blob: 9151da95d6e472ccea071c896f9496df65a1b77d [file] [log] [blame]
//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <libelf.h>
#include <cassert>
#include <sstream>
#include <string>
#include "internal.h"
#include "rt.h"
#include "msgpack.h"
namespace hsa {
// Wrap HSA iterate API in a shim that allows passing general callables
template <typename C>
hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(executable, symbol);
};
return hsa_executable_iterate_symbols(executable, L,
static_cast<void *>(&cb));
}
} // namespace hsa
typedef unsigned char *address;
/*
* Note descriptors.
*/
// FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
#if !defined(__FreeBSD__)
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
#endif
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
Unknown
};
KernelArgMD()
: name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
align_(0), valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
std::string typeName_;
uint32_t size_;
uint32_t offset_;
uint32_t align_;
ValueKind valueKind_;
};
class KernelMD {
public:
KernelMD() : kernargSegmentSize_(0ull) {}
// fields
uint64_t kernargSegmentSize_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
};
namespace core {
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t atl_init_gpu_context() {
hsa_status_t err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Registering the system for memory faults", get_error_string(err));
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
static bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
return true;
default:
return false;
}
}
static std::pair<unsigned char *, unsigned char *>
find_metadata(void *binary, size_t binSize) {
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
if (elf_kind(e) != ELF_K_ELF) {
return failure;
}
size_t numpHdrs;
if (elf_getphdrnum(e, &numpHdrs) != 0) {
return failure;
}
Elf64_Phdr *pHdrs = elf64_getphdr(e);
for (size_t i = 0; i < numpHdrs; ++i) {
Elf64_Phdr pHdr = pHdrs[i];
// Look for the runtime metadata note
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
// Iterate over the notes in this segment
address ptr = (address)binary + pHdr.p_offset;
address segmentEnd = ptr + pHdr.p_filesz;
while (ptr < segmentEnd) {
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
address name = (address)&note[1];
if (note->n_type == 7 || note->n_type == 8) {
return failure;
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
note->n_namesz == sizeof "AMD" &&
!memcmp(name, "AMD", note->n_namesz)) {
// code object v2 uses yaml metadata, no longer supported
return failure;
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
note->n_namesz == sizeof "AMDGPU" &&
!memcmp(name, "AMDGPU", note->n_namesz)) {
// n_descsz = 485
// value is padded to 4 byte alignment, may want to move end up to
// match
size_t offset = sizeof(uint32_t) * 3 /* fields */
+ sizeof("AMDGPU") /* name */
+ 1 /* padding to 4 byte alignment */;
// Including the trailing padding means both pointers are 4 bytes
// aligned, which may be useful later.
unsigned char *metadata_start = (unsigned char *)ptr + offset;
unsigned char *metadata_end =
metadata_start + core::alignUp(note->n_descsz, 4);
return {metadata_start, metadata_end};
}
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
core::alignUp(note->n_descsz, sizeof(int));
}
}
}
return failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".type_name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->typeName_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(
void *binary, size_t binSize,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<unsigned char *, unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernels lookup in program metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"element lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"strings lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// Make sure that kernelName + ".kd" == symbolName
if ((kernelName + ".kd") != symbolName) {
printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
__FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_count = sgpr_count;
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_count = vgpr_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_spill_count = sgpr_spill_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_spill_count = vgpr_spill_count;
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernarg segment size metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernel args metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.num_args = argsSize;
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// populate info with sizes and offsets
info.arg_sizes.push_back(lcArg.size_);
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
info.arg_offsets.push_back(lcArg.offset_);
DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_,
lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
kernel_explicit_args_size += lcArg.size_;
} else {
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
// do not count the compiler set implicit args, but set your own implicit
// args by discounting the compiler set implicit args
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
sizeof(impl_implicit_args_t);
DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t
populate_InfoTables(hsa_executable_symbol_t symbol,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
DP("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
// remove the suffix .kd from symbol name.
name[name_length - 3] = 0;
atl_kernel_info_t info;
std::string kernelName(name);
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
DP("amdgpu internal consistency error\n");
return HSA_STATUS_ERROR;
}
// found, so assign and update
info = KernelInfoTable[kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the symbol from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the group segment size from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the private segment from the executable",
get_error_string(err));
return err;
}
DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info address extraction", get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info size extraction", get_error_string(err));
return err;
}
DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size);
SymbolInfoTable[std::string(name)] = info;
free(name);
} else {
DP("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t RegisterModuleFromMemory(
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
void *module_bytes, size_t module_size, hsa_agent_t agent,
hsa_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
hsa_status_t err;
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Query the agent profile", get_error_string(err));
return HSA_STATUS_ERROR;
}
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Create the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size,
KernelInfoTable);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Getting custom code object metadata", get_error_string(err));
continue;
}
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Code Object Deserialization", get_error_string(err));
continue;
}
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
hsa_status_t impl_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
if (impl_err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Error in deserialized_data callback",
get_error_string(impl_err));
return impl_err;
}
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Loading the code object", get_error_string(err));
continue;
}
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DP("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Freeze the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
err = hsa::executable_iterate_symbols(
executable,
[&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
});
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterating over symbols for execuatable", get_error_string(err));
return HSA_STATUS_ERROR;
}
// save the executable and destroy during finalize
HSAExecutables.push_back(executable);
return HSA_STATUS_SUCCESS;
} else {
return HSA_STATUS_ERROR;
}
}
} // namespace core