| //===- ShapedTypeTest.cpp - ShapedType unit tests -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/BuiltinAttributes.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Dialect.h" |
| #include "mlir/IR/DialectInterface.h" |
| #include "mlir/Support/LLVM.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "gtest/gtest.h" |
| #include <cstdint> |
| |
| using namespace mlir; |
| using namespace mlir::detail; |
| |
| namespace { |
| TEST(ShapedTypeTest, CloneMemref) { |
| MLIRContext context; |
| |
| Type i32 = IntegerType::get(&context, 32); |
| Type f32 = Float32Type::get(&context); |
| Attribute memSpace = IntegerAttr::get(IntegerType::get(&context, 64), 7); |
| Type memrefOriginalType = i32; |
| llvm::SmallVector<int64_t> memrefOriginalShape({10, 20}); |
| AffineMap map = makeStridedLinearLayoutMap({2, 3}, 5, &context); |
| |
| ShapedType memrefType = |
| (ShapedType)MemRefType::Builder(memrefOriginalShape, memrefOriginalType) |
| .setMemorySpace(memSpace) |
| .setLayout(AffineMapAttr::get(map)); |
| // Update shape. |
| llvm::SmallVector<int64_t> memrefNewShape({30, 40}); |
| ASSERT_NE(memrefOriginalShape, memrefNewShape); |
| ASSERT_EQ(memrefType.clone(memrefNewShape), |
| (ShapedType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
| .setMemorySpace(memSpace) |
| .setLayout(AffineMapAttr::get(map))); |
| // Update type. |
| Type memrefNewType = f32; |
| ASSERT_NE(memrefOriginalType, memrefNewType); |
| ASSERT_EQ(memrefType.clone(memrefNewType), |
| (MemRefType)MemRefType::Builder(memrefOriginalShape, memrefNewType) |
| .setMemorySpace(memSpace) |
| .setLayout(AffineMapAttr::get(map))); |
| // Update both. |
| ASSERT_EQ(memrefType.clone(memrefNewShape, memrefNewType), |
| (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
| .setMemorySpace(memSpace) |
| .setLayout(AffineMapAttr::get(map))); |
| |
| // Test unranked memref cloning. |
| ShapedType unrankedTensorType = |
| UnrankedMemRefType::get(memrefOriginalType, memSpace); |
| ASSERT_EQ(unrankedTensorType.clone(memrefNewShape), |
| (MemRefType)MemRefType::Builder(memrefNewShape, memrefOriginalType) |
| .setMemorySpace(memSpace)); |
| ASSERT_EQ(unrankedTensorType.clone(memrefNewType), |
| UnrankedMemRefType::get(memrefNewType, memSpace)); |
| ASSERT_EQ(unrankedTensorType.clone(memrefNewShape, memrefNewType), |
| (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType) |
| .setMemorySpace(memSpace)); |
| } |
| |
| TEST(ShapedTypeTest, CloneTensor) { |
| MLIRContext context; |
| |
| Type i32 = IntegerType::get(&context, 32); |
| Type f32 = Float32Type::get(&context); |
| |
| Type tensorOriginalType = i32; |
| llvm::SmallVector<int64_t> tensorOriginalShape({10, 20}); |
| |
| // Test ranked tensor cloning. |
| ShapedType tensorType = |
| RankedTensorType::get(tensorOriginalShape, tensorOriginalType); |
| // Update shape. |
| llvm::SmallVector<int64_t> tensorNewShape({30, 40}); |
| ASSERT_NE(tensorOriginalShape, tensorNewShape); |
| ASSERT_EQ( |
| tensorType.clone(tensorNewShape), |
| (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| // Update type. |
| Type tensorNewType = f32; |
| ASSERT_NE(tensorOriginalType, tensorNewType); |
| ASSERT_EQ( |
| tensorType.clone(tensorNewType), |
| (ShapedType)RankedTensorType::get(tensorOriginalShape, tensorNewType)); |
| // Update both. |
| ASSERT_EQ(tensorType.clone(tensorNewShape, tensorNewType), |
| (ShapedType)RankedTensorType::get(tensorNewShape, tensorNewType)); |
| |
| // Test unranked tensor cloning. |
| ShapedType unrankedTensorType = UnrankedTensorType::get(tensorOriginalType); |
| ASSERT_EQ( |
| unrankedTensorType.clone(tensorNewShape), |
| (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| ASSERT_EQ(unrankedTensorType.clone(tensorNewType), |
| (ShapedType)UnrankedTensorType::get(tensorNewType)); |
| ASSERT_EQ( |
| unrankedTensorType.clone(tensorNewShape), |
| (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType)); |
| } |
| |
| TEST(ShapedTypeTest, CloneVector) { |
| MLIRContext context; |
| |
| Type i32 = IntegerType::get(&context, 32); |
| Type f32 = Float32Type::get(&context); |
| |
| Type vectorOriginalType = i32; |
| llvm::SmallVector<int64_t> vectorOriginalShape({10, 20}); |
| ShapedType vectorType = |
| VectorType::get(vectorOriginalShape, vectorOriginalType); |
| // Update shape. |
| llvm::SmallVector<int64_t> vectorNewShape({30, 40}); |
| ASSERT_NE(vectorOriginalShape, vectorNewShape); |
| ASSERT_EQ(vectorType.clone(vectorNewShape), |
| VectorType::get(vectorNewShape, vectorOriginalType)); |
| // Update type. |
| Type vectorNewType = f32; |
| ASSERT_NE(vectorOriginalType, vectorNewType); |
| ASSERT_EQ(vectorType.clone(vectorNewType), |
| VectorType::get(vectorOriginalShape, vectorNewType)); |
| // Update both. |
| ASSERT_EQ(vectorType.clone(vectorNewShape, vectorNewType), |
| VectorType::get(vectorNewShape, vectorNewType)); |
| } |
| |
| TEST(ShapedTypeTest, VectorTypeBuilder) { |
| MLIRContext context; |
| Type f32 = Float32Type::get(&context); |
| |
| SmallVector<int64_t> shape{2, 4, 8, 9, 1}; |
| SmallVector<bool> scalableDims{true, false, true, false, false}; |
| VectorType vectorType = VectorType::get(shape, f32, scalableDims); |
| |
| { |
| // Drop some dims. |
| VectorType dropFrontTwoDims = |
| VectorType::Builder(vectorType).dropDim(0).dropDim(0); |
| ASSERT_EQ(vectorType.getElementType(), dropFrontTwoDims.getElementType()); |
| ASSERT_EQ(vectorType.getShape().drop_front(2), dropFrontTwoDims.getShape()); |
| ASSERT_EQ(vectorType.getScalableDims().drop_front(2), |
| dropFrontTwoDims.getScalableDims()); |
| } |
| |
| { |
| // Set some dims. |
| VectorType setTwoDims = |
| VectorType::Builder(vectorType).setDim(0, 10).setDim(3, 12); |
| ASSERT_EQ(setTwoDims.getShape(), ArrayRef<int64_t>({10, 4, 8, 12, 1})); |
| ASSERT_EQ(vectorType.getElementType(), setTwoDims.getElementType()); |
| ASSERT_EQ(vectorType.getScalableDims(), setTwoDims.getScalableDims()); |
| } |
| |
| { |
| // Test for bug from: |
| // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
| // Constructs a temporary builder, modifies it, copies it to `builder`. |
| // This used to lead to a use-after-free. Running under sanitizers will |
| // catch any issues. |
| VectorType::Builder builder = VectorType::Builder(vectorType).setDim(0, 16); |
| VectorType newVectorType = VectorType(builder); |
| ASSERT_EQ(newVectorType.getDimSize(0), 16); |
| } |
| |
| { |
| // Make builder from scratch (without scalable dims) -- this use to lead to |
| // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
| // Running under sanitizers will catch any issues. |
| SmallVector<int64_t> shape{1, 2, 3, 4}; |
| VectorType::Builder builder(shape, f32); |
| ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(shape)); |
| } |
| |
| { |
| // Set vector shape (without scalable dims) -- this use to lead to |
| // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969. |
| // Running under sanitizers will catch any issues. |
| VectorType::Builder builder(vectorType); |
| SmallVector<int64_t> newShape{2, 2}; |
| builder.setShape(newShape); |
| ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(newShape)); |
| } |
| } |
| |
| TEST(ShapedTypeTest, RankedTensorTypeBuilder) { |
| MLIRContext context; |
| Type f32 = Float32Type::get(&context); |
| |
| SmallVector<int64_t> shape{2, 4, 8, 16, 32}; |
| RankedTensorType tensorType = RankedTensorType::get(shape, f32); |
| |
| { |
| // Drop some dims. |
| RankedTensorType dropFrontTwoDims = |
| RankedTensorType::Builder(tensorType).dropDim(0).dropDim(1).dropDim(0); |
| ASSERT_EQ(tensorType.getElementType(), dropFrontTwoDims.getElementType()); |
| ASSERT_EQ(dropFrontTwoDims.getShape(), ArrayRef<int64_t>({16, 32})); |
| } |
| |
| { |
| // Insert some dims. |
| RankedTensorType insertTwoDims = |
| RankedTensorType::Builder(tensorType).insertDim(7, 2).insertDim(9, 3); |
| ASSERT_EQ(tensorType.getElementType(), insertTwoDims.getElementType()); |
| ASSERT_EQ(insertTwoDims.getShape(), |
| ArrayRef<int64_t>({2, 4, 7, 9, 8, 16, 32})); |
| } |
| |
| { |
| // Test for bug from: |
| // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a |
| // Constructs a temporary builder, modifies it, copies it to `builder`. |
| // This used to lead to a use-after-free. Running under sanitizers will |
| // catch any issues. |
| RankedTensorType::Builder builder = |
| RankedTensorType::Builder(tensorType).dropDim(0); |
| RankedTensorType newTensorType = RankedTensorType(builder); |
| ASSERT_EQ(tensorType.getShape().drop_front(), newTensorType.getShape()); |
| } |
| } |
| |
| /// Simple wrapper class to enable "isa querying" and simple accessing of |
| /// encoding. |
| class TensorWithString : public RankedTensorType { |
| public: |
| using RankedTensorType::RankedTensorType; |
| |
| static TensorWithString get(ArrayRef<int64_t> shape, Type elementType, |
| StringRef name) { |
| return mlir::cast<TensorWithString>(RankedTensorType::get( |
| shape, elementType, StringAttr::get(elementType.getContext(), name))); |
| } |
| |
| StringRef getName() const { |
| if (Attribute enc = getEncoding()) |
| return mlir::cast<StringAttr>(enc).getValue(); |
| return {}; |
| } |
| |
| static bool classof(Type type) { |
| if (auto rt = mlir::dyn_cast_or_null<RankedTensorType>(type)) |
| return mlir::isa_and_present<StringAttr>(rt.getEncoding()); |
| return false; |
| } |
| }; |
| |
| TEST(ShapedTypeTest, RankedTensorTypeView) { |
| MLIRContext context; |
| Type f32 = Float32Type::get(&context); |
| |
| Type noEncodingRankedTensorType = RankedTensorType::get({10, 20}, f32); |
| |
| UnitAttr unitAttr = UnitAttr::get(&context); |
| Type unitEncodingRankedTensorType = |
| RankedTensorType::get({10, 20}, f32, unitAttr); |
| |
| StringAttr stringAttr = StringAttr::get(&context, "app"); |
| Type stringEncodingRankedTensorType = |
| RankedTensorType::get({10, 20}, f32, stringAttr); |
| |
| EXPECT_FALSE(mlir::isa<TensorWithString>(noEncodingRankedTensorType)); |
| EXPECT_FALSE(mlir::isa<TensorWithString>(unitEncodingRankedTensorType)); |
| ASSERT_TRUE(mlir::isa<TensorWithString>(stringEncodingRankedTensorType)); |
| |
| // Cast to TensorWithString view. |
| auto view = mlir::cast<TensorWithString>(stringEncodingRankedTensorType); |
| ASSERT_TRUE(mlir::isa<TensorWithString>(view)); |
| EXPECT_EQ(view.getName(), "app"); |
| // Verify one could cast view type back to base type. |
| ASSERT_TRUE(mlir::isa<RankedTensorType>(view)); |
| |
| Type viewCreated = TensorWithString::get({10, 20}, f32, "bob"); |
| ASSERT_TRUE(mlir::isa<TensorWithString>(viewCreated)); |
| ASSERT_TRUE(mlir::isa<RankedTensorType>(viewCreated)); |
| view = mlir::cast<TensorWithString>(viewCreated); |
| EXPECT_EQ(view.getName(), "bob"); |
| |
| // Verify encoding clone methods. |
| EXPECT_EQ(unitEncodingRankedTensorType, |
| cast<RankedTensorType>(noEncodingRankedTensorType) |
| .cloneWithEncoding(unitAttr)); |
| EXPECT_EQ(stringEncodingRankedTensorType, |
| cast<RankedTensorType>(noEncodingRankedTensorType) |
| .cloneWithEncoding(stringAttr)); |
| EXPECT_EQ( |
| noEncodingRankedTensorType, |
| cast<RankedTensorType>(unitEncodingRankedTensorType).dropEncoding()); |
| EXPECT_EQ( |
| noEncodingRankedTensorType, |
| cast<RankedTensorType>(stringEncodingRankedTensorType).dropEncoding()); |
| } |
| |
| } // namespace |