blob: 942df8fdb94d6606744268cf70ac79417b6c88e4 [file] [log] [blame]
//===----------- api.cpp - Target independent OpenMP target RTL -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of OpenMP API interface functions.
//
//===----------------------------------------------------------------------===//
#include "device.h"
#include "omptarget.h"
#include "private.h"
#include "rtl.h"
#include "llvm/ADT/SmallVector.h"
#include <climits>
#include <cstdlib>
#include <cstring>
#include <mutex>
EXTERN int omp_get_num_devices(void) {
TIMESCOPE();
PM->RTLsMtx.lock();
size_t DevicesSize = PM->Devices.size();
PM->RTLsMtx.unlock();
DP("Call to omp_get_num_devices returning %zd\n", DevicesSize);
return DevicesSize;
}
EXTERN int omp_get_device_num(void) {
TIMESCOPE();
int HostDevice = omp_get_initial_device();
DP("Call to omp_get_device_num returning %d\n", HostDevice);
return HostDevice;
}
EXTERN int omp_get_initial_device(void) {
TIMESCOPE();
int HostDevice = omp_get_num_devices();
DP("Call to omp_get_initial_device returning %d\n", HostDevice);
return HostDevice;
}
EXTERN void *omp_target_alloc(size_t Size, int DeviceNum) {
return targetAllocExplicit(Size, DeviceNum, TARGET_ALLOC_DEFAULT, __func__);
}
EXTERN void *llvm_omp_target_alloc_device(size_t Size, int DeviceNum) {
return targetAllocExplicit(Size, DeviceNum, TARGET_ALLOC_DEVICE, __func__);
}
EXTERN void *llvm_omp_target_alloc_host(size_t Size, int DeviceNum) {
return targetAllocExplicit(Size, DeviceNum, TARGET_ALLOC_HOST, __func__);
}
EXTERN void *llvm_omp_target_alloc_shared(size_t Size, int DeviceNum) {
return targetAllocExplicit(Size, DeviceNum, TARGET_ALLOC_SHARED, __func__);
}
EXTERN void omp_target_free(void *Ptr, int DeviceNum) {
return targetFreeExplicit(Ptr, DeviceNum, TARGET_ALLOC_DEFAULT, __func__);
}
EXTERN void llvm_omp_target_free_device(void *Ptr, int DeviceNum) {
return targetFreeExplicit(Ptr, DeviceNum, TARGET_ALLOC_DEVICE, __func__);
}
EXTERN void llvm_omp_target_free_host(void *Ptr, int DeviceNum) {
return targetFreeExplicit(Ptr, DeviceNum, TARGET_ALLOC_HOST, __func__);
}
EXTERN void llvm_omp_target_free_shared(void *Ptre, int DeviceNum) {
return targetFreeExplicit(Ptre, DeviceNum, TARGET_ALLOC_SHARED, __func__);
}
EXTERN void *llvm_omp_target_dynamic_shared_alloc() { return nullptr; }
EXTERN void *llvm_omp_get_dynamic_shared() { return nullptr; }
EXTERN [[nodiscard]] void *llvm_omp_target_lock_mem(void *Ptr, size_t Size,
int DeviceNum) {
return targetLockExplicit(Ptr, Size, DeviceNum, __func__);
}
EXTERN void llvm_omp_target_unlock_mem(void *Ptr, int DeviceNum) {
targetUnlockExplicit(Ptr, DeviceNum, __func__);
}
EXTERN int omp_target_is_present(const void *Ptr, int DeviceNum) {
TIMESCOPE();
DP("Call to omp_target_is_present for device %d and address " DPxMOD "\n",
DeviceNum, DPxPTR(Ptr));
if (!Ptr) {
DP("Call to omp_target_is_present with NULL ptr, returning false\n");
return false;
}
if (DeviceNum == omp_get_initial_device()) {
DP("Call to omp_target_is_present on host, returning true\n");
return true;
}
PM->RTLsMtx.lock();
size_t DevicesSize = PM->Devices.size();
PM->RTLsMtx.unlock();
if (DevicesSize <= (size_t)DeviceNum) {
DP("Call to omp_target_is_present with invalid device ID, returning "
"false\n");
return false;
}
DeviceTy &Device = *PM->Devices[DeviceNum];
// omp_target_is_present tests whether a host pointer refers to storage that
// is mapped to a given device. However, due to the lack of the storage size,
// only check 1 byte. Cannot set size 0 which checks whether the pointer (zero
// lengh array) is mapped instead of the referred storage.
TargetPointerResultTy TPR = Device.getTgtPtrBegin(const_cast<void *>(Ptr), 1,
/*UpdateRefCount=*/false,
/*UseHoldRefCount=*/false);
int Rc = TPR.isPresent();
DP("Call to omp_target_is_present returns %d\n", Rc);
return Rc;
}
EXTERN int omp_target_memcpy(void *Dst, const void *Src, size_t Length,
size_t DstOffset, size_t SrcOffset, int DstDevice,
int SrcDevice) {
TIMESCOPE();
DP("Call to omp_target_memcpy, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offset %zu, "
"src offset %zu, length %zu\n",
DstDevice, SrcDevice, DPxPTR(Dst), DPxPTR(Src), DstOffset, SrcOffset,
Length);
if (!Dst || !Src || Length <= 0) {
if (Length == 0) {
DP("Call to omp_target_memcpy with zero length, nothing to do\n");
return OFFLOAD_SUCCESS;
}
REPORT("Call to omp_target_memcpy with invalid arguments\n");
return OFFLOAD_FAIL;
}
if (SrcDevice != omp_get_initial_device() && !deviceIsReady(SrcDevice)) {
REPORT("omp_target_memcpy returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
if (DstDevice != omp_get_initial_device() && !deviceIsReady(DstDevice)) {
REPORT("omp_target_memcpy returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
int Rc = OFFLOAD_SUCCESS;
void *SrcAddr = (char *)const_cast<void *>(Src) + SrcOffset;
void *DstAddr = (char *)Dst + DstOffset;
if (SrcDevice == omp_get_initial_device() &&
DstDevice == omp_get_initial_device()) {
DP("copy from host to host\n");
const void *P = memcpy(DstAddr, SrcAddr, Length);
if (P == NULL)
Rc = OFFLOAD_FAIL;
} else if (SrcDevice == omp_get_initial_device()) {
DP("copy from host to device\n");
DeviceTy &DstDev = *PM->Devices[DstDevice];
AsyncInfoTy AsyncInfo(DstDev);
Rc = DstDev.submitData(DstAddr, SrcAddr, Length, AsyncInfo);
} else if (DstDevice == omp_get_initial_device()) {
DP("copy from device to host\n");
DeviceTy &SrcDev = *PM->Devices[SrcDevice];
AsyncInfoTy AsyncInfo(SrcDev);
Rc = SrcDev.retrieveData(DstAddr, SrcAddr, Length, AsyncInfo);
} else {
DP("copy from device to device\n");
DeviceTy &SrcDev = *PM->Devices[SrcDevice];
DeviceTy &DstDev = *PM->Devices[DstDevice];
// First try to use D2D memcpy which is more efficient. If fails, fall back
// to unefficient way.
if (SrcDev.isDataExchangable(DstDev)) {
AsyncInfoTy AsyncInfo(SrcDev);
Rc = SrcDev.dataExchange(SrcAddr, DstDev, DstAddr, Length, AsyncInfo);
if (Rc == OFFLOAD_SUCCESS)
return OFFLOAD_SUCCESS;
}
void *Buffer = malloc(Length);
{
AsyncInfoTy AsyncInfo(SrcDev);
Rc = SrcDev.retrieveData(Buffer, SrcAddr, Length, AsyncInfo);
}
if (Rc == OFFLOAD_SUCCESS) {
AsyncInfoTy AsyncInfo(DstDev);
Rc = DstDev.submitData(DstAddr, Buffer, Length, AsyncInfo);
}
free(Buffer);
}
DP("omp_target_memcpy returns %d\n", Rc);
return Rc;
}
// The helper function that calls omp_target_memcpy or omp_target_memcpy_rect
static int libomp_target_memcpy_async_helper(kmp_int32 Gtid, kmp_task_t *Task) {
if (Task == nullptr)
return OFFLOAD_FAIL;
TargetMemcpyArgsTy *Args = (TargetMemcpyArgsTy *)Task->shareds;
if (Args == nullptr)
return OFFLOAD_FAIL;
// Call blocked version
int Rc = OFFLOAD_SUCCESS;
if (Args->IsRectMemcpy) {
Rc = omp_target_memcpy_rect(
Args->Dst, Args->Src, Args->ElementSize, Args->NumDims, Args->Volume,
Args->DstOffsets, Args->SrcOffsets, Args->DstDimensions,
Args->SrcDimensions, Args->DstDevice, Args->SrcDevice);
DP("omp_target_memcpy_rect returns %d\n", Rc);
} else {
Rc = omp_target_memcpy(Args->Dst, Args->Src, Args->Length, Args->DstOffset,
Args->SrcOffset, Args->DstDevice, Args->SrcDevice);
DP("omp_target_memcpy returns %d\n", Rc);
}
// Release the arguments object
delete Args;
return Rc;
}
// Allocate and launch helper task
static int libomp_helper_task_creation(TargetMemcpyArgsTy *Args,
int DepObjCount,
omp_depend_t *DepObjList) {
// Create global thread ID
int Gtid = __kmpc_global_thread_num(nullptr);
int (*Fn)(kmp_int32, kmp_task_t *) = &libomp_target_memcpy_async_helper;
// Setup the hidden helper flags;
kmp_int32 Flags = 0;
kmp_tasking_flags_t *InputFlags = (kmp_tasking_flags_t *)&Flags;
InputFlags->hidden_helper = 1;
// Alloc helper task
kmp_task_t *Ptr = __kmpc_omp_target_task_alloc(nullptr, Gtid, Flags,
sizeof(kmp_task_t), 0, Fn, -1);
if (Ptr == nullptr) {
// Task allocation failed, delete the argument object
delete Args;
return OFFLOAD_FAIL;
}
// Setup the arguments passed to helper task
Ptr->shareds = Args;
// Convert the type of depend objects
llvm::SmallVector<kmp_depend_info_t> DepObjs;
for (int i = 0; i < DepObjCount; i++) {
omp_depend_t DepObj = DepObjList[i];
DepObjs.push_back(*((kmp_depend_info_t *)DepObj));
}
// Launch the helper task
int Rc = __kmpc_omp_task_with_deps(nullptr, Gtid, Ptr, DepObjCount,
DepObjs.data(), 0, nullptr);
return Rc;
}
EXTERN int omp_target_memcpy_async(void *Dst, const void *Src, size_t Length,
size_t DstOffset, size_t SrcOffset,
int DstDevice, int SrcDevice,
int DepObjCount, omp_depend_t *DepObjList) {
TIMESCOPE();
DP("Call to omp_target_memcpy_async, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offset %zu, "
"src offset %zu, length %zu\n",
DstDevice, SrcDevice, DPxPTR(Dst), DPxPTR(Src), DstOffset, SrcOffset,
Length);
// Check the source and dest address
if (Dst == nullptr || Src == nullptr)
return OFFLOAD_FAIL;
// Create task object
TargetMemcpyArgsTy *Args = new TargetMemcpyArgsTy(
Dst, Src, Length, DstOffset, SrcOffset, DstDevice, SrcDevice);
// Create and launch helper task
int Rc = libomp_helper_task_creation(Args, DepObjCount, DepObjList);
DP("omp_target_memcpy_async returns %d\n", Rc);
return Rc;
}
EXTERN int
omp_target_memcpy_rect(void *Dst, const void *Src, size_t ElementSize,
int NumDims, const size_t *Volume,
const size_t *DstOffsets, const size_t *SrcOffsets,
const size_t *DstDimensions, const size_t *SrcDimensions,
int DstDevice, int SrcDevice) {
TIMESCOPE();
DP("Call to omp_target_memcpy_rect, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offsets " DPxMOD ", "
"src offsets " DPxMOD ", dst dims " DPxMOD ", src dims " DPxMOD ", "
"volume " DPxMOD ", element size %zu, num_dims %d\n",
DstDevice, SrcDevice, DPxPTR(Dst), DPxPTR(Src), DPxPTR(DstOffsets),
DPxPTR(SrcOffsets), DPxPTR(DstDimensions), DPxPTR(SrcDimensions),
DPxPTR(Volume), ElementSize, NumDims);
if (!(Dst || Src)) {
DP("Call to omp_target_memcpy_rect returns max supported dimensions %d\n",
INT_MAX);
return INT_MAX;
}
if (!Dst || !Src || ElementSize < 1 || NumDims < 1 || !Volume ||
!DstOffsets || !SrcOffsets || !DstDimensions || !SrcDimensions) {
REPORT("Call to omp_target_memcpy_rect with invalid arguments\n");
return OFFLOAD_FAIL;
}
int Rc;
if (NumDims == 1) {
Rc = omp_target_memcpy(Dst, Src, ElementSize * Volume[0],
ElementSize * DstOffsets[0],
ElementSize * SrcOffsets[0], DstDevice, SrcDevice);
} else {
size_t DstSliceSize = ElementSize;
size_t SrcSliceSize = ElementSize;
for (int I = 1; I < NumDims; ++I) {
DstSliceSize *= DstDimensions[I];
SrcSliceSize *= SrcDimensions[I];
}
size_t DstOff = DstOffsets[0] * DstSliceSize;
size_t SrcOff = SrcOffsets[0] * SrcSliceSize;
for (size_t I = 0; I < Volume[0]; ++I) {
Rc = omp_target_memcpy_rect(
(char *)Dst + DstOff + DstSliceSize * I,
(char *)const_cast<void *>(Src) + SrcOff + SrcSliceSize * I,
ElementSize, NumDims - 1, Volume + 1, DstOffsets + 1, SrcOffsets + 1,
DstDimensions + 1, SrcDimensions + 1, DstDevice, SrcDevice);
if (Rc) {
DP("Recursive call to omp_target_memcpy_rect returns unsuccessfully\n");
return Rc;
}
}
}
DP("omp_target_memcpy_rect returns %d\n", Rc);
return Rc;
}
EXTERN int omp_target_memcpy_rect_async(
void *Dst, const void *Src, size_t ElementSize, int NumDims,
const size_t *Volume, const size_t *DstOffsets, const size_t *SrcOffsets,
const size_t *DstDimensions, const size_t *SrcDimensions, int DstDevice,
int SrcDevice, int DepObjCount, omp_depend_t *DepObjList) {
TIMESCOPE();
DP("Call to omp_target_memcpy_rect_async, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offsets " DPxMOD ", "
"src offsets " DPxMOD ", dst dims " DPxMOD ", src dims " DPxMOD ", "
"volume " DPxMOD ", element size %zu, num_dims %d\n",
DstDevice, SrcDevice, DPxPTR(Dst), DPxPTR(Src), DPxPTR(DstOffsets),
DPxPTR(SrcOffsets), DPxPTR(DstDimensions), DPxPTR(SrcDimensions),
DPxPTR(Volume), ElementSize, NumDims);
// Need to check this first to not return OFFLOAD_FAIL instead
if (!Dst && !Src) {
DP("Call to omp_target_memcpy_rect returns max supported dimensions %d\n",
INT_MAX);
return INT_MAX;
}
// Check the source and dest address
if (Dst == nullptr || Src == nullptr)
return OFFLOAD_FAIL;
// Create task object
TargetMemcpyArgsTy *Args = new TargetMemcpyArgsTy(
Dst, Src, ElementSize, NumDims, Volume, DstOffsets, SrcOffsets,
DstDimensions, SrcDimensions, DstDevice, SrcDevice);
// Create and launch helper task
int Rc = libomp_helper_task_creation(Args, DepObjCount, DepObjList);
DP("omp_target_memcpy_rect_async returns %d\n", Rc);
return Rc;
}
EXTERN int omp_target_associate_ptr(const void *HostPtr, const void *DevicePtr,
size_t Size, size_t DeviceOffset,
int DeviceNum) {
TIMESCOPE();
DP("Call to omp_target_associate_ptr with host_ptr " DPxMOD ", "
"device_ptr " DPxMOD ", size %zu, device_offset %zu, device_num %d\n",
DPxPTR(HostPtr), DPxPTR(DevicePtr), Size, DeviceOffset, DeviceNum);
if (!HostPtr || !DevicePtr || Size <= 0) {
REPORT("Call to omp_target_associate_ptr with invalid arguments\n");
return OFFLOAD_FAIL;
}
if (DeviceNum == omp_get_initial_device()) {
REPORT("omp_target_associate_ptr: no association possible on the host\n");
return OFFLOAD_FAIL;
}
if (!deviceIsReady(DeviceNum)) {
REPORT("omp_target_associate_ptr returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
DeviceTy &Device = *PM->Devices[DeviceNum];
void *DeviceAddr = (void *)((uint64_t)DevicePtr + (uint64_t)DeviceOffset);
int Rc = Device.associatePtr(const_cast<void *>(HostPtr),
const_cast<void *>(DeviceAddr), Size);
DP("omp_target_associate_ptr returns %d\n", Rc);
return Rc;
}
EXTERN int omp_target_disassociate_ptr(const void *HostPtr, int DeviceNum) {
TIMESCOPE();
DP("Call to omp_target_disassociate_ptr with host_ptr " DPxMOD ", "
"device_num %d\n",
DPxPTR(HostPtr), DeviceNum);
if (!HostPtr) {
REPORT("Call to omp_target_associate_ptr with invalid host_ptr\n");
return OFFLOAD_FAIL;
}
if (DeviceNum == omp_get_initial_device()) {
REPORT(
"omp_target_disassociate_ptr: no association possible on the host\n");
return OFFLOAD_FAIL;
}
if (!deviceIsReady(DeviceNum)) {
REPORT("omp_target_disassociate_ptr returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
DeviceTy &Device = *PM->Devices[DeviceNum];
int Rc = Device.disassociatePtr(const_cast<void *>(HostPtr));
DP("omp_target_disassociate_ptr returns %d\n", Rc);
return Rc;
}
EXTERN void *omp_get_mapped_ptr(const void *Ptr, int DeviceNum) {
TIMESCOPE();
DP("Call to omp_get_mapped_ptr with ptr " DPxMOD ", device_num %d.\n",
DPxPTR(Ptr), DeviceNum);
if (!Ptr) {
REPORT("Call to omp_get_mapped_ptr with nullptr.\n");
return nullptr;
}
if (DeviceNum == omp_get_initial_device()) {
REPORT("Device %d is initial device, returning Ptr " DPxMOD ".\n",
DeviceNum, DPxPTR(Ptr));
return const_cast<void *>(Ptr);
}
int DevicesSize = omp_get_initial_device();
{
std::lock_guard<std::mutex> LG(PM->RTLsMtx);
DevicesSize = PM->Devices.size();
}
if (DevicesSize <= DeviceNum) {
DP("DeviceNum %d is invalid, returning nullptr.\n", DeviceNum);
return nullptr;
}
if (!deviceIsReady(DeviceNum)) {
REPORT("Device %d is not ready, returning nullptr.\n", DeviceNum);
return nullptr;
}
auto &Device = *PM->Devices[DeviceNum];
TargetPointerResultTy TPR = Device.getTgtPtrBegin(const_cast<void *>(Ptr), 1,
/*UpdateRefCount=*/false,
/*UseHoldRefCount=*/false);
if (!TPR.isPresent()) {
DP("Ptr " DPxMOD "is not present on device %d, returning nullptr.\n",
DPxPTR(Ptr), DeviceNum);
return nullptr;
}
DP("omp_get_mapped_ptr returns " DPxMOD ".\n", DPxPTR(TPR.TargetPointer));
return TPR.TargetPointer;
}