blob: 58a3b5df00fac6672c18f91396d80ecce817501e [file] [log] [blame]
//===----RTLs/amdgpu/utils/UtilitiesRTL.h ------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RTL Utilities for AMDGPU plugins
//
//===----------------------------------------------------------------------===//
#include <cstdint>
#include "Shared/Debug.h"
#include "Utils/ELF.h"
#include "omptarget.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Error.h"
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MsgPackDocument.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/YAMLTraits.h"
using namespace llvm::ELF;
namespace llvm {
namespace omp {
namespace target {
namespace plugin {
namespace utils {
// The implicit arguments of COV5 AMDGPU kernels.
struct AMDGPUImplicitArgsTy {
uint32_t BlockCountX;
uint32_t BlockCountY;
uint32_t BlockCountZ;
uint16_t GroupSizeX;
uint16_t GroupSizeY;
uint16_t GroupSizeZ;
uint8_t Unused0[46]; // 46 byte offset.
uint16_t GridDims;
uint8_t Unused1[54]; // 54 byte offset.
uint32_t DynamicLdsSize;
uint8_t Unused2[132]; // 132 byte offset.
};
// Dummy struct for COV4 implicitargs.
struct AMDGPUImplicitArgsTyCOV4 {
uint8_t Unused[56];
};
inline uint32_t getImplicitArgsSize(uint16_t Version) {
return Version < ELF::ELFABIVERSION_AMDGPU_HSA_V5
? sizeof(AMDGPUImplicitArgsTyCOV4)
: sizeof(AMDGPUImplicitArgsTy);
}
/// Check if an image is compatible with current system's environment. The
/// system environment is given as a 'target-id' which has the form:
///
/// <target-id> := <processor> ( ":" <target-feature> ( "+" | "-" ) )*
///
/// If a feature is not specific as '+' or '-' it is assumed to be in an 'any'
/// and is compatible with either '+' or '-'. The HSA runtime returns this
/// information using the target-id, while we use the ELF header to determine
/// these features.
inline bool isImageCompatibleWithEnv(StringRef ImageArch, uint32_t ImageFlags,
StringRef EnvTargetID) {
StringRef EnvArch = EnvTargetID.split(":").first;
// Trivial check if the base processors match.
if (EnvArch != ImageArch)
return false;
// Check if the image is requesting xnack on or off.
switch (ImageFlags & EF_AMDGPU_FEATURE_XNACK_V4) {
case EF_AMDGPU_FEATURE_XNACK_OFF_V4:
// The image is 'xnack-' so the environment must be 'xnack-'.
if (!EnvTargetID.contains("xnack-"))
return false;
break;
case EF_AMDGPU_FEATURE_XNACK_ON_V4:
// The image is 'xnack+' so the environment must be 'xnack+'.
if (!EnvTargetID.contains("xnack+"))
return false;
break;
case EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4:
case EF_AMDGPU_FEATURE_XNACK_ANY_V4:
default:
break;
}
// Check if the image is requesting sramecc on or off.
switch (ImageFlags & EF_AMDGPU_FEATURE_SRAMECC_V4) {
case EF_AMDGPU_FEATURE_SRAMECC_OFF_V4:
// The image is 'sramecc-' so the environment must be 'sramecc-'.
if (!EnvTargetID.contains("sramecc-"))
return false;
break;
case EF_AMDGPU_FEATURE_SRAMECC_ON_V4:
// The image is 'sramecc+' so the environment must be 'sramecc+'.
if (!EnvTargetID.contains("sramecc+"))
return false;
break;
case EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4:
case EF_AMDGPU_FEATURE_SRAMECC_ANY_V4:
break;
}
return true;
}
struct KernelMetaDataTy {
uint64_t KernelObject;
uint32_t GroupSegmentList;
uint32_t PrivateSegmentSize;
uint32_t SGPRCount;
uint32_t VGPRCount;
uint32_t SGPRSpillCount;
uint32_t VGPRSpillCount;
uint32_t KernelSegmentSize;
uint32_t ExplicitArgumentCount;
uint32_t ImplicitArgumentCount;
uint32_t RequestedWorkgroupSize[3];
uint32_t WorkgroupSizeHint[3];
uint32_t WavefronSize;
uint32_t MaxFlatWorkgroupSize;
};
namespace {
/// Reads the AMDGPU specific per-kernel-metadata from an image.
class KernelInfoReader {
public:
KernelInfoReader(StringMap<KernelMetaDataTy> &KIM) : KernelInfoMap(KIM) {}
/// Process ELF note to read AMDGPU metadata from respective information
/// fields.
Error processNote(const object::ELF64LE::Note &Note, size_t Align) {
if (Note.getName() != "AMDGPU")
return Error::success(); // We are not interested in other things
assert(Note.getType() == ELF::NT_AMDGPU_METADATA &&
"Parse AMDGPU MetaData");
auto Desc = Note.getDesc(Align);
StringRef MsgPackString =
StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
msgpack::Document MsgPackDoc;
if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
return Error::success();
AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
if (!Verifier.verify(MsgPackDoc.getRoot()))
return Error::success();
auto RootMap = MsgPackDoc.getRoot().getMap(true);
if (auto Err = iterateAMDKernels(RootMap))
return Err;
return Error::success();
}
private:
/// Extracts the relevant information via simple string look-up in the msgpack
/// document elements.
Error extractKernelData(msgpack::MapDocNode::MapTy::value_type V,
std::string &KernelName,
KernelMetaDataTy &KernelData) {
if (!V.first.isString())
return Error::success();
const auto IsKey = [](const msgpack::DocNode &DK, StringRef SK) {
return DK.getString() == SK;
};
const auto GetSequenceOfThreeInts = [](msgpack::DocNode &DN,
uint32_t *Vals) {
assert(DN.isArray() && "MsgPack DocNode is an array node");
auto DNA = DN.getArray();
assert(DNA.size() == 3 && "ArrayNode has at most three elements");
int I = 0;
for (auto DNABegin = DNA.begin(), DNAEnd = DNA.end(); DNABegin != DNAEnd;
++DNABegin) {
Vals[I++] = DNABegin->getUInt();
}
};
if (IsKey(V.first, ".name")) {
KernelName = V.second.toString();
} else if (IsKey(V.first, ".sgpr_count")) {
KernelData.SGPRCount = V.second.getUInt();
} else if (IsKey(V.first, ".sgpr_spill_count")) {
KernelData.SGPRSpillCount = V.second.getUInt();
} else if (IsKey(V.first, ".vgpr_count")) {
KernelData.VGPRCount = V.second.getUInt();
} else if (IsKey(V.first, ".vgpr_spill_count")) {
KernelData.VGPRSpillCount = V.second.getUInt();
} else if (IsKey(V.first, ".private_segment_fixed_size")) {
KernelData.PrivateSegmentSize = V.second.getUInt();
} else if (IsKey(V.first, ".group_segment_fixed_size")) {
KernelData.GroupSegmentList = V.second.getUInt();
} else if (IsKey(V.first, ".reqd_workgroup_size")) {
GetSequenceOfThreeInts(V.second, KernelData.RequestedWorkgroupSize);
} else if (IsKey(V.first, ".workgroup_size_hint")) {
GetSequenceOfThreeInts(V.second, KernelData.WorkgroupSizeHint);
} else if (IsKey(V.first, ".wavefront_size")) {
KernelData.WavefronSize = V.second.getUInt();
} else if (IsKey(V.first, ".max_flat_workgroup_size")) {
KernelData.MaxFlatWorkgroupSize = V.second.getUInt();
}
return Error::success();
}
/// Get the "amdhsa.kernels" element from the msgpack Document
Expected<msgpack::ArrayDocNode> getAMDKernelsArray(msgpack::MapDocNode &MDN) {
auto Res = MDN.find("amdhsa.kernels");
if (Res == MDN.end())
return createStringError(inconvertibleErrorCode(),
"Could not find amdhsa.kernels key");
auto Pair = *Res;
assert(Pair.second.isArray() &&
"AMDGPU kernel entries are arrays of entries");
return Pair.second.getArray();
}
/// Iterate all entries for one "amdhsa.kernels" entry. Each entry is a
/// MapDocNode that either maps a string to a single value (most of them) or
/// to another array of things. Currently, we only handle the case that maps
/// to scalar value.
Error generateKernelInfo(msgpack::ArrayDocNode::ArrayTy::iterator It) {
KernelMetaDataTy KernelData;
std::string KernelName;
auto Entry = (*It).getMap();
for (auto MI = Entry.begin(), E = Entry.end(); MI != E; ++MI)
if (auto Err = extractKernelData(*MI, KernelName, KernelData))
return Err;
KernelInfoMap.insert({KernelName, KernelData});
return Error::success();
}
/// Go over the list of AMD kernels in the "amdhsa.kernels" entry
Error iterateAMDKernels(msgpack::MapDocNode &MDN) {
auto KernelsOrErr = getAMDKernelsArray(MDN);
if (auto Err = KernelsOrErr.takeError())
return Err;
auto KernelsArr = *KernelsOrErr;
for (auto It = KernelsArr.begin(), E = KernelsArr.end(); It != E; ++It) {
if (!It->isMap())
continue; // we expect <key,value> pairs
// Obtain the value for the different entries. Each array entry is a
// MapDocNode
if (auto Err = generateKernelInfo(It))
return Err;
}
return Error::success();
}
// Kernel names are the keys
StringMap<KernelMetaDataTy> &KernelInfoMap;
};
} // namespace
/// Reads the AMDGPU specific metadata from the ELF file and propagates the
/// KernelInfoMap
inline Error
readAMDGPUMetaDataFromImage(MemoryBufferRef MemBuffer,
StringMap<KernelMetaDataTy> &KernelInfoMap,
uint16_t &ELFABIVersion) {
Error Err = Error::success(); // Used later as out-parameter
auto ELFOrError = object::ELF64LEFile::create(MemBuffer.getBuffer());
if (auto Err = ELFOrError.takeError())
return Err;
const object::ELF64LEFile ELFObj = ELFOrError.get();
ArrayRef<object::ELF64LE::Shdr> Sections = cantFail(ELFObj.sections());
KernelInfoReader Reader(KernelInfoMap);
// Read the code object version from ELF image header
auto Header = ELFObj.getHeader();
ELFABIVersion = (uint8_t)(Header.e_ident[ELF::EI_ABIVERSION]);
DP("ELFABIVERSION Version: %u\n", ELFABIVersion);
for (const auto &S : Sections) {
if (S.sh_type != ELF::SHT_NOTE)
continue;
for (const auto N : ELFObj.notes(S, Err)) {
if (Err)
return Err;
// Fills the KernelInfoTabel entries in the reader
if ((Err = Reader.processNote(N, S.sh_addralign)))
return Err;
}
}
return Error::success();
}
} // namespace utils
} // namespace plugin
} // namespace target
} // namespace omp
} // namespace llvm