| //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the linalg dialect Vectorization transformations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/LoopAnalysis.h" |
| #include "mlir/Analysis/SliceAnalysis.h" |
| #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" |
| #include "mlir/Dialect/Linalg/IR/LinalgOps.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/VectorOps.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <type_traits> |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| using llvm::dbgs; |
| |
| #define DEBUG_TYPE "linalg-vectorization" |
| |
| #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") |
| #define LDBG(X) LLVM_DEBUG(DBGS() << X) |
| |
| /// Return the unique instance of OpType in `block` if it is indeed unique. |
| /// Return null if none or more than 1 instances exist. |
| template <typename OpType> |
| static OpType getSingleOpOfType(Block &block) { |
| OpType res; |
| block.walk([&](OpType op) { |
| if (res) { |
| res = nullptr; |
| return WalkResult::interrupt(); |
| } |
| res = op; |
| return WalkResult::advance(); |
| }); |
| return res; |
| } |
| |
| /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a |
| /// projectedPermutation, compress the unused dimensions to serve as a |
| /// permutation_map for a vector transfer operation. |
| /// For example, given a linalg op such as: |
| /// |
| /// ``` |
| /// %0 = linalg.generic { |
| /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, |
| /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> |
| /// } |
| /// ins(%0 : tensor<2x3x4xf32>) |
| /// outs(%1 : tensor<5x6xf32>) |
| /// ``` |
| /// |
| /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine |
| /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second |
| /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. |
| static AffineMap reindexIndexingMap(AffineMap map) { |
| assert(map.isProjectedPermutation() && "expected projected permutation"); |
| auto res = compressUnusedDims(map); |
| assert(res.getNumDims() == res.getNumResults() && |
| "expected reindexed map with same number of dims and results"); |
| return res; |
| } |
| |
| /// Helper data structure to represent the result of vectorization. |
| /// In certain specific cases, like terminators, we do not want to propagate/ |
| enum VectorizationStatus { |
| /// Op failed to vectorize. |
| Failure = 0, |
| /// Op vectorized and custom function took care of replacement logic |
| NoReplace, |
| /// Op vectorized into a new Op whose results will replace original Op's |
| /// results. |
| NewOp |
| // TODO: support values if Op vectorized to Many-Ops whose results we need to |
| // aggregate for replacement. |
| }; |
| struct VectorizationResult { |
| /// Return status from vectorizing the current op. |
| enum VectorizationStatus status = VectorizationStatus::Failure; |
| /// New vectorized operation to replace the current op. |
| /// Replacement behavior is specified by `status`. |
| Operation *newOp; |
| }; |
| |
| /// Return a vector type of the same shape and element type as the (assumed) |
| /// ShapedType of `v`. |
| static VectorType extractVectorTypeFromShapedValue(Value v) { |
| auto st = v.getType().cast<ShapedType>(); |
| if (st.getShape().empty()) |
| return VectorType(); |
| return VectorType::get(st.getShape(), st.getElementType()); |
| } |
| |
| static llvm::Optional<vector::CombiningKind> |
| getKindForOp(Operation *reductionOp) { |
| if (!reductionOp) |
| return llvm::None; |
| return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( |
| reductionOp) |
| .Case<AddIOp, AddFOp>([&](auto op) { return vector::CombiningKind::ADD; }) |
| .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; }) |
| .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; }) |
| .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; }) |
| .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; }) |
| .Default([&](auto op) { return llvm::None; }); |
| } |
| |
| /// Check whether `outputOperand` is a reduction with a single combiner |
| /// operation. Return the combiner operation kind of the reduction, if |
| /// supported. Return llvm::None, otherwise. Multiple reduction operations would |
| /// impose an ordering between reduction dimensions and is currently unsupported |
| /// in Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != |
| /// max(min(X)) |
| // TODO: use in LinalgOp verification, there is a circular dependency atm. |
| static llvm::Optional<vector::CombiningKind> |
| matchLinalgReduction(OpOperand *outputOperand) { |
| auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); |
| unsigned outputPos = |
| outputOperand->getOperandNumber() - linalgOp.getNumInputs(); |
| // Only single combiner operatios are supported for now. |
| SmallVector<Operation *, 4> combinerOps; |
| if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || |
| combinerOps.size() != 1) |
| return llvm::None; |
| |
| // Return the combiner operation kind, if supported. |
| return getKindForOp(combinerOps[0]); |
| } |
| |
| /// Broadcast `value` to a vector of `shape` if possible. Return value |
| /// otherwise. |
| static Value broadcastIfNeeded(OpBuilder &b, Value value, |
| ArrayRef<int64_t> shape) { |
| // If no shape to broadcast to, just return `value`. |
| if (shape.empty()) |
| return value; |
| VectorType targetVectorType = |
| VectorType::get(shape, getElementTypeOrSelf(value)); |
| if (vector::isBroadcastableTo(value.getType(), targetVectorType) != |
| vector::BroadcastableToResult::Success) |
| return value; |
| Location loc = b.getInsertionPoint()->getLoc(); |
| return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); |
| } |
| |
| /// Assuming `outputOperand` is an output operand of a LinalgOp, determine |
| /// whether a reduction is needed to produce a `targetType` and create that |
| /// reduction if it is the case. |
| static Value reduceIfNeeded(OpBuilder &b, Type targetType, Value value, |
| OpOperand *outputOperand) { |
| LDBG("Reduce " << value << " to type " << targetType); |
| LDBG("In LinalgOp operand #" << outputOperand->getOperandNumber() << "\n" |
| << *(outputOperand->getOwner())); |
| auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); |
| auto vecType = value.getType().dyn_cast<VectorType>(); |
| VectorType targetVectorType = targetType.dyn_cast<VectorType>(); |
| if (!vecType) |
| return value; |
| if (targetVectorType && vecType.getShape() == targetVectorType.getShape()) |
| return value; |
| |
| // At this point, we know we need to reduce. Detect the reduction operator. |
| unsigned pos = 0; |
| MLIRContext *ctx = b.getContext(); |
| SmallVector<AffineExpr> exprs; |
| for (auto s : linalgOp.iterator_types()) |
| if (isParallelIterator(s)) |
| exprs.push_back(getAffineDimExpr(pos++, ctx)); |
| auto loc = value.getLoc(); |
| |
| auto maybeKind = matchLinalgReduction(outputOperand); |
| assert(maybeKind && "Failed precondition: could not get reduction kind"); |
| unsigned idx = 0; |
| SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); |
| for (auto attr : linalgOp.iterator_types()) { |
| if (isReductionIterator(attr)) |
| reductionMask[idx] = true; |
| ++idx; |
| } |
| return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, |
| *maybeKind); |
| } |
| |
| /// Build a vector.transfer_read from `source` at indices set to all `0`. |
| /// If source has rank zero, build a `vector<1xt> transfer_read + extract`. |
| /// Return the produced value. |
| static Value buildVectorRead(OpBuilder &b, Value source, Type readType, |
| AffineMap map) { |
| Location loc = source.getLoc(); |
| auto shapedType = source.getType().cast<ShapedType>(); |
| SmallVector<Value> indices(shapedType.getRank(), |
| b.create<ConstantIndexOp>(loc, 0)); |
| if (auto vectorType = readType.dyn_cast<VectorType>()) |
| return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, |
| map); |
| return vector::TransferReadOp::createScalarOp(b, loc, source, indices); |
| } |
| |
| /// Build a vector.transfer_write of `value` into `outputOperand` at indices set |
| /// to all `0`; where `outputOperand` is an output operand of the LinalgOp |
| /// currently being vectorized. If `dest` has null rank, build an memref.store. |
| /// Return the produced value or null if no value is produced. |
| static Value buildVectorWrite(OpBuilder &b, Value value, |
| OpOperand *outputOperand) { |
| Operation *write; |
| Location loc = value.getLoc(); |
| auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); |
| if (VectorType vectorType = |
| extractVectorTypeFromShapedValue(outputOperand->get())) { |
| AffineMap map = |
| reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); |
| SmallVector<int64_t> transposeShape = |
| applyPermutationMap(inversePermutation(map), vectorType.getShape()); |
| assert(!transposeShape.empty() && "unexpected empty transpose shape"); |
| vectorType = VectorType::get(transposeShape, vectorType.getElementType()); |
| SmallVector<Value> indices(linalgOp.getRank(outputOperand), |
| b.create<ConstantIndexOp>(loc, 0)); |
| value = broadcastIfNeeded(b, value, vectorType.getShape()); |
| value = reduceIfNeeded(b, vectorType, value, outputOperand); |
| write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), |
| indices, map); |
| } else { |
| value = |
| reduceIfNeeded(b, getElementTypeOrSelf(value), value, outputOperand); |
| write = vector::TransferWriteOp::createScalarOp( |
| b, loc, value, outputOperand->get(), ValueRange{}); |
| } |
| LDBG("vectorized op: " << *write); |
| if (!write->getResults().empty()) |
| return write->getResult(0); |
| return Value(); |
| } |
| |
| // Custom vectorization function type. Produce a vector form of Operation* |
| // assuming all its vectorized operands are already in the BlockAndValueMapping. |
| // Return nullptr if the Operation cannot be vectorized. |
| using CustomVectorizationHook = std::function<VectorizationResult( |
| Operation *, const BlockAndValueMapping &)>; |
| |
| /// Helper function to vectorize the terminator of a `linalgOp`. New result |
| /// vector values are appended to `newResults`. Return |
| /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it |
| /// should not try to map produced operations and instead return the results |
| /// using the `newResults` vector making them available to the |
| /// vectorization algorithm for RAUW. This function is meant to be used as a |
| /// CustomVectorizationHook. |
| static VectorizationResult |
| vectorizeLinalgYield(OpBuilder &b, Operation *op, |
| const BlockAndValueMapping &bvm, LinalgOp linalgOp, |
| SmallVectorImpl<Value> &newResults) { |
| auto yieldOp = dyn_cast<linalg::YieldOp>(op); |
| if (!yieldOp) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| for (auto outputs : llvm::enumerate(yieldOp.values())) { |
| // TODO: Scan for an opportunity for reuse. |
| // TODO: use a map. |
| Value vectorValue = bvm.lookup(outputs.value()); |
| Value newResult = buildVectorWrite( |
| b, vectorValue, linalgOp.getOutputOperand(outputs.index())); |
| if (newResult) |
| newResults.push_back(newResult); |
| } |
| return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; |
| } |
| |
| /// Helper function to vectorize the index operations of a `linalgOp`. Return |
| /// VectorizationStatus::NewOp to signal the vectorization algorithm that it |
| /// should map the produced operations. This function is meant to be used as a |
| /// CustomVectorizationHook. |
| static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, |
| LinalgOp linalgOp) { |
| IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); |
| if (!indexOp) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| auto loc = indexOp.getLoc(); |
| // Compute the static loop sizes of the index op. |
| auto targetShape = linalgOp.computeStaticLoopSizes(); |
| // Compute a one-dimensional index vector for the index op dimension. |
| SmallVector<int64_t> constantSeq = |
| llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); |
| ConstantOp constantOp = |
| b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); |
| // Return the one-dimensional index vector if it lives in the trailing |
| // dimension of the iteration space since the vectorization algorithm in this |
| // case can handle the broadcast. |
| if (indexOp.dim() == targetShape.size() - 1) |
| return VectorizationResult{VectorizationStatus::NewOp, constantOp}; |
| // Otherwise permute the targetShape to move the index dimension last, |
| // broadcast the one-dimensional index vector to the permuted shape, and |
| // finally transpose the broadcasted index vector to undo the permutation. |
| std::swap(targetShape[indexOp.dim()], targetShape.back()); |
| auto broadCastOp = b.create<vector::BroadcastOp>( |
| loc, VectorType::get(targetShape, b.getIndexType()), constantOp); |
| SmallVector<int64_t> transposition = |
| llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); |
| std::swap(transposition.back(), transposition[indexOp.dim()]); |
| auto transposeOp = |
| b.create<vector::TransposeOp>(loc, broadCastOp, transposition); |
| return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; |
| } |
| |
| /// Generic vectorization for a single operation `op`, given already vectorized |
| /// operands carried by `bvm`. Vectorization occurs as follows: |
| /// 1. Try to apply any of the `customVectorizationHooks` and return its |
| /// result on success. |
| /// 2. Clone any constant in the current scope without vectorization: each |
| /// consumer of the constant will later determine the shape to which the |
| /// constant needs to be broadcast to. |
| /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose |
| /// of the `customVectorizationHooks` to cover such cases. |
| /// 4. Clone `op` in vector form to a vector of shape prescribed by the first |
| /// operand of maximal rank. Other operands have smaller rank and are |
| /// broadcast accordingly. It is assumed this broadcast is always legal, |
| /// otherwise, it means one of the `customVectorizationHooks` is incorrect. |
| /// |
| /// This function assumes all operands of `op` have been vectorized and are in |
| /// the `bvm` mapping. As a consequence, this function is meant to be called on |
| /// a topologically-sorted list of ops. |
| /// This function does not update `bvm` but returns a VectorizationStatus that |
| /// instructs the caller what `bvm` update needs to occur. |
| static VectorizationResult |
| vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, |
| ArrayRef<CustomVectorizationHook> customVectorizationHooks) { |
| LDBG("vectorize op " << *op); |
| |
| // 1. Try to apply any CustomVectorizationHook. |
| if (!customVectorizationHooks.empty()) { |
| for (auto &customFunc : customVectorizationHooks) { |
| VectorizationResult result = customFunc(op, bvm); |
| if (result.status == VectorizationStatus::Failure) |
| continue; |
| return result; |
| } |
| } |
| |
| // 2. Constant ops don't get vectorized but rather broadcasted at their users. |
| // Clone so that the constant is not confined to the linalgOp block . |
| if (isa<ConstantOp>(op)) |
| return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; |
| |
| // 3. Only ElementwiseMappable are allowed in the generic vectorization. |
| if (!OpTrait::hasElementwiseMappableTraits(op)) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| |
| // 4. Generic vectorization path for ElementwiseMappable ops. |
| // a. first get the first max ranked shape. |
| SmallVector<int64_t, 4> firstMaxRankedShape; |
| for (Value operand : op->getOperands()) { |
| auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); |
| if (vt && firstMaxRankedShape.size() < vt.getShape().size()) |
| firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); |
| } |
| // b. broadcast each op if needed. |
| auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { |
| return firstMaxRankedShape.empty() |
| ? bvm.lookup(v) |
| : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); |
| }); |
| // c. for elementwise, the result is the vector with the firstMaxRankedShape |
| auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { |
| return firstMaxRankedShape.empty() |
| ? t |
| : VectorType::get(firstMaxRankedShape, t); |
| }); |
| |
| // Build and return the new op. |
| OperationState state(op->getLoc(), op->getName()); |
| state.addAttributes(op->getAttrs()); |
| state.addOperands(llvm::to_vector<4>(vectorizedOperands)); |
| state.addTypes(llvm::to_vector<4>(returnTypes)); |
| return VectorizationResult{VectorizationStatus::NewOp, |
| b.createOperation(state)}; |
| } |
| |
| /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. |
| static bool hasOnlyScalarElementwiseOp(Region &r) { |
| if (!llvm::hasSingleElement(r)) |
| return false; |
| for (Operation &op : r.front()) { |
| if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || |
| OpTrait::hasElementwiseMappableTraits(&op)) || |
| llvm::any_of(op.getResultTypes(), |
| [](Type type) { return !type.isIntOrIndexOrFloat(); })) |
| return false; |
| } |
| return true; |
| } |
| |
| // Return true if the op is an element-wise linalg op. |
| static bool isElementwise(Operation *op) { |
| auto linalgOp = dyn_cast<linalg::LinalgOp>(op); |
| if (!linalgOp) |
| return false; |
| if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) |
| return false; |
| // TODO: relax the restrictions on indexing map. |
| for (OpOperand *opOperand : linalgOp.getOutputOperands()) { |
| if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) |
| return false; |
| } |
| if (linalgOp->getNumRegions() != 1) |
| return false; |
| return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); |
| } |
| |
| /// Generic vectorization function that rewrites the body of a `linalgOp` into |
| /// vector form. Generic vectorization proceeds as follows: |
| /// 1. Verify the `linalgOp` has one non-empty region. |
| /// 2. Values defined above the region are mapped to themselves and will be |
| /// broadcasted on a per-need basis by their consumers. |
| /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d |
| /// load). |
| /// TODO: Reuse opportunities for RAR dependencies. |
| /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. |
| /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration |
| /// indices. |
| /// 5. Iteratively call vectorizeOneOp on the region operations. |
| /// |
| /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is |
| /// performed to the maximal common vector size implied by the `linalgOp` |
| /// iteration space. This eager broadcasting is introduced in the |
| /// permutation_map of the vector.transfer_read operations. The eager |
| /// broadcasting makes it trivial to detrmine where broadcast, transposes and |
| /// reductions should occur, without any bookkeeping. The tradeoff is that, in |
| /// the absence of good canonicalizations, the amount of work increases. |
| /// This is not deemed a problem as we expect canonicalizations and foldings to |
| /// aggressively clean up the useless work. |
| LogicalResult vectorizeAsLinalgGeneric( |
| OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, |
| bool broadcastToMaximalCommonShape = false, |
| ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { |
| // 1. Fail to vectorize if the operation does not have one non-empty region. |
| if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) |
| return failure(); |
| auto &block = linalgOp->getRegion(0).front(); |
| |
| // 2. Values defined above the region can only be broadcast for now. Make them |
| // map to themselves. |
| BlockAndValueMapping bvm; |
| SetVector<Value> valuesSet; |
| mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); |
| bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); |
| |
| if (linalgOp.getNumOutputs() == 0) |
| return failure(); |
| |
| // TODO: the common vector shape is equal to the static loop sizes only when |
| // all indexing maps are projected permutations. For convs and stencils the |
| // logic will need to evolve. |
| SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); |
| |
| // 3. Turn all BBArgs into vector.transfer_read / load. |
| SmallVector<AffineMap> indexings; |
| for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { |
| BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); |
| if (linalgOp.isScalar(opOperand)) { |
| bvm.map(bbarg, opOperand->get()); |
| continue; |
| } |
| // TODO: 0-d vectors. |
| Type readType; |
| AffineMap map; |
| if (linalgOp.getShape(opOperand).empty()) { |
| readType = bbarg.getType(); |
| } else { |
| if (broadcastToMaximalCommonShape) { |
| map = inverseAndBroadcastProjectedPermuation( |
| linalgOp.getTiedIndexingMap(opOperand)); |
| readType = VectorType::get(commonVectorShape, |
| getElementTypeOrSelf(opOperand->get())); |
| } else { |
| map = inversePermutation( |
| reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); |
| readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), |
| getElementTypeOrSelf(opOperand->get())); |
| } |
| } |
| Value readValue = buildVectorRead(b, opOperand->get(), readType, map); |
| LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); |
| bvm.map(bbarg, readValue); |
| bvm.map(opOperand->get(), readValue); |
| } |
| |
| auto hooks = llvm::to_vector<4>(customVectorizationHooks); |
| // 4a. Register CustomVectorizationHook for yieldOp. |
| CustomVectorizationHook vectorizeYield = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); |
| }; |
| hooks.push_back(vectorizeYield); |
| |
| // 4b. Register CustomVectorizationHook for indexOp. |
| CustomVectorizationHook vectorizeIndex = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| return vectorizeLinalgIndex(b, op, linalgOp); |
| }; |
| hooks.push_back(vectorizeIndex); |
| |
| // 5. Iteratively call `vectorizeOneOp` to each op in the slice. |
| for (Operation &op : block.getOperations()) { |
| VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); |
| if (result.status == VectorizationStatus::Failure) { |
| LDBG("failed to vectorize: " << op); |
| return failure(); |
| } |
| if (result.status == VectorizationStatus::NewOp) { |
| LDBG("new vector op: " << *result.newOp;); |
| bvm.map(op.getResults(), result.newOp->getResults()); |
| } |
| } |
| |
| return success(); |
| } |
| |
| static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, |
| SmallVectorImpl<Value> &newResults) { |
| assert(isaContractionOpInterface(linalgOp) && |
| "expected vectorizeContraction preconditions to be met"); |
| Location loc = linalgOp.getLoc(); |
| // Vectorize other ops as vector contraction. |
| // TODO: interface. |
| LDBG("" |
| << "Rewrite linalg op as vector.contract: "; |
| linalgOp.dump()); |
| // Special function that describes how to vectorize the multiplication op in a |
| // linalg contraction. |
| CustomVectorizationHook vectorizeContraction = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| if (!isa<MulIOp, MulFOp>(op)) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| ArrayRef<int64_t> outShape = |
| linalgOp.getShape(linalgOp.getOutputOperand(0)); |
| Type vType; |
| if (outShape.empty()) { |
| vType = op->getResult(0).getType(); |
| } else { |
| SmallVector<int64_t> resultShape = applyPermutationMap( |
| inversePermutation(reindexIndexingMap( |
| linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), |
| outShape); |
| vType = VectorType::get(resultShape, op->getResult(0).getType()); |
| } |
| auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); |
| // Indexing maps at the time of vector.transfer_read are adjusted to order |
| // vector dimensions in the same order as the canonical linalg op iteration |
| // space order. |
| // The indexings for the contraction therefore need to be adjusted. |
| // TODO: consider dropping contraction special casing altogether, this will |
| // require more advanced canonicalizations involving vector.multi_reduction |
| // that are not yet available. |
| SmallVector<AffineMap> indexingMaps; |
| indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); |
| llvm::transform(linalgOp.getIndexingMaps(), |
| std::back_inserter(indexingMaps), |
| [](AffineMap indexingMap) { |
| return inversePermutation(reindexIndexingMap(indexingMap)) |
| .compose(indexingMap); |
| }); |
| Operation *contract = b.create<vector::ContractionOp>( |
| loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, |
| b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); |
| return VectorizationResult{VectorizationStatus::NewOp, contract}; |
| }; |
| return vectorizeAsLinalgGeneric(b, linalgOp, newResults, |
| /*broadcastToMaximalCommonShape=*/false, |
| {vectorizeContraction}); |
| } |
| |
| static bool allIndexingsAreProjectedPermutation(LinalgOp op) { |
| return llvm::all_of(op.getIndexingMaps(), |
| [](AffineMap m) { return m.isProjectedPermutation(); }); |
| } |
| |
| // TODO: probably need some extra checks for reduction followed by consumer |
| // ops that may not commute (e.g. linear reduction + non-linear instructions). |
| static LogicalResult reductionPreconditions(LinalgOp op) { |
| if (llvm::none_of(op.iterator_types(), isReductionIterator)) { |
| LDBG("reduction precondition failed: no reduction iterator"); |
| return failure(); |
| } |
| for (OpOperand *opOperand : op.getOutputOperands()) { |
| if (!matchLinalgReduction(opOperand)) { |
| LDBG("reduction precondition failed: reduction detection failed"); |
| return failure(); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { |
| auto linalgOp = cast<linalg::LinalgOp>(op); |
| // All types must be static shape to go to vector. |
| if (linalgOp.hasDynamicShape()) { |
| LDBG("precondition failed: dynamic shape"); |
| return failure(); |
| } |
| if (isElementwise(op)) |
| return success(); |
| if (isaContractionOpInterface(linalgOp)) |
| return success(); |
| // TODO: the common vector shape is equal to the static loop sizes only when |
| // all indexing maps are projected permutations. For convs and stencils the |
| // logic will need to evolve. |
| if (!allIndexingsAreProjectedPermutation(linalgOp)) { |
| LDBG("precondition failed: not projected permutations"); |
| return failure(); |
| } |
| if (failed(reductionPreconditions(linalgOp))) { |
| LDBG("precondition failed: reduction preconditions"); |
| return failure(); |
| } |
| return success(); |
| } |
| |
| LogicalResult |
| mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, |
| SmallVectorImpl<Value> &newResults) { |
| if (failed(vectorizeLinalgOpPrecondition(op))) |
| return failure(); |
| |
| auto linalgOp = cast<LinalgOp>(op); |
| if (isaContractionOpInterface(linalgOp)) |
| return vectorizeContraction(b, linalgOp, newResults); |
| |
| LDBG("" |
| << "Vectorize linalg op as a generic by broadcasting to " |
| "maximal common shape: " |
| << *op); |
| return vectorizeAsLinalgGeneric(b, linalgOp, newResults, |
| /*broadcastToMaximalCommonShape=*/true); |
| } |
| |
| //----------------------------------------------------------------------------// |
| // Misc. vectorization patterns. |
| //----------------------------------------------------------------------------// |
| |
| /// Helper function that retrieves the value of an IntegerAttr. |
| static int64_t getIntFromAttr(Attribute attr) { |
| return attr.cast<IntegerAttr>().getInt(); |
| } |
| |
| /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs |
| /// are converted to ConstantIndexOps. Other attribute types are not supported. |
| static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, |
| ArrayRef<OpFoldResult> ofrs) { |
| SmallVector<Value> result; |
| llvm::for_each(ofrs, [&](auto o) { |
| if (auto val = o.template dyn_cast<Value>()) { |
| result.push_back(val); |
| } else { |
| result.push_back(builder.create<ConstantIndexOp>( |
| loc, getIntFromAttr(o.template get<Attribute>()))); |
| } |
| }); |
| return result; |
| } |
| |
| /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and |
| /// InsertSliceOp. For now, only constant padding values are supported. |
| /// If there is enough static type information, TransferReadOps and |
| /// TransferWriteOps may be generated instead of InsertSliceOps. |
| struct GenericPadTensorOpVectorizationPattern |
| : public GeneralizePadTensorOpPattern { |
| GenericPadTensorOpVectorizationPattern(MLIRContext *context, |
| PatternBenefit benefit = 1) |
| : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} |
| /// Vectorize the copying of a PadTensorOp's source. This is possible if each |
| /// dimension size is statically know in the source type or the result type |
| /// (or both). |
| static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, |
| PadTensorOp padOp, Value dest) { |
| auto sourceType = padOp.getSourceType(); |
| auto resultType = padOp.getResultType(); |
| |
| // Copy cannot be vectorized if pad value is non-constant and source shape |
| // is dynamic. In case of a dynamic source shape, padding must be appended |
| // by TransferReadOp, but TransferReadOp supports only constant padding. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) { |
| if (!sourceType.hasStaticShape()) |
| return failure(); |
| // Create dummy padding value. |
| auto elemType = sourceType.getElementType(); |
| padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, |
| rewriter.getZeroAttr(elemType)); |
| } |
| |
| SmallVector<int64_t> vecShape; |
| SmallVector<bool> readInBounds; |
| SmallVector<bool> writeInBounds; |
| for (unsigned i = 0; i < sourceType.getRank(); ++i) { |
| if (!sourceType.isDynamicDim(i)) { |
| vecShape.push_back(sourceType.getDimSize(i)); |
| // Source shape is statically known: Neither read nor write are out-of- |
| // bounds. |
| readInBounds.push_back(true); |
| writeInBounds.push_back(true); |
| } else if (!resultType.isDynamicDim(i)) { |
| // Source shape is not statically known, but result shape is. Vectorize |
| // with size of result shape. This may be larger than the source size. |
| vecShape.push_back(resultType.getDimSize(i)); |
| // Read may be out-of-bounds because the result size could be larger |
| // than the source size. |
| readInBounds.push_back(false); |
| // Write is out-of-bounds if low padding > 0. |
| writeInBounds.push_back( |
| getConstantIntValue(padOp.getMixedLowPad()[i]) == |
| static_cast<int64_t>(0)); |
| } else { |
| // Neither source nor result dim of padOp is static. Cannot vectorize |
| // the copy. |
| return failure(); |
| } |
| } |
| auto vecType = VectorType::get(vecShape, sourceType.getElementType()); |
| |
| // Generate TransferReadOp. |
| SmallVector<Value> readIndices( |
| vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); |
| auto read = rewriter.create<vector::TransferReadOp>( |
| padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, |
| readInBounds); |
| |
| // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire |
| // tensor, write directly to the FillOp's operand. |
| if (llvm::equal(vecShape, resultType.getShape()) && |
| llvm::all_of(writeInBounds, [](bool b) { return b; })) |
| if (auto fill = dest.getDefiningOp<FillOp>()) |
| dest = fill.output(); |
| |
| // Generate TransferWriteOp. |
| auto writeIndices = |
| ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| padOp, read, dest, writeIndices, writeInBounds); |
| |
| return success(); |
| } |
| }; |
| |
| /// Base pattern for rewriting PadTensorOps whose result is consumed by a given |
| /// operation type OpTy. |
| template <typename OpTy> |
| struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { |
| using OpRewritePattern<PadTensorOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(PadTensorOp padOp, |
| PatternRewriter &rewriter) const final { |
| bool changed = false; |
| // Insert users in vector, because some users may be replaced/removed. |
| for (auto *user : llvm::to_vector<4>(padOp->getUsers())) |
| if (auto op = dyn_cast<OpTy>(user)) |
| changed |= rewriteUser(rewriter, padOp, op).succeeded(); |
| return success(changed); |
| } |
| |
| protected: |
| virtual LogicalResult rewriteUser(PatternRewriter &rewriter, |
| PadTensorOp padOp, OpTy op) const = 0; |
| }; |
| |
| /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: |
| /// ``` |
| /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %r = vector.transfer_read %0[%c0, %c0], %cst |
| /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %r = vector.transfer_read %src[%c0, %c0], %padding |
| /// {in_bounds = [true, true]} |
| /// : tensor<?x?xf32>, vector<17x5xf32> |
| /// ``` |
| /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be |
| /// sure that the original padding value %cst was never used. |
| /// |
| /// This rewrite is possible if: |
| /// - `xferOp` has no out-of-bounds dims or mask. |
| /// - Low padding is static 0. |
| /// - Single, scalar padding value. |
| struct PadTensorOpVectorizationWithTransferReadPattern |
| : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { |
| using VectorizePadTensorOpUserPattern< |
| vector::TransferReadOp>::VectorizePadTensorOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, |
| vector::TransferReadOp xferOp) const override { |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // Padding value of existing `xferOp` is unused. |
| if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) |
| return failure(); |
| |
| rewriter.updateRootInPlace(xferOp, [&]() { |
| SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); |
| xferOp->setAttr(xferOp.getInBoundsAttrName(), |
| rewriter.getBoolArrayAttr(inBounds)); |
| xferOp.sourceMutable().assign(padOp.source()); |
| xferOp.paddingMutable().assign(padValue); |
| }); |
| |
| return success(); |
| } |
| }; |
| |
| /// Rewrite use of PadTensorOp result in TransferWriteOp. |
| /// This pattern rewrites TransferWriteOps that write to a padded tensor value, |
| /// where the same amount of padding is immediately removed again after the |
| /// write. In such cases, the TransferWriteOp can write to the non-padded tensor |
| /// value and apply out-of-bounds masking. E.g.: |
| /// ``` |
| /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] |
| /// : tensor<...> to tensor<?x?xf32> |
| /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %2 = vector.transfer_write %vec, %1[...] |
| /// : vector<17x5xf32>, tensor<17x5xf32> |
| /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] |
| /// : tensor<17x5xf32> to tensor<?x?xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] |
| /// : tensor<...> to tensor<?x?xf32> |
| /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> |
| /// ``` |
| /// Note: It is important that the ExtractSliceOp %r resizes the result of the |
| /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even |
| /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from |
| /// %r's old dimensions. |
| /// |
| /// This rewrite is possible if: |
| /// - Low padding is static 0. |
| /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This |
| /// ExtractSliceOp trims the same amount of padding that was added beforehand. |
| /// - Single, scalar padding value. |
| struct PadTensorOpVectorizationWithTransferWritePattern |
| : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { |
| using VectorizePadTensorOpUserPattern< |
| vector::TransferWriteOp>::VectorizePadTensorOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, |
| vector::TransferWriteOp xferOp) const override { |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // TransferWriteOp result must be directly consumed by an ExtractSliceOp. |
| if (!xferOp->hasOneUse()) |
| return failure(); |
| auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); |
| if (!trimPadding) |
| return failure(); |
| // Only static zero offsets supported when trimming padding. |
| if (!trimPadding.hasZeroOffset()) |
| return failure(); |
| // trimPadding must remove the amount of padding that was added earlier. |
| if (!hasSameTensorSize(padOp.source(), trimPadding)) |
| return failure(); |
| |
| // Insert the new TransferWriteOp at position of the old TransferWriteOp. |
| rewriter.setInsertionPoint(xferOp); |
| |
| SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); |
| auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), |
| xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), |
| rewriter.getBoolArrayAttr(inBounds)); |
| rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); |
| |
| return success(); |
| } |
| |
| /// Check if `beforePadding` and `afterTrimming` have the same tensor size, |
| /// i.e., same dimensions. |
| /// |
| /// Dimensions may be static, dynamic or mix of both. In case of dynamic |
| /// dimensions, this function tries to infer the (static) tensor size by |
| /// looking at the defining op and utilizing op-specific knowledge. |
| /// |
| /// This is a conservative analysis. In case equal tensor sizes cannot be |
| /// proven statically, this analysis returns `false` even though the tensor |
| /// sizes may turn out to be equal at runtime. |
| bool hasSameTensorSize(Value beforePadding, |
| tensor::ExtractSliceOp afterTrimming) const { |
| // If the input to PadTensorOp is a CastOp, try with with both CastOp result |
| // and CastOp operand. |
| if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) |
| if (hasSameTensorSize(castOp.source(), afterTrimming)) |
| return true; |
| |
| auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); |
| auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); |
| // Only RankedTensorType supported. |
| if (!t1 || !t2) |
| return false; |
| // Rank of both values must be the same. |
| if (t1.getRank() != t2.getRank()) |
| return false; |
| |
| // All static dimensions must be the same. Mixed cases (e.g., dimension |
| // static in `t1` but dynamic in `t2`) are not supported. |
| for (unsigned i = 0; i < t1.getRank(); ++i) { |
| if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) |
| return false; |
| if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) |
| return false; |
| } |
| |
| // Nothing more to check if all dimensions are static. |
| if (t1.getNumDynamicDims() == 0) |
| return true; |
| |
| // All dynamic sizes must be the same. The only supported case at the moment |
| // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). |
| |
| // Apart from CastOp, only ExtractSliceOp is supported. |
| auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); |
| if (!beforeSlice) |
| return false; |
| |
| assert(static_cast<size_t>(t1.getRank()) == |
| beforeSlice.getMixedSizes().size()); |
| assert(static_cast<size_t>(t2.getRank()) == |
| afterTrimming.getMixedSizes().size()); |
| |
| for (unsigned i = 0; i < t1.getRank(); ++i) { |
| // Skip static dimensions. |
| if (!t1.isDynamicDim(i)) |
| continue; |
| auto size1 = beforeSlice.getMixedSizes()[i]; |
| auto size2 = afterTrimming.getMixedSizes()[i]; |
| |
| // Case 1: Same value or same constant int. |
| if (isEqualConstantIntOrValue(size1, size2)) |
| continue; |
| |
| // Other cases: Take a deeper look at defining ops of values. |
| auto v1 = size1.dyn_cast<Value>(); |
| auto v2 = size2.dyn_cast<Value>(); |
| if (!v1 || !v2) |
| return false; |
| |
| // Case 2: Both values are identical AffineMinOps. (Should not happen if |
| // CSE is run.) |
| auto minOp1 = v1.getDefiningOp<AffineMinOp>(); |
| auto minOp2 = v2.getDefiningOp<AffineMinOp>(); |
| if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && |
| minOp1.operands() == minOp2.operands()) |
| continue; |
| |
| // Add additional cases as needed. |
| } |
| |
| // All tests passed. |
| return true; |
| } |
| }; |
| |
| /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: |
| /// ``` |
| /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %r = tensor.insert_slice %0 |
| /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] |
| /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %0 = vector.transfer_read %src[%c0, %c0], %padding |
| /// : tensor<?x?xf32>, vector<17x5xf32> |
| /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] |
| /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> |
| /// ``` |
| /// |
| /// This rewrite is possible if: |
| /// - Low padding is static 0. |
| /// - `padOp` result shape is static. |
| /// - The entire padded tensor is inserted. |
| /// (Implies that sizes of `insertOp` are all static.) |
| /// - Only unit strides in `insertOp`. |
| /// - Single, scalar padding value. |
| struct PadTensorOpVectorizationWithInsertSlicePattern |
| : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { |
| using VectorizePadTensorOpUserPattern< |
| tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, |
| tensor::InsertSliceOp insertOp) const override { |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Only unit stride supported. |
| if (!insertOp.hasUnitStride()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // Dynamic shapes not supported. |
| if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) |
| return failure(); |
| |
| auto vecType = VectorType::get(padOp.getType().getShape(), |
| padOp.getType().getElementType()); |
| unsigned vecRank = vecType.getRank(); |
| unsigned tensorRank = insertOp.getType().getRank(); |
| |
| // Check if sizes match: Insert the entire tensor into most minor dims. |
| // (No permutations allowed.) |
| SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); |
| expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); |
| if (!llvm::all_of( |
| llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { |
| return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); |
| })) |
| return failure(); |
| |
| // Insert the TransferReadOp and TransferWriteOp at the position of the |
| // InsertSliceOp. |
| rewriter.setInsertionPoint(insertOp); |
| |
| // Generate TransferReadOp: Read entire source tensor and add high padding. |
| SmallVector<Value> readIndices( |
| vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); |
| auto read = rewriter.create<vector::TransferReadOp>( |
| padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); |
| |
| // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at |
| // specified offsets. Write is fully in-bounds because a InsertSliceOp's |
| // source must fit into the destination at the specified offsets. |
| auto writeIndices = |
| ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); |
| SmallVector<bool> inBounds(vecRank, true); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| insertOp, read, insertOp.dest(), writeIndices, inBounds); |
| |
| return success(); |
| } |
| }; |
| |
| void mlir::linalg::populatePadTensorOpVectorizationPatterns( |
| RewritePatternSet &patterns, PatternBenefit baseBenefit) { |
| patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(), |
| baseBenefit); |
| // Try these specialized patterns first before resorting to the generic one. |
| patterns.add<PadTensorOpVectorizationWithTransferReadPattern, |
| PadTensorOpVectorizationWithTransferWritePattern, |
| PadTensorOpVectorizationWithInsertSlicePattern>( |
| patterns.getContext(), baseBenefit.getBenefit() + 1); |
| } |
| |
| // TODO: cleanup all the convolution vectorization patterns. |
| template <class ConvOp, int N> |
| LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( |
| ConvOp op, PatternRewriter &rewriter) const { |
| Location loc = op.getLoc(); |
| MLIRContext *context = op.getContext(); |
| |
| OpOperand *input = op.getInputOperand(0); |
| OpOperand *kernel = op.getInputOperand(1); |
| OpOperand *output = op.getOutputOperand(0); |
| ArrayRef<int64_t> inShape = op.getShape(input); |
| ArrayRef<int64_t> kShape = op.getShape(kernel); |
| |
| if (llvm::any_of(inShape, ShapedType::isDynamic) || |
| llvm::any_of(kShape, ShapedType::isDynamic)) |
| return failure(); |
| |
| SmallVector<AffineExpr, 4> mapping; |
| SmallVector<int64_t, 4> vectorDims; |
| // Fail to apply when the size of not vectorized dimension is not 1. |
| for (unsigned i = 0; i < N; i++) { |
| if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) |
| return failure(); |
| |
| if (mask[i] && inShape[i] != kShape[i]) |
| return failure(); |
| |
| if (mask[i]) { |
| mapping.push_back(getAffineDimExpr(i, context)); |
| vectorDims.push_back(inShape[i]); |
| } |
| } |
| |
| int64_t rank = op.getRank(input); |
| int64_t numDims = mapping.size(); |
| Type elemType = getElementTypeOrSelf(input->get()); |
| |
| auto map = AffineMap::get(rank, 0, mapping, context); |
| SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); |
| auto vecType = VectorType::get(vectorDims, elemType); |
| |
| auto inputVec = rewriter.create<vector::TransferReadOp>( |
| loc, vecType, input->get(), zeros, map); |
| auto kernelVec = rewriter.create<vector::TransferReadOp>( |
| loc, vecType, kernel->get(), zeros, map); |
| |
| auto acc = rewriter.create<ConstantOp>(loc, elemType, |
| rewriter.getZeroAttr(elemType)); |
| |
| std::array<AffineMap, 3> indexingMaps{ |
| AffineMap::getMultiDimIdentityMap(numDims, context), |
| AffineMap::getMultiDimIdentityMap(numDims, context), |
| AffineMap::get(numDims, 0, {}, context)}; |
| |
| std::vector<StringRef> iteratorTypes(numDims, "reduction"); |
| |
| auto result = rewriter.create<vector::ContractionOp>( |
| loc, inputVec, kernelVec, acc, |
| rewriter.getAffineMapArrayAttr(indexingMaps), |
| rewriter.getStrArrayAttr(iteratorTypes)); |
| |
| rewriter.create<memref::StoreOp>(loc, result, output->get(), |
| ValueRange(zeros)); |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| |
| /// Inserts tiling, promotion and vectorization pattern for ConvOp |
| /// conversion into corresponding pattern lists. |
| template <typename ConvOp, unsigned N> |
| static void populateVectorizationPatterns( |
| RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, |
| RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { |
| auto *context = tilingPatterns.getContext(); |
| if (tileSizes.size() < N) |
| return; |
| |
| constexpr static StringRef kTiledMarker = "TILED"; |
| constexpr static StringRef kPromotedMarker = "PROMOTED"; |
| tilingPatterns.add<LinalgTilingPattern<ConvOp>>( |
| context, LinalgTilingOptions().setTileSizes(tileSizes), |
| LinalgTransformationFilter(ArrayRef<Identifier>{}, |
| Identifier::get(kTiledMarker, context))); |
| |
| promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( |
| context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), |
| LinalgTransformationFilter(Identifier::get(kTiledMarker, context), |
| Identifier::get(kPromotedMarker, context))); |
| |
| SmallVector<bool, 4> mask(N); |
| int offset = tileSizes.size() - N; |
| std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), |
| [](int64_t i) -> bool { return i > 1; }); |
| |
| vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); |
| } |
| |
| void mlir::linalg::populateConvVectorizationPatterns( |
| MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, |
| ArrayRef<int64_t> tileSizes) { |
| RewritePatternSet tiling(context); |
| RewritePatternSet promotion(context); |
| RewritePatternSet vectorization(context); |
| populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, |
| tileSizes); |
| |
| populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, |
| tileSizes); |
| |
| populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, |
| tileSizes); |
| |
| populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, |
| vectorization, tileSizes); |
| |
| populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, |
| vectorization, tileSizes); |
| |
| populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( |
| tiling, promotion, vectorization, tileSizes); |
| |
| patterns.push_back(std::move(tiling)); |
| patterns.push_back(std::move(promotion)); |
| patterns.push_back(std::move(vectorization)); |
| } |
| |
| //----------------------------------------------------------------------------// |
| // Forwarding patterns |
| //----------------------------------------------------------------------------// |
| |
| /// Check whether there is any interleaved use of any `values` between `firstOp` |
| /// and `secondOp`. Conservatively return `true` if any op or value is in a |
| /// different block. |
| static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, |
| ValueRange values) { |
| if (firstOp->getBlock() != secondOp->getBlock() || |
| !firstOp->isBeforeInBlock(secondOp)) { |
| LDBG("interleavedUses precondition failed, firstOp: " |
| << *firstOp << ", second op: " << *secondOp); |
| return true; |
| } |
| for (auto v : values) { |
| for (auto &u : v.getUses()) { |
| Operation *owner = u.getOwner(); |
| if (owner == firstOp || owner == secondOp) |
| continue; |
| // TODO: this is too conservative, use dominance info in the future. |
| if (owner->getBlock() == firstOp->getBlock() && |
| (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) |
| continue; |
| LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp |
| << ", second op: " << *secondOp); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Return the unique subview use of `v` if it is indeed unique, null otherwise. |
| static memref::SubViewOp getSubViewUseIfUnique(Value v) { |
| memref::SubViewOp subViewOp; |
| for (auto &u : v.getUses()) { |
| if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { |
| if (subViewOp) |
| return memref::SubViewOp(); |
| subViewOp = newSubViewOp; |
| } |
| } |
| return subViewOp; |
| } |
| |
| /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, |
| /// when available. |
| LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( |
| vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { |
| |
| // Transfer into `view`. |
| Value viewOrAlloc = xferOp.source(); |
| if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && |
| !viewOrAlloc.getDefiningOp<memref::AllocOp>()) |
| return failure(); |
| |
| LDBG(viewOrAlloc); |
| |
| // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. |
| memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); |
| if (!subViewOp) |
| return failure(); |
| Value subView = subViewOp.getResult(); |
| LDBG("with subView " << subView); |
| |
| // Find the copy into `subView` without interleaved uses. |
| CopyOp copyOp; |
| for (auto &u : subView.getUses()) { |
| if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { |
| assert(newCopyOp.output().getType().isa<MemRefType>()); |
| if (newCopyOp.output() != subView) |
| continue; |
| LDBG("copy candidate " << *newCopyOp); |
| if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) |
| continue; |
| copyOp = newCopyOp; |
| break; |
| } |
| } |
| if (!copyOp) |
| return failure(); |
| LDBG("with copy " << *copyOp); |
| |
| // Find the fill into `viewOrAlloc` without interleaved uses before the copy. |
| FillOp maybeFillOp; |
| for (auto &u : viewOrAlloc.getUses()) { |
| if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { |
| assert(newFillOp.output().getType().isa<MemRefType>()); |
| if (newFillOp.output() != viewOrAlloc) |
| continue; |
| LDBG("fill candidate " << *newFillOp); |
| if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) |
| continue; |
| maybeFillOp = newFillOp; |
| break; |
| } |
| } |
| // Ensure padding matches. |
| if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) |
| return failure(); |
| if (maybeFillOp) |
| LDBG("with maybeFillOp " << *maybeFillOp); |
| |
| // `in` is the subview that linalg.copy reads. Replace it. |
| Value in = copyOp.input(); |
| |
| // linalg.copy + linalg.fill can be used to create a padded local buffer. |
| // The `masked` attribute is only valid on this padded buffer. |
| // When forwarding to vector.transfer_read, the attribute must be reset |
| // conservatively. |
| Value res = rewriter.create<vector::TransferReadOp>( |
| xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), |
| xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); |
| |
| if (maybeFillOp) |
| rewriter.eraseOp(maybeFillOp); |
| rewriter.eraseOp(copyOp); |
| rewriter.replaceOp(xferOp, res); |
| |
| return success(); |
| } |
| |
| /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, |
| /// when available. |
| LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( |
| vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { |
| // Transfer into `viewOrAlloc`. |
| Value viewOrAlloc = xferOp.source(); |
| if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && |
| !viewOrAlloc.getDefiningOp<memref::AllocOp>()) |
| return failure(); |
| |
| // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. |
| memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); |
| if (!subViewOp) |
| return failure(); |
| Value subView = subViewOp.getResult(); |
| |
| // Find the copy from `subView` without interleaved uses. |
| CopyOp copyOp; |
| for (auto &u : subViewOp.getResult().getUses()) { |
| if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { |
| if (newCopyOp.getInputOperand(0)->get() != subView) |
| continue; |
| if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) |
| continue; |
| copyOp = newCopyOp; |
| break; |
| } |
| } |
| if (!copyOp) |
| return failure(); |
| |
| // `out` is the subview copied into that we replace. |
| assert(copyOp.output().getType().isa<MemRefType>()); |
| Value out = copyOp.output(); |
| |
| // Forward vector.transfer into copy. |
| // linalg.copy + linalg.fill can be used to create a padded local buffer. |
| // The `masked` attribute is only valid on this padded buffer. |
| // When forwarding to vector.transfer_write, the attribute must be reset |
| // conservatively. |
| rewriter.create<vector::TransferWriteOp>( |
| xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), |
| xferOp.permutation_map(), ArrayAttr()); |
| |
| rewriter.eraseOp(copyOp); |
| rewriter.eraseOp(xferOp); |
| |
| return success(); |
| } |