::is_get_method_name(FunctionDecl *fd, const string &name) const
{
return !is_static(fd) && prefixcmp(name.c_str(), get_prefix) == 0;
}
/* Extract the method name corresponding to "fd".
*
* If "fd" is a "get" method, then drop the "get" method prefix.
*/
string isl_class::method_name(FunctionDecl *fd) const
{
string base = base_method_name(fd);
if (is_get_method_name(fd, base))
return base.substr(strlen(get_prefix));
return base;
}