blob: b5f3c45c835fdbca086634cc8a6b494b95fd4730 [file] [log] [blame]
//===- PluginInterface.cpp - Target independent plugin device interface ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "PluginInterface.h"
#include "Shared/APITypes.h"
#include "Shared/Debug.h"
#include "Shared/Environment.h"
#include "Shared/PluginAPI.h"
#include "GlobalHandler.h"
#include "JIT.h"
#include "Utils/ELF.h"
#include "omptarget.h"
#ifdef OMPT_SUPPORT
#include "OpenMP/OMPT/Callback.h"
#include "omp-tools.h"
#endif
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstdint>
#include <limits>
using namespace llvm;
using namespace omp;
using namespace target;
using namespace plugin;
GenericPluginTy *PluginTy::SpecificPlugin = nullptr;
// TODO: Fix any thread safety issues for multi-threaded kernel recording.
struct RecordReplayTy {
// Describes the state of the record replay mechanism.
enum RRStatusTy { RRDeactivated = 0, RRRecording, RRReplaying };
private:
// Memory pointers for recording, replaying memory.
void *MemoryStart = nullptr;
void *MemoryPtr = nullptr;
size_t MemorySize = 0;
size_t TotalSize = 0;
GenericDeviceTy *Device = nullptr;
std::mutex AllocationLock;
RRStatusTy Status = RRDeactivated;
bool ReplaySaveOutput = false;
bool UsedVAMap = false;
uintptr_t MemoryOffset = 0;
// A list of all globals mapped to the device.
struct GlobalEntry {
const char *Name;
uint64_t Size;
void *Addr;
};
llvm::SmallVector<GlobalEntry> GlobalEntries{};
void *suggestAddress(uint64_t MaxMemoryAllocation) {
// Get a valid pointer address for this system
void *Addr =
Device->allocate(1024, /*HstPtr=*/nullptr, TARGET_ALLOC_DEFAULT);
Device->free(Addr);
// Align Address to MaxMemoryAllocation
Addr = (void *)alignPtr((Addr), MaxMemoryAllocation);
return Addr;
}
Error preAllocateVAMemory(uint64_t MaxMemoryAllocation, void *VAddr) {
size_t ASize = MaxMemoryAllocation;
if (!VAddr && isRecording())
VAddr = suggestAddress(MaxMemoryAllocation);
DP("Request %ld bytes allocated at %p\n", MaxMemoryAllocation, VAddr);
if (auto Err = Device->memoryVAMap(&MemoryStart, VAddr, &ASize))
return Err;
if (isReplaying() && VAddr != MemoryStart) {
return Plugin::error("Record-Replay cannot assign the"
"requested recorded address (%p, %p)",
VAddr, MemoryStart);
}
INFO(OMP_INFOTYPE_PLUGIN_KERNEL, Device->getDeviceId(),
"Allocated %" PRIu64 " bytes at %p for replay.\n", ASize, MemoryStart);
MemoryPtr = MemoryStart;
MemorySize = 0;
TotalSize = ASize;
UsedVAMap = true;
return Plugin::success();
}
Error preAllocateHeuristic(uint64_t MaxMemoryAllocation,
uint64_t RequiredMemoryAllocation, void *VAddr) {
const size_t MAX_MEMORY_ALLOCATION = MaxMemoryAllocation;
constexpr size_t STEP = 1024 * 1024 * 1024ULL;
MemoryStart = nullptr;
for (TotalSize = MAX_MEMORY_ALLOCATION; TotalSize > 0; TotalSize -= STEP) {
MemoryStart =
Device->allocate(TotalSize, /*HstPtr=*/nullptr, TARGET_ALLOC_DEFAULT);
if (MemoryStart)
break;
}
if (!MemoryStart)
return Plugin::error("Allocating record/replay memory");
if (VAddr && VAddr != MemoryStart)
MemoryOffset = uintptr_t(VAddr) - uintptr_t(MemoryStart);
MemoryPtr = MemoryStart;
MemorySize = 0;
// Check if we need adjustment.
if (MemoryOffset > 0 &&
TotalSize >= RequiredMemoryAllocation + MemoryOffset) {
// If we are off but "before" the required address and with enough space,
// we just "allocate" the offset to match the required address.
MemoryPtr = (char *)MemoryPtr + MemoryOffset;
MemorySize += MemoryOffset;
MemoryOffset = 0;
assert(MemoryPtr == VAddr && "Expected offset adjustment to work");
} else if (MemoryOffset) {
// If we are off and in a situation we cannot just "waste" memory to force
// a match, we hope adjusting the arguments is sufficient.
REPORT(
"WARNING Failed to allocate replay memory at required location %p, "
"got %p, trying to offset argument pointers by %" PRIi64 "\n",
VAddr, MemoryStart, MemoryOffset);
}
INFO(OMP_INFOTYPE_PLUGIN_KERNEL, Device->getDeviceId(),
"Allocated %" PRIu64 " bytes at %p for replay.\n", TotalSize,
MemoryStart);
return Plugin::success();
}
Error preallocateDeviceMemory(uint64_t DeviceMemorySize, void *ReqVAddr) {
if (Device->supportVAManagement()) {
auto Err = preAllocateVAMemory(DeviceMemorySize, ReqVAddr);
if (Err) {
REPORT("WARNING VA mapping failed, fallback to heuristic: "
"(Error: %s)\n",
toString(std::move(Err)).data());
}
}
uint64_t DevMemSize;
if (Device->getDeviceMemorySize(DevMemSize))
return Plugin::error("Cannot determine Device Memory Size");
return preAllocateHeuristic(DevMemSize, DeviceMemorySize, ReqVAddr);
}
void dumpDeviceMemory(StringRef Filename) {
ErrorOr<std::unique_ptr<WritableMemoryBuffer>> DeviceMemoryMB =
WritableMemoryBuffer::getNewUninitMemBuffer(MemorySize);
if (!DeviceMemoryMB)
report_fatal_error("Error creating MemoryBuffer for device memory");
auto Err = Device->dataRetrieve(DeviceMemoryMB.get()->getBufferStart(),
MemoryStart, MemorySize, nullptr);
if (Err)
report_fatal_error("Error retrieving data for target pointer");
StringRef DeviceMemory(DeviceMemoryMB.get()->getBufferStart(), MemorySize);
std::error_code EC;
raw_fd_ostream OS(Filename, EC);
if (EC)
report_fatal_error("Error dumping memory to file " + Filename + " :" +
EC.message());
OS << DeviceMemory;
OS.close();
}
public:
bool isRecording() const { return Status == RRStatusTy::RRRecording; }
bool isReplaying() const { return Status == RRStatusTy::RRReplaying; }
bool isRecordingOrReplaying() const {
return (Status != RRStatusTy::RRDeactivated);
}
void setStatus(RRStatusTy Status) { this->Status = Status; }
bool isSaveOutputEnabled() const { return ReplaySaveOutput; }
void addEntry(const char *Name, uint64_t Size, void *Addr) {
GlobalEntries.emplace_back(GlobalEntry{Name, Size, Addr});
}
void saveImage(const char *Name, const DeviceImageTy &Image) {
SmallString<128> ImageName = {Name, ".image"};
std::error_code EC;
raw_fd_ostream OS(ImageName, EC);
if (EC)
report_fatal_error("Error saving image : " + StringRef(EC.message()));
if (const auto *TgtImageBitcode = Image.getTgtImageBitcode()) {
size_t Size =
getPtrDiff(TgtImageBitcode->ImageEnd, TgtImageBitcode->ImageStart);
MemoryBufferRef MBR = MemoryBufferRef(
StringRef((const char *)TgtImageBitcode->ImageStart, Size), "");
OS << MBR.getBuffer();
} else {
OS << Image.getMemoryBuffer().getBuffer();
}
OS.close();
}
void dumpGlobals(StringRef Filename, DeviceImageTy &Image) {
int32_t Size = 0;
for (auto &OffloadEntry : GlobalEntries) {
if (!OffloadEntry.Size)
continue;
// Get the total size of the string and entry including the null byte.
Size += std::strlen(OffloadEntry.Name) + 1 + sizeof(uint32_t) +
OffloadEntry.Size;
}
ErrorOr<std::unique_ptr<WritableMemoryBuffer>> GlobalsMB =
WritableMemoryBuffer::getNewUninitMemBuffer(Size);
if (!GlobalsMB)
report_fatal_error("Error creating MemoryBuffer for globals memory");
void *BufferPtr = GlobalsMB.get()->getBufferStart();
for (auto &OffloadEntry : GlobalEntries) {
if (!OffloadEntry.Size)
continue;
int32_t NameLength = std::strlen(OffloadEntry.Name) + 1;
memcpy(BufferPtr, OffloadEntry.Name, NameLength);
BufferPtr = advanceVoidPtr(BufferPtr, NameLength);
*((uint32_t *)(BufferPtr)) = OffloadEntry.Size;
BufferPtr = advanceVoidPtr(BufferPtr, sizeof(uint32_t));
auto Err = Plugin::success();
{
if (auto Err = Device->dataRetrieve(BufferPtr, OffloadEntry.Addr,
OffloadEntry.Size, nullptr))
report_fatal_error("Error retrieving data for global");
}
if (Err)
report_fatal_error("Error retrieving data for global");
BufferPtr = advanceVoidPtr(BufferPtr, OffloadEntry.Size);
}
assert(BufferPtr == GlobalsMB->get()->getBufferEnd() &&
"Buffer over/under-filled.");
assert(Size == getPtrDiff(BufferPtr, GlobalsMB->get()->getBufferStart()) &&
"Buffer size mismatch");
StringRef GlobalsMemory(GlobalsMB.get()->getBufferStart(), Size);
std::error_code EC;
raw_fd_ostream OS(Filename, EC);
OS << GlobalsMemory;
OS.close();
}
void saveKernelDescr(const char *Name, void **ArgPtrs, int32_t NumArgs,
uint64_t NumTeamsClause, uint32_t ThreadLimitClause,
uint64_t LoopTripCount) {
json::Object JsonKernelInfo;
JsonKernelInfo["Name"] = Name;
JsonKernelInfo["NumArgs"] = NumArgs;
JsonKernelInfo["NumTeamsClause"] = NumTeamsClause;
JsonKernelInfo["ThreadLimitClause"] = ThreadLimitClause;
JsonKernelInfo["LoopTripCount"] = LoopTripCount;
JsonKernelInfo["DeviceMemorySize"] = MemorySize;
JsonKernelInfo["DeviceId"] = Device->getDeviceId();
JsonKernelInfo["BumpAllocVAStart"] = (intptr_t)MemoryStart;
json::Array JsonArgPtrs;
for (int I = 0; I < NumArgs; ++I)
JsonArgPtrs.push_back((intptr_t)ArgPtrs[I]);
JsonKernelInfo["ArgPtrs"] = json::Value(std::move(JsonArgPtrs));
json::Array JsonArgOffsets;
for (int I = 0; I < NumArgs; ++I)
JsonArgOffsets.push_back(0);
JsonKernelInfo["ArgOffsets"] = json::Value(std::move(JsonArgOffsets));
SmallString<128> JsonFilename = {Name, ".json"};
std::error_code EC;
raw_fd_ostream JsonOS(JsonFilename.str(), EC);
if (EC)
report_fatal_error("Error saving kernel json file : " +
StringRef(EC.message()));
JsonOS << json::Value(std::move(JsonKernelInfo));
JsonOS.close();
}
void saveKernelInput(const char *Name, DeviceImageTy &Image) {
SmallString<128> GlobalsFilename = {Name, ".globals"};
dumpGlobals(GlobalsFilename, Image);
SmallString<128> MemoryFilename = {Name, ".memory"};
dumpDeviceMemory(MemoryFilename);
}
void saveKernelOutputInfo(const char *Name) {
SmallString<128> OutputFilename = {
Name, (isRecording() ? ".original.output" : ".replay.output")};
dumpDeviceMemory(OutputFilename);
}
void *alloc(uint64_t Size) {
assert(MemoryStart && "Expected memory has been pre-allocated");
void *Alloc = nullptr;
constexpr int Alignment = 16;
// Assumes alignment is a power of 2.
int64_t AlignedSize = (Size + (Alignment - 1)) & (~(Alignment - 1));
std::lock_guard<std::mutex> LG(AllocationLock);
Alloc = MemoryPtr;
MemoryPtr = (char *)MemoryPtr + AlignedSize;
MemorySize += AlignedSize;
DP("Memory Allocator return " DPxMOD "\n", DPxPTR(Alloc));
return Alloc;
}
Error init(GenericDeviceTy *Device, uint64_t MemSize, void *VAddr,
RRStatusTy Status, bool SaveOutput, uint64_t &ReqPtrArgOffset) {
this->Device = Device;
this->Status = Status;
this->ReplaySaveOutput = SaveOutput;
if (auto Err = preallocateDeviceMemory(MemSize, VAddr))
return Err;
INFO(OMP_INFOTYPE_PLUGIN_KERNEL, Device->getDeviceId(),
"Record Replay Initialized (%p)"
" as starting address, %lu Memory Size"
" and set on status %s\n",
MemoryStart, TotalSize,
Status == RRStatusTy::RRRecording ? "Recording" : "Replaying");
// Tell the user to offset pointer arguments as the memory allocation does
// not match.
ReqPtrArgOffset = MemoryOffset;
return Plugin::success();
}
void deinit() {
if (UsedVAMap) {
if (auto Err = Device->memoryVAUnMap(MemoryStart, TotalSize))
report_fatal_error("Error on releasing virtual memory space");
} else {
Device->free(MemoryStart);
}
}
};
static RecordReplayTy RecordReplay;
// Extract the mapping of host function pointers to device function pointers
// from the entry table. Functions marked as 'indirect' in OpenMP will have
// offloading entries generated for them which map the host's function pointer
// to a global containing the corresponding function pointer on the device.
static Expected<std::pair<void *, uint64_t>>
setupIndirectCallTable(GenericPluginTy &Plugin, GenericDeviceTy &Device,
DeviceImageTy &Image) {
GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler();
llvm::ArrayRef<__tgt_offload_entry> Entries(Image.getTgtImage()->EntriesBegin,
Image.getTgtImage()->EntriesEnd);
llvm::SmallVector<std::pair<void *, void *>> IndirectCallTable;
for (const auto &Entry : Entries) {
if (Entry.size == 0 || !(Entry.flags & OMP_DECLARE_TARGET_INDIRECT))
continue;
assert(Entry.size == sizeof(void *) && "Global not a function pointer?");
auto &[HstPtr, DevPtr] = IndirectCallTable.emplace_back();
GlobalTy DeviceGlobal(Entry.name, Entry.size);
if (auto Err =
Handler.getGlobalMetadataFromDevice(Device, Image, DeviceGlobal))
return std::move(Err);
HstPtr = Entry.addr;
if (auto Err = Device.dataRetrieve(&DevPtr, DeviceGlobal.getPtr(),
Entry.size, nullptr))
return std::move(Err);
}
// If we do not have any indirect globals we exit early.
if (IndirectCallTable.empty())
return std::pair{nullptr, 0};
// Sort the array to allow for more efficient lookup of device pointers.
llvm::sort(IndirectCallTable,
[](const auto &x, const auto &y) { return x.first < y.first; });
uint64_t TableSize =
IndirectCallTable.size() * sizeof(std::pair<void *, void *>);
void *DevicePtr = Device.allocate(TableSize, nullptr, TARGET_ALLOC_DEVICE);
if (auto Err = Device.dataSubmit(DevicePtr, IndirectCallTable.data(),
TableSize, nullptr))
return std::move(Err);
return std::pair<void *, uint64_t>(DevicePtr, IndirectCallTable.size());
}
AsyncInfoWrapperTy::AsyncInfoWrapperTy(GenericDeviceTy &Device,
__tgt_async_info *AsyncInfoPtr)
: Device(Device),
AsyncInfoPtr(AsyncInfoPtr ? AsyncInfoPtr : &LocalAsyncInfo) {}
void AsyncInfoWrapperTy::finalize(Error &Err) {
assert(AsyncInfoPtr && "AsyncInfoWrapperTy already finalized");
// If we used a local async info object we want synchronous behavior. In that
// case, and assuming the current status code is correct, we will synchronize
// explicitly when the object is deleted. Update the error with the result of
// the synchronize operation.
if (AsyncInfoPtr == &LocalAsyncInfo && LocalAsyncInfo.Queue && !Err)
Err = Device.synchronize(&LocalAsyncInfo);
// Invalidate the wrapper object.
AsyncInfoPtr = nullptr;
}
Error GenericKernelTy::init(GenericDeviceTy &GenericDevice,
DeviceImageTy &Image) {
ImagePtr = &Image;
// Retrieve kernel environment object for the kernel.
GlobalTy KernelEnv(std::string(Name) + "_kernel_environment",
sizeof(KernelEnvironment), &KernelEnvironment);
GenericGlobalHandlerTy &GHandler = GenericDevice.Plugin.getGlobalHandler();
if (auto Err =
GHandler.readGlobalFromImage(GenericDevice, *ImagePtr, KernelEnv)) {
[[maybe_unused]] std::string ErrStr = toString(std::move(Err));
DP("Failed to read kernel environment for '%s': %s\n"
"Using default SPMD (2) execution mode\n",
Name, ErrStr.data());
assert(KernelEnvironment.Configuration.ReductionDataSize == 0 &&
"Default initialization failed.");
IsBareKernel = true;
}
// Max = Config.Max > 0 ? min(Config.Max, Device.Max) : Device.Max;
MaxNumThreads = KernelEnvironment.Configuration.MaxThreads > 0
? std::min(KernelEnvironment.Configuration.MaxThreads,
int32_t(GenericDevice.getThreadLimit()))
: GenericDevice.getThreadLimit();
// Pref = Config.Pref > 0 ? max(Config.Pref, Device.Pref) : Device.Pref;
PreferredNumThreads =
KernelEnvironment.Configuration.MinThreads > 0
? std::max(KernelEnvironment.Configuration.MinThreads,
int32_t(GenericDevice.getDefaultNumThreads()))
: GenericDevice.getDefaultNumThreads();
return initImpl(GenericDevice, Image);
}
Expected<KernelLaunchEnvironmentTy *>
GenericKernelTy::getKernelLaunchEnvironment(
GenericDeviceTy &GenericDevice, uint32_t Version,
AsyncInfoWrapperTy &AsyncInfoWrapper) const {
// Ctor/Dtor have no arguments, replaying uses the original kernel launch
// environment. Older versions of the compiler do not generate a kernel
// launch environment.
if (isCtorOrDtor() || RecordReplay.isReplaying() ||
Version < OMP_KERNEL_ARG_MIN_VERSION_WITH_DYN_PTR)
return nullptr;
if (!KernelEnvironment.Configuration.ReductionDataSize ||
!KernelEnvironment.Configuration.ReductionBufferLength)
return reinterpret_cast<KernelLaunchEnvironmentTy *>(~0);
// TODO: Check if the kernel needs a launch environment.
auto AllocOrErr = GenericDevice.dataAlloc(sizeof(KernelLaunchEnvironmentTy),
/*HostPtr=*/nullptr,
TargetAllocTy::TARGET_ALLOC_DEVICE);
if (!AllocOrErr)
return AllocOrErr.takeError();
// Remember to free the memory later.
AsyncInfoWrapper.freeAllocationAfterSynchronization(*AllocOrErr);
/// Use the KLE in the __tgt_async_info to ensure a stable address for the
/// async data transfer.
auto &LocalKLE = (*AsyncInfoWrapper).KernelLaunchEnvironment;
LocalKLE = KernelLaunchEnvironment;
{
auto AllocOrErr = GenericDevice.dataAlloc(
KernelEnvironment.Configuration.ReductionDataSize *
KernelEnvironment.Configuration.ReductionBufferLength,
/*HostPtr=*/nullptr, TargetAllocTy::TARGET_ALLOC_DEVICE);
if (!AllocOrErr)
return AllocOrErr.takeError();
LocalKLE.ReductionBuffer = *AllocOrErr;
// Remember to free the memory later.
AsyncInfoWrapper.freeAllocationAfterSynchronization(*AllocOrErr);
}
INFO(OMP_INFOTYPE_DATA_TRANSFER, GenericDevice.getDeviceId(),
"Copying data from host to device, HstPtr=" DPxMOD ", TgtPtr=" DPxMOD
", Size=%" PRId64 ", Name=KernelLaunchEnv\n",
DPxPTR(&LocalKLE), DPxPTR(*AllocOrErr),
sizeof(KernelLaunchEnvironmentTy));
auto Err = GenericDevice.dataSubmit(*AllocOrErr, &LocalKLE,
sizeof(KernelLaunchEnvironmentTy),
AsyncInfoWrapper);
if (Err)
return Err;
return static_cast<KernelLaunchEnvironmentTy *>(*AllocOrErr);
}
Error GenericKernelTy::printLaunchInfo(GenericDeviceTy &GenericDevice,
KernelArgsTy &KernelArgs,
uint32_t NumThreads,
uint64_t NumBlocks) const {
INFO(OMP_INFOTYPE_PLUGIN_KERNEL, GenericDevice.getDeviceId(),
"Launching kernel %s with %" PRIu64
" blocks and %d threads in %s mode\n",
getName(), NumBlocks, NumThreads, getExecutionModeName());
return printLaunchInfoDetails(GenericDevice, KernelArgs, NumThreads,
NumBlocks);
}
Error GenericKernelTy::printLaunchInfoDetails(GenericDeviceTy &GenericDevice,
KernelArgsTy &KernelArgs,
uint32_t NumThreads,
uint64_t NumBlocks) const {
return Plugin::success();
}
Error GenericKernelTy::launch(GenericDeviceTy &GenericDevice, void **ArgPtrs,
ptrdiff_t *ArgOffsets, KernelArgsTy &KernelArgs,
AsyncInfoWrapperTy &AsyncInfoWrapper) const {
llvm::SmallVector<void *, 16> Args;
llvm::SmallVector<void *, 16> Ptrs;
auto KernelLaunchEnvOrErr = getKernelLaunchEnvironment(
GenericDevice, KernelArgs.Version, AsyncInfoWrapper);
if (!KernelLaunchEnvOrErr)
return KernelLaunchEnvOrErr.takeError();
void *KernelArgsPtr =
prepareArgs(GenericDevice, ArgPtrs, ArgOffsets, KernelArgs.NumArgs, Args,
Ptrs, *KernelLaunchEnvOrErr);
uint32_t NumThreads = getNumThreads(GenericDevice, KernelArgs.ThreadLimit);
uint64_t NumBlocks =
getNumBlocks(GenericDevice, KernelArgs.NumTeams, KernelArgs.Tripcount,
NumThreads, KernelArgs.ThreadLimit[0] > 0);
// Record the kernel description after we modified the argument count and num
// blocks/threads.
if (RecordReplay.isRecording()) {
RecordReplay.saveImage(getName(), getImage());
RecordReplay.saveKernelInput(getName(), getImage());
RecordReplay.saveKernelDescr(getName(), Ptrs.data(), KernelArgs.NumArgs,
NumBlocks, NumThreads, KernelArgs.Tripcount);
}
if (auto Err =
printLaunchInfo(GenericDevice, KernelArgs, NumThreads, NumBlocks))
return Err;
return launchImpl(GenericDevice, NumThreads, NumBlocks, KernelArgs,
KernelArgsPtr, AsyncInfoWrapper);
}
void *GenericKernelTy::prepareArgs(
GenericDeviceTy &GenericDevice, void **ArgPtrs, ptrdiff_t *ArgOffsets,
uint32_t &NumArgs, llvm::SmallVectorImpl<void *> &Args,
llvm::SmallVectorImpl<void *> &Ptrs,
KernelLaunchEnvironmentTy *KernelLaunchEnvironment) const {
if (isCtorOrDtor())
return nullptr;
uint32_t KLEOffset = !!KernelLaunchEnvironment;
NumArgs += KLEOffset;
if (NumArgs == 0)
return nullptr;
Args.resize(NumArgs);
Ptrs.resize(NumArgs);
if (KernelLaunchEnvironment) {
Ptrs[0] = KernelLaunchEnvironment;
Args[0] = &Ptrs[0];
}
for (int I = KLEOffset; I < NumArgs; ++I) {
Ptrs[I] =
(void *)((intptr_t)ArgPtrs[I - KLEOffset] + ArgOffsets[I - KLEOffset]);
Args[I] = &Ptrs[I];
}
return &Args[0];
}
uint32_t GenericKernelTy::getNumThreads(GenericDeviceTy &GenericDevice,
uint32_t ThreadLimitClause[3]) const {
assert(ThreadLimitClause[1] == 0 && ThreadLimitClause[2] == 0 &&
"Multi dimensional launch not supported yet.");
if (IsBareKernel && ThreadLimitClause[0] > 0)
return ThreadLimitClause[0];
if (ThreadLimitClause[0] > 0 && isGenericMode())
ThreadLimitClause[0] += GenericDevice.getWarpSize();
return std::min(MaxNumThreads, (ThreadLimitClause[0] > 0)
? ThreadLimitClause[0]
: PreferredNumThreads);
}
uint64_t GenericKernelTy::getNumBlocks(GenericDeviceTy &GenericDevice,
uint32_t NumTeamsClause[3],
uint64_t LoopTripCount,
uint32_t &NumThreads,
bool IsNumThreadsFromUser) const {
assert(NumTeamsClause[1] == 0 && NumTeamsClause[2] == 0 &&
"Multi dimensional launch not supported yet.");
if (IsBareKernel && NumTeamsClause[0] > 0)
return NumTeamsClause[0];
if (NumTeamsClause[0] > 0) {
// TODO: We need to honor any value and consequently allow more than the
// block limit. For this we might need to start multiple kernels or let the
// blocks start again until the requested number has been started.
return std::min(NumTeamsClause[0], GenericDevice.getBlockLimit());
}
uint64_t DefaultNumBlocks = GenericDevice.getDefaultNumBlocks();
uint64_t TripCountNumBlocks = std::numeric_limits<uint64_t>::max();
if (LoopTripCount > 0) {
if (isSPMDMode()) {
// We have a combined construct, i.e. `target teams distribute
// parallel for [simd]`. We launch so many teams so that each thread
// will execute one iteration of the loop; rounded up to the nearest
// integer. However, if that results in too few teams, we artificially
// reduce the thread count per team to increase the outer parallelism.
auto MinThreads = GenericDevice.getMinThreadsForLowTripCountLoop();
MinThreads = std::min(MinThreads, NumThreads);
// Honor the thread_limit clause; only lower the number of threads.
[[maybe_unused]] auto OldNumThreads = NumThreads;
if (LoopTripCount >= DefaultNumBlocks * NumThreads ||
IsNumThreadsFromUser) {
// Enough parallelism for teams and threads.
TripCountNumBlocks = ((LoopTripCount - 1) / NumThreads) + 1;
assert(IsNumThreadsFromUser ||
TripCountNumBlocks >= DefaultNumBlocks &&
"Expected sufficient outer parallelism.");
} else if (LoopTripCount >= DefaultNumBlocks * MinThreads) {
// Enough parallelism for teams, limit threads.
// This case is hard; for now, we force "full warps":
// First, compute a thread count assuming DefaultNumBlocks.
auto NumThreadsDefaultBlocks =
(LoopTripCount + DefaultNumBlocks - 1) / DefaultNumBlocks;
// Now get a power of two that is larger or equal.
auto NumThreadsDefaultBlocksP2 =
llvm::PowerOf2Ceil(NumThreadsDefaultBlocks);
// Do not increase a thread limit given be the user.
NumThreads = std::min(NumThreads, uint32_t(NumThreadsDefaultBlocksP2));
assert(NumThreads >= MinThreads &&
"Expected sufficient inner parallelism.");
TripCountNumBlocks = ((LoopTripCount - 1) / NumThreads) + 1;
} else {
// Not enough parallelism for teams and threads, limit both.
NumThreads = std::min(NumThreads, MinThreads);
TripCountNumBlocks = ((LoopTripCount - 1) / NumThreads) + 1;
}
assert(NumThreads * TripCountNumBlocks >= LoopTripCount &&
"Expected sufficient parallelism");
assert(OldNumThreads >= NumThreads &&
"Number of threads cannot be increased!");
} else {
assert((isGenericMode() || isGenericSPMDMode()) &&
"Unexpected execution mode!");
// If we reach this point, then we have a non-combined construct, i.e.
// `teams distribute` with a nested `parallel for` and each team is
// assigned one iteration of the `distribute` loop. E.g.:
//
// #pragma omp target teams distribute
// for(...loop_tripcount...) {
// #pragma omp parallel for
// for(...) {}
// }
//
// Threads within a team will execute the iterations of the `parallel`
// loop.
TripCountNumBlocks = LoopTripCount;
}
}
// If the loops are long running we rather reuse blocks than spawn too many.
uint32_t PreferredNumBlocks = std::min(TripCountNumBlocks, DefaultNumBlocks);
return std::min(PreferredNumBlocks, GenericDevice.getBlockLimit());
}
GenericDeviceTy::GenericDeviceTy(GenericPluginTy &Plugin, int32_t DeviceId,
int32_t NumDevices,
const llvm::omp::GV &OMPGridValues)
: Plugin(Plugin), MemoryManager(nullptr), OMP_TeamLimit("OMP_TEAM_LIMIT"),
OMP_NumTeams("OMP_NUM_TEAMS"),
OMP_TeamsThreadLimit("OMP_TEAMS_THREAD_LIMIT"),
OMPX_DebugKind("LIBOMPTARGET_DEVICE_RTL_DEBUG"),
OMPX_SharedMemorySize("LIBOMPTARGET_SHARED_MEMORY_SIZE"),
// Do not initialize the following two envars since they depend on the
// device initialization. These cannot be consulted until the device is
// initialized correctly. We intialize them in GenericDeviceTy::init().
OMPX_TargetStackSize(), OMPX_TargetHeapSize(),
// By default, the initial number of streams and events is 1.
OMPX_InitialNumStreams("LIBOMPTARGET_NUM_INITIAL_STREAMS", 1),
OMPX_InitialNumEvents("LIBOMPTARGET_NUM_INITIAL_EVENTS", 1),
DeviceId(DeviceId), GridValues(OMPGridValues),
PeerAccesses(NumDevices, PeerAccessState::PENDING), PeerAccessesLock(),
PinnedAllocs(*this), RPCServer(nullptr) {
#ifdef OMPT_SUPPORT
OmptInitialized.store(false);
// Bind the callbacks to this device's member functions
#define bindOmptCallback(Name, Type, Code) \
if (ompt::Initialized && ompt::lookupCallbackByCode) { \
ompt::lookupCallbackByCode((ompt_callbacks_t)(Code), \
((ompt_callback_t *)&(Name##_fn))); \
DP("OMPT: class bound %s=%p\n", #Name, ((void *)(uint64_t)Name##_fn)); \
}
FOREACH_OMPT_DEVICE_EVENT(bindOmptCallback);
#undef bindOmptCallback
#endif
}
Error GenericDeviceTy::init(GenericPluginTy &Plugin) {
if (auto Err = initImpl(Plugin))
return Err;
#ifdef OMPT_SUPPORT
if (ompt::Initialized) {
bool ExpectedStatus = false;
if (OmptInitialized.compare_exchange_strong(ExpectedStatus, true))
performOmptCallback(device_initialize, /*device_num=*/DeviceId +
Plugin.getDeviceIdStartIndex(),
/*type=*/getComputeUnitKind().c_str(),
/*device=*/reinterpret_cast<ompt_device_t *>(this),
/*lookup=*/ompt::lookupCallbackByName,
/*documentation=*/nullptr);
}
#endif
// Read and reinitialize the envars that depend on the device initialization.
// Notice these two envars may change the stack size and heap size of the
// device, so they need the device properly initialized.
auto StackSizeEnvarOrErr = UInt64Envar::create(
"LIBOMPTARGET_STACK_SIZE",
[this](uint64_t &V) -> Error { return getDeviceStackSize(V); },
[this](uint64_t V) -> Error { return setDeviceStackSize(V); });
if (!StackSizeEnvarOrErr)
return StackSizeEnvarOrErr.takeError();
OMPX_TargetStackSize = std::move(*StackSizeEnvarOrErr);
auto HeapSizeEnvarOrErr = UInt64Envar::create(
"LIBOMPTARGET_HEAP_SIZE",
[this](uint64_t &V) -> Error { return getDeviceHeapSize(V); },
[this](uint64_t V) -> Error { return setDeviceHeapSize(V); });
if (!HeapSizeEnvarOrErr)
return HeapSizeEnvarOrErr.takeError();
OMPX_TargetHeapSize = std::move(*HeapSizeEnvarOrErr);
// Update the maximum number of teams and threads after the device
// initialization sets the corresponding hardware limit.
if (OMP_NumTeams > 0)
GridValues.GV_Max_Teams =
std::min(GridValues.GV_Max_Teams, uint32_t(OMP_NumTeams));
if (OMP_TeamsThreadLimit > 0)
GridValues.GV_Max_WG_Size =
std::min(GridValues.GV_Max_WG_Size, uint32_t(OMP_TeamsThreadLimit));
// Enable the memory manager if required.
auto [ThresholdMM, EnableMM] = MemoryManagerTy::getSizeThresholdFromEnv();
if (EnableMM)
MemoryManager = new MemoryManagerTy(*this, ThresholdMM);
return Plugin::success();
}
Error GenericDeviceTy::deinit(GenericPluginTy &Plugin) {
for (DeviceImageTy *Image : LoadedImages)
if (auto Err = callGlobalDestructors(Plugin, *Image))
return Err;
if (OMPX_DebugKind.get() & uint32_t(DeviceDebugKind::AllocationTracker)) {
GenericGlobalHandlerTy &GHandler = Plugin.getGlobalHandler();
for (auto *Image : LoadedImages) {
DeviceMemoryPoolTrackingTy ImageDeviceMemoryPoolTracking = {0, 0, ~0U, 0};
GlobalTy TrackerGlobal("__omp_rtl_device_memory_pool_tracker",
sizeof(DeviceMemoryPoolTrackingTy),
&ImageDeviceMemoryPoolTracking);
if (auto Err =
GHandler.readGlobalFromDevice(*this, *Image, TrackerGlobal)) {
consumeError(std::move(Err));
continue;
}
DeviceMemoryPoolTracking.combine(ImageDeviceMemoryPoolTracking);
}
// TODO: Write this by default into a file.
printf("\n\n|-----------------------\n"
"| Device memory tracker:\n"
"|-----------------------\n"
"| #Allocations: %lu\n"
"| Byes allocated: %lu\n"
"| Minimal allocation: %lu\n"
"| Maximal allocation: %lu\n"
"|-----------------------\n\n\n",
DeviceMemoryPoolTracking.NumAllocations,
DeviceMemoryPoolTracking.AllocationTotal,
DeviceMemoryPoolTracking.AllocationMin,
DeviceMemoryPoolTracking.AllocationMax);
}
// Delete the memory manager before deinitializing the device. Otherwise,
// we may delete device allocations after the device is deinitialized.
if (MemoryManager)
delete MemoryManager;
MemoryManager = nullptr;
if (RecordReplay.isRecordingOrReplaying())
RecordReplay.deinit();
if (RPCServer)
if (auto Err = RPCServer->deinitDevice(*this))
return Err;
#ifdef OMPT_SUPPORT
if (ompt::Initialized) {
bool ExpectedStatus = true;
if (OmptInitialized.compare_exchange_strong(ExpectedStatus, false))
performOmptCallback(device_finalize,
/*device_num=*/DeviceId +
Plugin.getDeviceIdStartIndex());
}
#endif
return deinitImpl();
}
Expected<DeviceImageTy *>
GenericDeviceTy::loadBinary(GenericPluginTy &Plugin,
const __tgt_device_image *InputTgtImage) {
assert(InputTgtImage && "Expected non-null target image");
DP("Load data from image " DPxMOD "\n", DPxPTR(InputTgtImage->ImageStart));
auto PostJITImageOrErr = Plugin.getJIT().process(*InputTgtImage, *this);
if (!PostJITImageOrErr) {
auto Err = PostJITImageOrErr.takeError();
REPORT("Failure to jit IR image %p on device %d: %s\n", InputTgtImage,
DeviceId, toString(std::move(Err)).data());
return nullptr;
}
// Load the binary and allocate the image object. Use the next available id
// for the image id, which is the number of previously loaded images.
auto ImageOrErr =
loadBinaryImpl(PostJITImageOrErr.get(), LoadedImages.size());
if (!ImageOrErr)
return ImageOrErr.takeError();
DeviceImageTy *Image = *ImageOrErr;
assert(Image != nullptr && "Invalid image");
if (InputTgtImage != PostJITImageOrErr.get())
Image->setTgtImageBitcode(InputTgtImage);
// Add the image to list.
LoadedImages.push_back(Image);
// Setup the device environment if needed.
if (auto Err = setupDeviceEnvironment(Plugin, *Image))
return std::move(Err);
// Setup the global device memory pool if needed.
if (!RecordReplay.isReplaying() && shouldSetupDeviceMemoryPool()) {
uint64_t HeapSize;
auto SizeOrErr = getDeviceHeapSize(HeapSize);
if (SizeOrErr) {
REPORT("No global device memory pool due to error: %s\n",
toString(std::move(SizeOrErr)).data());
} else if (auto Err = setupDeviceMemoryPool(Plugin, *Image, HeapSize))
return std::move(Err);
}
if (auto Err = setupRPCServer(Plugin, *Image))
return std::move(Err);
#ifdef OMPT_SUPPORT
if (ompt::Initialized) {
size_t Bytes =
getPtrDiff(InputTgtImage->ImageEnd, InputTgtImage->ImageStart);
performOmptCallback(
device_load, /*device_num=*/DeviceId + Plugin.getDeviceIdStartIndex(),
/*FileName=*/nullptr, /*FileOffset=*/0, /*VmaInFile=*/nullptr,
/*ImgSize=*/Bytes, /*HostAddr=*/InputTgtImage->ImageStart,
/*DeviceAddr=*/nullptr, /* FIXME: ModuleId */ 0);
}
#endif
// Call any global constructors present on the device.
if (auto Err = callGlobalConstructors(Plugin, *Image))
return std::move(Err);
// Return the pointer to the table of entries.
return Image;
}
Error GenericDeviceTy::setupDeviceEnvironment(GenericPluginTy &Plugin,
DeviceImageTy &Image) {
// There are some plugins that do not need this step.
if (!shouldSetupDeviceEnvironment())
return Plugin::success();
// Obtain a table mapping host function pointers to device function pointers.
auto CallTablePairOrErr = setupIndirectCallTable(Plugin, *this, Image);
if (!CallTablePairOrErr)
return CallTablePairOrErr.takeError();
DeviceEnvironmentTy DeviceEnvironment;
DeviceEnvironment.DeviceDebugKind = OMPX_DebugKind;
DeviceEnvironment.NumDevices = Plugin.getNumDevices();
// TODO: The device ID used here is not the real device ID used by OpenMP.
DeviceEnvironment.DeviceNum = DeviceId;
DeviceEnvironment.DynamicMemSize = OMPX_SharedMemorySize;
DeviceEnvironment.ClockFrequency = getClockFrequency();
DeviceEnvironment.IndirectCallTable =
reinterpret_cast<uintptr_t>(CallTablePairOrErr->first);
DeviceEnvironment.IndirectCallTableSize = CallTablePairOrErr->second;
DeviceEnvironment.HardwareParallelism = getHardwareParallelism();
// Create the metainfo of the device environment global.
GlobalTy DevEnvGlobal("__omp_rtl_device_environment",
sizeof(DeviceEnvironmentTy), &DeviceEnvironment);
// Write device environment values to the device.
GenericGlobalHandlerTy &GHandler = Plugin.getGlobalHandler();
if (auto Err = GHandler.writeGlobalToDevice(*this, Image, DevEnvGlobal)) {
DP("Missing symbol %s, continue execution anyway.\n",
DevEnvGlobal.getName().data());
consumeError(std::move(Err));
}
return Plugin::success();
}
Error GenericDeviceTy::setupDeviceMemoryPool(GenericPluginTy &Plugin,
DeviceImageTy &Image,
uint64_t PoolSize) {
// Free the old pool, if any.
if (DeviceMemoryPool.Ptr) {
if (auto Err = dataDelete(DeviceMemoryPool.Ptr,
TargetAllocTy::TARGET_ALLOC_DEVICE))
return Err;
}
DeviceMemoryPool.Size = PoolSize;
auto AllocOrErr = dataAlloc(PoolSize, /*HostPtr=*/nullptr,
TargetAllocTy::TARGET_ALLOC_DEVICE);
if (AllocOrErr) {
DeviceMemoryPool.Ptr = *AllocOrErr;
} else {
auto Err = AllocOrErr.takeError();
REPORT("Failure to allocate device memory for global memory pool: %s\n",
toString(std::move(Err)).data());
DeviceMemoryPool.Ptr = nullptr;
DeviceMemoryPool.Size = 0;
}
// Create the metainfo of the device environment global.
GenericGlobalHandlerTy &GHandler = Plugin.getGlobalHandler();
if (!GHandler.isSymbolInImage(*this, Image,
"__omp_rtl_device_memory_pool_tracker")) {
DP("Skip the memory pool as there is no tracker symbol in the image.");
return Error::success();
}
GlobalTy TrackerGlobal("__omp_rtl_device_memory_pool_tracker",
sizeof(DeviceMemoryPoolTrackingTy),
&DeviceMemoryPoolTracking);
if (auto Err = GHandler.writeGlobalToDevice(*this, Image, TrackerGlobal))
return Err;
// Create the metainfo of the device environment global.
GlobalTy DevEnvGlobal("__omp_rtl_device_memory_pool",
sizeof(DeviceMemoryPoolTy), &DeviceMemoryPool);
// Write device environment values to the device.
return GHandler.writeGlobalToDevice(*this, Image, DevEnvGlobal);
}
Error GenericDeviceTy::setupRPCServer(GenericPluginTy &Plugin,
DeviceImageTy &Image) {
// The plugin either does not need an RPC server or it is unavailible.
if (!shouldSetupRPCServer())
return Plugin::success();
// Check if this device needs to run an RPC server.
RPCServerTy &Server = Plugin.getRPCServer();
auto UsingOrErr =
Server.isDeviceUsingRPC(*this, Plugin.getGlobalHandler(), Image);
if (!UsingOrErr)
return UsingOrErr.takeError();
if (!UsingOrErr.get())
return Plugin::success();
if (auto Err = Server.initDevice(*this, Plugin.getGlobalHandler(), Image))
return Err;
RPCServer = &Server;
DP("Running an RPC server on device %d\n", getDeviceId());
return Plugin::success();
}
Error PinnedAllocationMapTy::insertEntry(void *HstPtr, void *DevAccessiblePtr,
size_t Size, bool ExternallyLocked) {
// Insert the new entry into the map.
auto Res = Allocs.insert({HstPtr, DevAccessiblePtr, Size, ExternallyLocked});
if (!Res.second)
return Plugin::error("Cannot insert locked buffer entry");
// Check whether the next entry overlaps with the inserted entry.
auto It = std::next(Res.first);
if (It == Allocs.end())
return Plugin::success();
const EntryTy *NextEntry = &(*It);
if (intersects(NextEntry->HstPtr, NextEntry->Size, HstPtr, Size))
return Plugin::error("Partial overlapping not allowed in locked buffers");
return Plugin::success();
}
Error PinnedAllocationMapTy::eraseEntry(const EntryTy &Entry) {
// Erase the existing entry. Notice this requires an additional map lookup,
// but this should not be a performance issue. Using iterators would make
// the code more difficult to read.
size_t Erased = Allocs.erase({Entry.HstPtr});
if (!Erased)
return Plugin::error("Cannot erase locked buffer entry");
return Plugin::success();
}
Error PinnedAllocationMapTy::registerEntryUse(const EntryTy &Entry,
void *HstPtr, size_t Size) {
if (!contains(Entry.HstPtr, Entry.Size, HstPtr, Size))
return Plugin::error("Partial overlapping not allowed in locked buffers");
++Entry.References;
return Plugin::success();
}
Expected<bool> PinnedAllocationMapTy::unregisterEntryUse(const EntryTy &Entry) {
if (Entry.References == 0)
return Plugin::error("Invalid number of references");
// Return whether this was the last user.
return (--Entry.References == 0);
}
Error PinnedAllocationMapTy::registerHostBuffer(void *HstPtr,
void *DevAccessiblePtr,
size_t Size) {
assert(HstPtr && "Invalid pointer");
assert(DevAccessiblePtr && "Invalid pointer");
assert(Size && "Invalid size");
std::lock_guard<std::shared_mutex> Lock(Mutex);
// No pinned allocation should intersect.
const EntryTy *Entry = findIntersecting(HstPtr);
if (Entry)
return Plugin::error("Cannot insert entry due to an existing one");
// Now insert the new entry.
return insertEntry(HstPtr, DevAccessiblePtr, Size);
}
Error PinnedAllocationMapTy::unregisterHostBuffer(void *HstPtr) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
const EntryTy *Entry = findIntersecting(HstPtr);
if (!Entry)
return Plugin::error("Cannot find locked buffer");
// The address in the entry should be the same we are unregistering.
if (Entry->HstPtr != HstPtr)
return Plugin::error("Unexpected host pointer in locked buffer entry");
// Unregister from the entry.
auto LastUseOrErr = unregisterEntryUse(*Entry);
if (!LastUseOrErr)
return LastUseOrErr.takeError();
// There should be no other references to the pinned allocation.
if (!(*LastUseOrErr))
return Plugin::error("The locked buffer is still being used");
// Erase the entry from the map.
return eraseEntry(*Entry);
}
Expected<void *> PinnedAllocationMapTy::lockHostBuffer(void *HstPtr,
size_t Size) {
assert(HstPtr && "Invalid pointer");
assert(Size && "Invalid size");
std::lock_guard<std::shared_mutex> Lock(Mutex);
const EntryTy *Entry = findIntersecting(HstPtr);
if (Entry) {
// An already registered intersecting buffer was found. Register a new use.
if (auto Err = registerEntryUse(*Entry, HstPtr, Size))
return std::move(Err);
// Return the device accessible pointer with the correct offset.
return advanceVoidPtr(Entry->DevAccessiblePtr,
getPtrDiff(HstPtr, Entry->HstPtr));
}
// No intersecting registered allocation found in the map. First, lock the
// host buffer and retrieve the device accessible pointer.
auto DevAccessiblePtrOrErr = Device.dataLockImpl(HstPtr, Size);
if (!DevAccessiblePtrOrErr)
return DevAccessiblePtrOrErr.takeError();
// Now insert the new entry into the map.
if (auto Err = insertEntry(HstPtr, *DevAccessiblePtrOrErr, Size))
return std::move(Err);
// Return the device accessible pointer.
return *DevAccessiblePtrOrErr;
}
Error PinnedAllocationMapTy::unlockHostBuffer(void *HstPtr) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
const EntryTy *Entry = findIntersecting(HstPtr);
if (!Entry)
return Plugin::error("Cannot find locked buffer");
// Unregister from the locked buffer. No need to do anything if there are
// others using the allocation.
auto LastUseOrErr = unregisterEntryUse(*Entry);
if (!LastUseOrErr)
return LastUseOrErr.takeError();
// No need to do anything if there are others using the allocation.
if (!(*LastUseOrErr))
return Plugin::success();
// This was the last user of the allocation. Unlock the original locked buffer
// if it was locked by the plugin. Do not unlock it if it was locked by an
// external entity. Unlock the buffer using the host pointer of the entry.
if (!Entry->ExternallyLocked)
if (auto Err = Device.dataUnlockImpl(Entry->HstPtr))
return Err;
// Erase the entry from the map.
return eraseEntry(*Entry);
}
Error PinnedAllocationMapTy::lockMappedHostBuffer(void *HstPtr, size_t Size) {
assert(HstPtr && "Invalid pointer");
assert(Size && "Invalid size");
std::lock_guard<std::shared_mutex> Lock(Mutex);
// If previously registered, just register a new user on the entry.
const EntryTy *Entry = findIntersecting(HstPtr);
if (Entry)
return registerEntryUse(*Entry, HstPtr, Size);
size_t BaseSize;
void *BaseHstPtr, *BaseDevAccessiblePtr;
// Check if it was externally pinned by a vendor-specific API.
auto IsPinnedOrErr = Device.isPinnedPtrImpl(HstPtr, BaseHstPtr,
BaseDevAccessiblePtr, BaseSize);
if (!IsPinnedOrErr)
return IsPinnedOrErr.takeError();
// If pinned, just insert the entry representing the whole pinned buffer.
if (*IsPinnedOrErr)
return insertEntry(BaseHstPtr, BaseDevAccessiblePtr, BaseSize,
/*Externallylocked=*/true);
// Not externally pinned. Do nothing if locking of mapped buffers is disabled.
if (!LockMappedBuffers)
return Plugin::success();
// Otherwise, lock the buffer and insert the new entry.
auto DevAccessiblePtrOrErr = Device.dataLockImpl(HstPtr, Size);
if (!DevAccessiblePtrOrErr) {
// Errors may be tolerated.
if (!IgnoreLockMappedFailures)
return DevAccessiblePtrOrErr.takeError();
consumeError(DevAccessiblePtrOrErr.takeError());
return Plugin::success();
}
return insertEntry(HstPtr, *DevAccessiblePtrOrErr, Size);
}
Error PinnedAllocationMapTy::unlockUnmappedHostBuffer(void *HstPtr) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
// Check whether there is any intersecting entry.
const EntryTy *Entry = findIntersecting(HstPtr);
// No entry but automatic locking of mapped buffers is disabled, so
// nothing to do.
if (!Entry && !LockMappedBuffers)
return Plugin::success();
// No entry, automatic locking is enabled, but the locking may have failed, so
// do nothing.
if (!Entry && IgnoreLockMappedFailures)
return Plugin::success();
// No entry, but the automatic locking is enabled, so this is an error.
if (!Entry)
return Plugin::error("Locked buffer not found");
// There is entry, so unregister a user and check whether it was the last one.
auto LastUseOrErr = unregisterEntryUse(*Entry);
if (!LastUseOrErr)
return LastUseOrErr.takeError();
// If it is not the last one, there is nothing to do.
if (!(*LastUseOrErr))
return Plugin::success();
// Otherwise, if it was the last and the buffer was locked by the plugin,
// unlock it.
if (!Entry->ExternallyLocked)
if (auto Err = Device.dataUnlockImpl(Entry->HstPtr))
return Err;
// Finally erase the entry from the map.
return eraseEntry(*Entry);
}
Error GenericDeviceTy::synchronize(__tgt_async_info *AsyncInfo) {
if (!AsyncInfo || !AsyncInfo->Queue)
return Plugin::error("Invalid async info queue");
if (auto Err = synchronizeImpl(*AsyncInfo))
return Err;
for (auto *Ptr : AsyncInfo->AssociatedAllocations)
if (auto Err = dataDelete(Ptr, TargetAllocTy::TARGET_ALLOC_DEVICE))
return Err;
AsyncInfo->AssociatedAllocations.clear();
return Plugin::success();
}
Error GenericDeviceTy::queryAsync(__tgt_async_info *AsyncInfo) {
if (!AsyncInfo || !AsyncInfo->Queue)
return Plugin::error("Invalid async info queue");
return queryAsyncImpl(*AsyncInfo);
}
Error GenericDeviceTy::memoryVAMap(void **Addr, void *VAddr, size_t *RSize) {
return Plugin::error("Device does not suppport VA Management");
}
Error GenericDeviceTy::memoryVAUnMap(void *VAddr, size_t Size) {
return Plugin::error("Device does not suppport VA Management");
}
Error GenericDeviceTy::getDeviceMemorySize(uint64_t &DSize) {
return Plugin::error(
"Mising getDeviceMemorySize impelmentation (required by RR-heuristic");
}
Expected<void *> GenericDeviceTy::dataAlloc(int64_t Size, void *HostPtr,
TargetAllocTy Kind) {
void *Alloc = nullptr;
if (RecordReplay.isRecordingOrReplaying())
return RecordReplay.alloc(Size);
switch (Kind) {
case TARGET_ALLOC_DEFAULT:
case TARGET_ALLOC_DEVICE_NON_BLOCKING:
case TARGET_ALLOC_DEVICE:
if (MemoryManager) {
Alloc = MemoryManager->allocate(Size, HostPtr);
if (!Alloc)
return Plugin::error("Failed to allocate from memory manager");
break;
}
[[fallthrough]];
case TARGET_ALLOC_HOST:
case TARGET_ALLOC_SHARED:
Alloc = allocate(Size, HostPtr, Kind);
if (!Alloc)
return Plugin::error("Failed to allocate from device allocator");
}
// Report error if the memory manager or the device allocator did not return
// any memory buffer.
if (!Alloc)
return Plugin::error("Invalid target data allocation kind or requested "
"allocator not implemented yet");
// Register allocated buffer as pinned memory if the type is host memory.
if (Kind == TARGET_ALLOC_HOST)
if (auto Err = PinnedAllocs.registerHostBuffer(Alloc, Alloc, Size))
return std::move(Err);
return Alloc;
}
Error GenericDeviceTy::dataDelete(void *TgtPtr, TargetAllocTy Kind) {
// Free is a noop when recording or replaying.
if (RecordReplay.isRecordingOrReplaying())
return Plugin::success();
int Res;
if (MemoryManager)
Res = MemoryManager->free(TgtPtr);
else
Res = free(TgtPtr, Kind);
if (Res)
return Plugin::error("Failure to deallocate device pointer %p", TgtPtr);
// Unregister deallocated pinned memory buffer if the type is host memory.
if (Kind == TARGET_ALLOC_HOST)
if (auto Err = PinnedAllocs.unregisterHostBuffer(TgtPtr))
return Err;
return Plugin::success();
}
Error GenericDeviceTy::dataSubmit(void *TgtPtr, const void *HstPtr,
int64_t Size, __tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(*this, AsyncInfo);
auto Err = dataSubmitImpl(TgtPtr, HstPtr, Size, AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::dataRetrieve(void *HstPtr, const void *TgtPtr,
int64_t Size, __tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(*this, AsyncInfo);
auto Err = dataRetrieveImpl(HstPtr, TgtPtr, Size, AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::dataExchange(const void *SrcPtr, GenericDeviceTy &DstDev,
void *DstPtr, int64_t Size,
__tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(*this, AsyncInfo);
auto Err = dataExchangeImpl(SrcPtr, DstDev, DstPtr, Size, AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::launchKernel(void *EntryPtr, void **ArgPtrs,
ptrdiff_t *ArgOffsets,
KernelArgsTy &KernelArgs,
__tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(
*this, RecordReplay.isRecordingOrReplaying() ? nullptr : AsyncInfo);
GenericKernelTy &GenericKernel =
*reinterpret_cast<GenericKernelTy *>(EntryPtr);
auto Err = GenericKernel.launch(*this, ArgPtrs, ArgOffsets, KernelArgs,
AsyncInfoWrapper);
// 'finalize' here to guarantee next record-replay actions are in-sync
AsyncInfoWrapper.finalize(Err);
if (RecordReplay.isRecordingOrReplaying() &&
RecordReplay.isSaveOutputEnabled())
RecordReplay.saveKernelOutputInfo(GenericKernel.getName());
return Err;
}
Error GenericDeviceTy::initAsyncInfo(__tgt_async_info **AsyncInfoPtr) {
assert(AsyncInfoPtr && "Invalid async info");
*AsyncInfoPtr = new __tgt_async_info();
AsyncInfoWrapperTy AsyncInfoWrapper(*this, *AsyncInfoPtr);
auto Err = initAsyncInfoImpl(AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::initDeviceInfo(__tgt_device_info *DeviceInfo) {
assert(DeviceInfo && "Invalid device info");
return initDeviceInfoImpl(DeviceInfo);
}
Error GenericDeviceTy::printInfo() {
InfoQueueTy InfoQueue;
// Get the vendor-specific info entries describing the device properties.
if (auto Err = obtainInfoImpl(InfoQueue))
return Err;
// Print all info entries.
InfoQueue.print();
return Plugin::success();
}
Error GenericDeviceTy::createEvent(void **EventPtrStorage) {
return createEventImpl(EventPtrStorage);
}
Error GenericDeviceTy::destroyEvent(void *EventPtr) {
return destroyEventImpl(EventPtr);
}
Error GenericDeviceTy::recordEvent(void *EventPtr,
__tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(*this, AsyncInfo);
auto Err = recordEventImpl(EventPtr, AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::waitEvent(void *EventPtr, __tgt_async_info *AsyncInfo) {
AsyncInfoWrapperTy AsyncInfoWrapper(*this, AsyncInfo);
auto Err = waitEventImpl(EventPtr, AsyncInfoWrapper);
AsyncInfoWrapper.finalize(Err);
return Err;
}
Error GenericDeviceTy::syncEvent(void *EventPtr) {
return syncEventImpl(EventPtr);
}
bool GenericDeviceTy::useAutoZeroCopy() { return useAutoZeroCopyImpl(); }
Error GenericPluginTy::init() {
auto NumDevicesOrErr = initImpl();
if (!NumDevicesOrErr)
return NumDevicesOrErr.takeError();
NumDevices = *NumDevicesOrErr;
if (NumDevices == 0)
return Plugin::success();
assert(Devices.size() == 0 && "Plugin already initialized");
Devices.resize(NumDevices, nullptr);
GlobalHandler = createGlobalHandler();
assert(GlobalHandler && "Invalid global handler");
RPCServer = new RPCServerTy(*this);
assert(RPCServer && "Invalid RPC server");
return Plugin::success();
}
Error GenericPluginTy::deinit() {
// Deinitialize all active devices.
for (int32_t DeviceId = 0; DeviceId < NumDevices; ++DeviceId) {
if (Devices[DeviceId]) {
if (auto Err = deinitDevice(DeviceId))
return Err;
}
assert(!Devices[DeviceId] && "Device was not deinitialized");
}
// There is no global handler if no device is available.
if (GlobalHandler)
delete GlobalHandler;
if (RPCServer)
delete RPCServer;
// Perform last deinitializations on the plugin.
return deinitImpl();
}
Error GenericPluginTy::initDevice(int32_t DeviceId) {
assert(!Devices[DeviceId] && "Device already initialized");
// Create the device and save the reference.
GenericDeviceTy *Device = createDevice(*this, DeviceId, NumDevices);
assert(Device && "Invalid device");
// Save the device reference into the list.
Devices[DeviceId] = Device;
// Initialize the device and its resources.
return Device->init(*this);
}
Error GenericPluginTy::deinitDevice(int32_t DeviceId) {
// The device may be already deinitialized.
if (Devices[DeviceId] == nullptr)
return Plugin::success();
// Deinitialize the device and release its resources.
if (auto Err = Devices[DeviceId]->deinit(*this))
return Err;
// Delete the device and invalidate its reference.
delete Devices[DeviceId];
Devices[DeviceId] = nullptr;
return Plugin::success();
}
Expected<bool> GenericPluginTy::checkELFImage(StringRef Image) const {
// First check if this image is a regular ELF file.
if (!utils::elf::isELF(Image))
return false;
// Check if this image is an ELF with a matching machine value.
auto MachineOrErr = utils::elf::checkMachine(Image, getMagicElfBits());
if (!MachineOrErr)
return MachineOrErr.takeError();
if (!*MachineOrErr)
return false;
// Perform plugin-dependent checks for the specific architecture if needed.
return isELFCompatible(Image);
}
int32_t GenericPluginTy::is_valid_binary(__tgt_device_image *Image) {
StringRef Buffer(reinterpret_cast<const char *>(Image->ImageStart),
target::getPtrDiff(Image->ImageEnd, Image->ImageStart));
auto HandleError = [&](Error Err) -> bool {
[[maybe_unused]] std::string ErrStr = toString(std::move(Err));
DP("Failure to check validity of image %p: %s", Image, ErrStr.c_str());
return false;
};
switch (identify_magic(Buffer)) {
case file_magic::elf:
case file_magic::elf_relocatable:
case file_magic::elf_executable:
case file_magic::elf_shared_object:
case file_magic::elf_core: {
auto MatchOrErr = checkELFImage(Buffer);
if (Error Err = MatchOrErr.takeError())
return HandleError(std::move(Err));
return *MatchOrErr;
}
case file_magic::bitcode: {
auto MatchOrErr = getJIT().checkBitcodeImage(Buffer);
if (Error Err = MatchOrErr.takeError())
return HandleError(std::move(Err));
return *MatchOrErr;
}
default:
return false;
}
}
int32_t GenericPluginTy::init_device(int32_t DeviceId) {
auto Err = initDevice(DeviceId);
if (Err) {
REPORT("Failure to initialize device %d: %s\n", DeviceId,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::number_of_devices() { return getNumDevices(); }
int64_t GenericPluginTy::init_requires(int64_t RequiresFlags) {
setRequiresFlag(RequiresFlags);
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::is_data_exchangable(int32_t SrcDeviceId,
int32_t DstDeviceId) {
return isDataExchangable(SrcDeviceId, DstDeviceId);
}
int32_t GenericPluginTy::initialize_record_replay(int32_t DeviceId,
int64_t MemorySize,
void *VAddr, bool isRecord,
bool SaveOutput,
uint64_t &ReqPtrArgOffset) {
GenericDeviceTy &Device = getDevice(DeviceId);
RecordReplayTy::RRStatusTy Status =
isRecord ? RecordReplayTy::RRStatusTy::RRRecording
: RecordReplayTy::RRStatusTy::RRReplaying;
if (auto Err = RecordReplay.init(&Device, MemorySize, VAddr, Status,
SaveOutput, ReqPtrArgOffset)) {
REPORT("WARNING RR did not intialize RR-properly with %lu bytes"
"(Error: %s)\n",
MemorySize, toString(std::move(Err)).data());
RecordReplay.setStatus(RecordReplayTy::RRStatusTy::RRDeactivated);
if (!isRecord) {
return OFFLOAD_FAIL;
}
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::load_binary(int32_t DeviceId,
__tgt_device_image *TgtImage,
__tgt_device_binary *Binary) {
GenericDeviceTy &Device = getDevice(DeviceId);
auto ImageOrErr = Device.loadBinary(*this, TgtImage);
if (!ImageOrErr) {
auto Err = ImageOrErr.takeError();
REPORT("Failure to load binary image %p on device %d: %s\n", TgtImage,
DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
DeviceImageTy *Image = *ImageOrErr;
assert(Image != nullptr && "Invalid Image");
*Binary = __tgt_device_binary{reinterpret_cast<uint64_t>(Image)};
return OFFLOAD_SUCCESS;
}
void *GenericPluginTy::data_alloc(int32_t DeviceId, int64_t Size, void *HostPtr,
int32_t Kind) {
auto AllocOrErr =
getDevice(DeviceId).dataAlloc(Size, HostPtr, (TargetAllocTy)Kind);
if (!AllocOrErr) {
auto Err = AllocOrErr.takeError();
REPORT("Failure to allocate device memory: %s\n",
toString(std::move(Err)).data());
return nullptr;
}
assert(*AllocOrErr && "Null pointer upon successful allocation");
return *AllocOrErr;
}
int32_t GenericPluginTy::data_delete(int32_t DeviceId, void *TgtPtr,
int32_t Kind) {
auto Err =
getDevice(DeviceId).dataDelete(TgtPtr, static_cast<TargetAllocTy>(Kind));
if (Err) {
REPORT("Failure to deallocate device pointer %p: %s\n", TgtPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_lock(int32_t DeviceId, void *Ptr, int64_t Size,
void **LockedPtr) {
auto LockedPtrOrErr = getDevice(DeviceId).dataLock(Ptr, Size);
if (!LockedPtrOrErr) {
auto Err = LockedPtrOrErr.takeError();
REPORT("Failure to lock memory %p: %s\n", Ptr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
if (!(*LockedPtrOrErr)) {
REPORT("Failure to lock memory %p: obtained a null locked pointer\n", Ptr);
return OFFLOAD_FAIL;
}
*LockedPtr = *LockedPtrOrErr;
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_unlock(int32_t DeviceId, void *Ptr) {
auto Err = getDevice(DeviceId).dataUnlock(Ptr);
if (Err) {
REPORT("Failure to unlock memory %p: %s\n", Ptr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_notify_mapped(int32_t DeviceId, void *HstPtr,
int64_t Size) {
auto Err = getDevice(DeviceId).notifyDataMapped(HstPtr, Size);
if (Err) {
REPORT("Failure to notify data mapped %p: %s\n", HstPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_notify_unmapped(int32_t DeviceId, void *HstPtr) {
auto Err = getDevice(DeviceId).notifyDataUnmapped(HstPtr);
if (Err) {
REPORT("Failure to notify data unmapped %p: %s\n", HstPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_submit(int32_t DeviceId, void *TgtPtr,
void *HstPtr, int64_t Size) {
return data_submit_async(DeviceId, TgtPtr, HstPtr, Size,
/*AsyncInfoPtr=*/nullptr);
}
int32_t GenericPluginTy::data_submit_async(int32_t DeviceId, void *TgtPtr,
void *HstPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).dataSubmit(TgtPtr, HstPtr, Size, AsyncInfoPtr);
if (Err) {
REPORT("Failure to copy data from host to device. Pointers: host "
"= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_retrieve(int32_t DeviceId, void *HstPtr,
void *TgtPtr, int64_t Size) {
return data_retrieve_async(DeviceId, HstPtr, TgtPtr, Size,
/*AsyncInfoPtr=*/nullptr);
}
int32_t GenericPluginTy::data_retrieve_async(int32_t DeviceId, void *HstPtr,
void *TgtPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
auto Err =
getDevice(DeviceId).dataRetrieve(HstPtr, TgtPtr, Size, AsyncInfoPtr);
if (Err) {
REPORT("Faliure to copy data from device to host. Pointers: host "
"= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::data_exchange(int32_t SrcDeviceId, void *SrcPtr,
int32_t DstDeviceId, void *DstPtr,
int64_t Size) {
return data_exchange_async(SrcDeviceId, SrcPtr, DstDeviceId, DstPtr, Size,
/*AsyncInfoPtr=*/nullptr);
}
int32_t GenericPluginTy::data_exchange_async(int32_t SrcDeviceId, void *SrcPtr,
int DstDeviceId, void *DstPtr,
int64_t Size,
__tgt_async_info *AsyncInfo) {
GenericDeviceTy &SrcDevice = getDevice(SrcDeviceId);
GenericDeviceTy &DstDevice = getDevice(DstDeviceId);
auto Err = SrcDevice.dataExchange(SrcPtr, DstDevice, DstPtr, Size, AsyncInfo);
if (Err) {
REPORT("Failure to copy data from device (%d) to device (%d). Pointers: "
"host = " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
SrcDeviceId, DstDeviceId, DPxPTR(SrcPtr), DPxPTR(DstPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::launch_kernel(int32_t DeviceId, void *TgtEntryPtr,
void **TgtArgs, ptrdiff_t *TgtOffsets,
KernelArgsTy *KernelArgs,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).launchKernel(TgtEntryPtr, TgtArgs, TgtOffsets,
*KernelArgs, AsyncInfoPtr);
if (Err) {
REPORT("Failure to run target region " DPxMOD " in device %d: %s\n",
DPxPTR(TgtEntryPtr), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::synchronize(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).synchronize(AsyncInfoPtr);
if (Err) {
REPORT("Failure to synchronize stream %p: %s\n", AsyncInfoPtr->Queue,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::query_async(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).queryAsync(AsyncInfoPtr);
if (Err) {
REPORT("Failure to query stream %p: %s\n", AsyncInfoPtr->Queue,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
void GenericPluginTy::print_device_info(int32_t DeviceId) {
if (auto Err = getDevice(DeviceId).printInfo())
REPORT("Failure to print device %d info: %s\n", DeviceId,
toString(std::move(Err)).data());
}
int32_t GenericPluginTy::create_event(int32_t DeviceId, void **EventPtr) {
auto Err = getDevice(DeviceId).createEvent(EventPtr);
if (Err) {
REPORT("Failure to create event: %s\n", toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::record_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).recordEvent(EventPtr, AsyncInfoPtr);
if (Err) {
REPORT("Failure to record event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::wait_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
auto Err = getDevice(DeviceId).waitEvent(EventPtr, AsyncInfoPtr);
if (Err) {
REPORT("Failure to wait event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::sync_event(int32_t DeviceId, void *EventPtr) {
auto Err = getDevice(DeviceId).syncEvent(EventPtr);
if (Err) {
REPORT("Failure to synchronize event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::destroy_event(int32_t DeviceId, void *EventPtr) {
auto Err = getDevice(DeviceId).destroyEvent(EventPtr);
if (Err) {
REPORT("Failure to destroy event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
void GenericPluginTy::set_info_flag(uint32_t NewInfoLevel) {
std::atomic<uint32_t> &InfoLevel = getInfoLevelInternal();
InfoLevel.store(NewInfoLevel);
}
int32_t GenericPluginTy::init_async_info(int32_t DeviceId,
__tgt_async_info **AsyncInfoPtr) {
assert(AsyncInfoPtr && "Invalid async info");
auto Err = getDevice(DeviceId).initAsyncInfo(AsyncInfoPtr);
if (Err) {
REPORT("Failure to initialize async info at " DPxMOD " on device %d: %s\n",
DPxPTR(*AsyncInfoPtr), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::init_device_info(int32_t DeviceId,
__tgt_device_info *DeviceInfo,
const char **ErrStr) {
*ErrStr = "";
auto Err = getDevice(DeviceId).initDeviceInfo(DeviceInfo);
if (Err) {
REPORT("Failure to initialize device info at " DPxMOD " on device %d: %s\n",
DPxPTR(DeviceInfo), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::set_device_offset(int32_t DeviceIdOffset) {
setDeviceIdStartIndex(DeviceIdOffset);
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::use_auto_zero_copy(int32_t DeviceId) {
// Automatic zero-copy only applies to programs that did
// not request unified_shared_memory and are deployed on an
// APU with XNACK enabled.
if (getRequiresFlags() & OMP_REQ_UNIFIED_SHARED_MEMORY)
return false;
return getDevice(DeviceId).useAutoZeroCopy();
}
int32_t GenericPluginTy::get_global(__tgt_device_binary Binary, uint64_t Size,
const char *Name, void **DevicePtr) {
assert(Binary.handle && "Invalid device binary handle");
DeviceImageTy &Image = *reinterpret_cast<DeviceImageTy *>(Binary.handle);
GenericDeviceTy &Device = Image.getDevice();
GlobalTy DeviceGlobal(Name, Size);
GenericGlobalHandlerTy &GHandler = getGlobalHandler();
if (auto Err =
GHandler.getGlobalMetadataFromDevice(Device, Image, DeviceGlobal)) {
REPORT("Failure to look up global address: %s\n",
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
*DevicePtr = DeviceGlobal.getPtr();
assert(DevicePtr && "Invalid device global's address");
// Save the loaded globals if we are recording.
if (RecordReplay.isRecording())
RecordReplay.addEntry(Name, Size, *DevicePtr);
return OFFLOAD_SUCCESS;
}
int32_t GenericPluginTy::get_function(__tgt_device_binary Binary,
const char *Name, void **KernelPtr) {
assert(Binary.handle && "Invalid device binary handle");
DeviceImageTy &Image = *reinterpret_cast<DeviceImageTy *>(Binary.handle);
GenericDeviceTy &Device = Image.getDevice();
auto KernelOrErr = Device.constructKernel(Name);
if (Error Err = KernelOrErr.takeError()) {
REPORT("Failure to look up kernel: %s\n", toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
GenericKernelTy &Kernel = *KernelOrErr;
if (auto Err = Kernel.init(Device, Image)) {
REPORT("Failure to init kernel: %s\n", toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
// Note that this is not the kernel's device address.
*KernelPtr = &Kernel;
return OFFLOAD_SUCCESS;
}
bool llvm::omp::target::plugin::libomptargetSupportsRPC() {
#ifdef LIBOMPTARGET_RPC_SUPPORT
return true;
#else
return false;
#endif
}
/// Exposed library API function, basically wrappers around the GenericDeviceTy
/// functionality with the same name. All non-async functions are redirected
/// to the async versions right away with a NULL AsyncInfoPtr.
#ifdef __cplusplus
extern "C" {
#endif
int32_t __tgt_rtl_init_plugin() {
auto Err = PluginTy::initIfNeeded();
if (Err) {
[[maybe_unused]] std::string ErrStr = toString(std::move(Err));
DP("Failed to init plugin: %s", ErrStr.c_str());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *Image) {
if (!PluginTy::isActive())
return false;
return PluginTy::get().is_valid_binary(Image);
}
int32_t __tgt_rtl_init_device(int32_t DeviceId) {
return PluginTy::get().init_device(DeviceId);
}
int32_t __tgt_rtl_number_of_devices() {
return PluginTy::get().number_of_devices();
}
int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
return PluginTy::get().init_requires(RequiresFlags);
}
int32_t __tgt_rtl_is_data_exchangable(int32_t SrcDeviceId,
int32_t DstDeviceId) {
return PluginTy::get().is_data_exchangable(SrcDeviceId, DstDeviceId);
}
int32_t __tgt_rtl_initialize_record_replay(int32_t DeviceId, int64_t MemorySize,
void *VAddr, bool isRecord,
bool SaveOutput,
uint64_t &ReqPtrArgOffset) {
return PluginTy::get().initialize_record_replay(
DeviceId, MemorySize, VAddr, isRecord, SaveOutput, ReqPtrArgOffset);
}
int32_t __tgt_rtl_load_binary(int32_t DeviceId, __tgt_device_image *TgtImage,
__tgt_device_binary *Binary) {
return PluginTy::get().load_binary(DeviceId, TgtImage, Binary);
}
void *__tgt_rtl_data_alloc(int32_t DeviceId, int64_t Size, void *HostPtr,
int32_t Kind) {
return PluginTy::get().data_alloc(DeviceId, Size, HostPtr, Kind);
}
int32_t __tgt_rtl_data_delete(int32_t DeviceId, void *TgtPtr, int32_t Kind) {
return PluginTy::get().data_delete(DeviceId, TgtPtr, Kind);
}
int32_t __tgt_rtl_data_lock(int32_t DeviceId, void *Ptr, int64_t Size,
void **LockedPtr) {
return PluginTy::get().data_lock(DeviceId, Ptr, Size, LockedPtr);
}
int32_t __tgt_rtl_data_unlock(int32_t DeviceId, void *Ptr) {
return PluginTy::get().data_unlock(DeviceId, Ptr);
}
int32_t __tgt_rtl_data_notify_mapped(int32_t DeviceId, void *HstPtr,
int64_t Size) {
return PluginTy::get().data_notify_mapped(DeviceId, HstPtr, Size);
}
int32_t __tgt_rtl_data_notify_unmapped(int32_t DeviceId, void *HstPtr) {
return PluginTy::get().data_notify_unmapped(DeviceId, HstPtr);
}
int32_t __tgt_rtl_data_submit(int32_t DeviceId, void *TgtPtr, void *HstPtr,
int64_t Size) {
return PluginTy::get().data_submit(DeviceId, TgtPtr, HstPtr, Size);
}
int32_t __tgt_rtl_data_submit_async(int32_t DeviceId, void *TgtPtr,
void *HstPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().data_submit_async(DeviceId, TgtPtr, HstPtr, Size,
AsyncInfoPtr);
}
int32_t __tgt_rtl_data_retrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr,
int64_t Size) {
return PluginTy::get().data_retrieve(DeviceId, HstPtr, TgtPtr, Size);
}
int32_t __tgt_rtl_data_retrieve_async(int32_t DeviceId, void *HstPtr,
void *TgtPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().data_retrieve_async(DeviceId, HstPtr, TgtPtr, Size,
AsyncInfoPtr);
}
int32_t __tgt_rtl_data_exchange(int32_t SrcDeviceId, void *SrcPtr,
int32_t DstDeviceId, void *DstPtr,
int64_t Size) {
return PluginTy::get().data_exchange(SrcDeviceId, SrcPtr, DstDeviceId, DstPtr,
Size);
}
int32_t __tgt_rtl_data_exchange_async(int32_t SrcDeviceId, void *SrcPtr,
int DstDeviceId, void *DstPtr,
int64_t Size,
__tgt_async_info *AsyncInfo) {
return PluginTy::get().data_exchange_async(SrcDeviceId, SrcPtr, DstDeviceId,
DstPtr, Size, AsyncInfo);
}
int32_t __tgt_rtl_launch_kernel(int32_t DeviceId, void *TgtEntryPtr,
void **TgtArgs, ptrdiff_t *TgtOffsets,
KernelArgsTy *KernelArgs,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().launch_kernel(DeviceId, TgtEntryPtr, TgtArgs,
TgtOffsets, KernelArgs, AsyncInfoPtr);
}
int32_t __tgt_rtl_synchronize(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().synchronize(DeviceId, AsyncInfoPtr);
}
int32_t __tgt_rtl_query_async(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().query_async(DeviceId, AsyncInfoPtr);
}
void __tgt_rtl_print_device_info(int32_t DeviceId) {
PluginTy::get().print_device_info(DeviceId);
}
int32_t __tgt_rtl_create_event(int32_t DeviceId, void **EventPtr) {
return PluginTy::get().create_event(DeviceId, EventPtr);
}
int32_t __tgt_rtl_record_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().record_event(DeviceId, EventPtr, AsyncInfoPtr);
}
int32_t __tgt_rtl_wait_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
return PluginTy::get().wait_event(DeviceId, EventPtr, AsyncInfoPtr);
}
int32_t __tgt_rtl_sync_event(int32_t DeviceId, void *EventPtr) {
return PluginTy::get().sync_event(DeviceId, EventPtr);
}
int32_t __tgt_rtl_destroy_event(int32_t DeviceId, void *EventPtr) {
return PluginTy::get().destroy_event(DeviceId, EventPtr);
}
void __tgt_rtl_set_info_flag(uint32_t NewInfoLevel) {
return PluginTy::get().set_info_flag(NewInfoLevel);
}
int32_t __tgt_rtl_init_async_info(int32_t DeviceId,
__tgt_async_info **AsyncInfoPtr) {
return PluginTy::get().init_async_info(DeviceId, AsyncInfoPtr);
}
int32_t __tgt_rtl_init_device_info(int32_t DeviceId,
__tgt_device_info *DeviceInfo,
const char **ErrStr) {
return PluginTy::get().init_device_info(DeviceId, DeviceInfo, ErrStr);
}
int32_t __tgt_rtl_set_device_offset(int32_t DeviceIdOffset) {
return PluginTy::get().set_device_offset(DeviceIdOffset);
}
int32_t __tgt_rtl_use_auto_zero_copy(int32_t DeviceId) {
return PluginTy::get().use_auto_zero_copy(DeviceId);
}
int32_t __tgt_rtl_get_global(__tgt_device_binary Binary, uint64_t Size,
const char *Name, void **DevicePtr) {
return PluginTy::get().get_global(Binary, Size, Name, DevicePtr);
}
int32_t __tgt_rtl_get_function(__tgt_device_binary Binary, const char *Name,
void **KernelPtr) {
return PluginTy::get().get_function(Binary, Name, KernelPtr);
}
#ifdef __cplusplus
}
#endif