blob: c2363a1a402943c47853c35e5a2e960631b0cd55 [file] [log] [blame]
//===- GPUToLLVMSPV.cpp - Convert GPU operations to LLVM dialect ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToLLVMSPV/GPUToLLVMSPVPass.h"
#include "../GPUCommon/GPUOpsLowering.h"
#include "mlir/Conversion/GPUCommon/AttrToSPIRVConverter.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/SPIRVCommon/AttrToLLVMConverter.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define DEBUG_TYPE "gpu-to-llvm-spv"
using namespace mlir;
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUOPSTOLLVMSPVOPS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
static LLVM::LLVMFuncOp lookupOrCreateSPIRVFn(Operation *symbolTable,
StringRef name,
ArrayRef<Type> paramTypes,
Type resultType, bool isMemNone,
bool isConvergent) {
auto func = dyn_cast_or_null<LLVM::LLVMFuncOp>(
SymbolTable::lookupSymbolIn(symbolTable, name));
if (!func) {
OpBuilder b(symbolTable->getRegion(0));
func = LLVM::LLVMFuncOp::create(
b, symbolTable->getLoc(), name,
LLVM::LLVMFunctionType::get(resultType, paramTypes));
func.setCConv(LLVM::cconv::CConv::SPIR_FUNC);
func.setNoUnwind(true);
func.setWillReturn(true);
if (isMemNone) {
// no externally observable effects
constexpr auto noModRef = mlir::LLVM::ModRefInfo::NoModRef;
auto memAttr = b.getAttr<LLVM::MemoryEffectsAttr>(
/*other=*/noModRef,
/*argMem=*/noModRef, /*inaccessibleMem=*/noModRef);
func.setMemoryEffectsAttr(memAttr);
}
func.setConvergent(isConvergent);
}
return func;
}
static LLVM::CallOp createSPIRVBuiltinCall(Location loc,
ConversionPatternRewriter &rewriter,
LLVM::LLVMFuncOp func,
ValueRange args) {
auto call = LLVM::CallOp::create(rewriter, loc, func, args);
call.setCConv(func.getCConv());
call.setConvergentAttr(func.getConvergentAttr());
call.setNoUnwindAttr(func.getNoUnwindAttr());
call.setWillReturnAttr(func.getWillReturnAttr());
call.setMemoryEffectsAttr(func.getMemoryEffectsAttr());
return call;
}
namespace {
//===----------------------------------------------------------------------===//
// Barriers
//===----------------------------------------------------------------------===//
/// Replace `gpu.barrier` with an `llvm.call` to `barrier` with
/// `CLK_LOCAL_MEM_FENCE` argument, indicating work-group memory scope:
/// ```
/// // gpu.barrier
/// %c1 = llvm.mlir.constant(1: i32) : i32
/// llvm.call spir_funccc @_Z7barrierj(%c1) : (i32) -> ()
/// ```
struct GPUBarrierConversion final : ConvertOpToLLVMPattern<gpu::BarrierOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::BarrierOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
constexpr StringLiteral funcName = "_Z7barrierj";
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type flagTy = rewriter.getI32Type();
Type voidTy = rewriter.getType<LLVM::LLVMVoidType>();
LLVM::LLVMFuncOp func =
lookupOrCreateSPIRVFn(moduleOp, funcName, flagTy, voidTy,
/*isMemNone=*/false, /*isConvergent=*/true);
// Value used by SPIR-V backend to represent `CLK_LOCAL_MEM_FENCE`.
// See `llvm/lib/Target/SPIRV/SPIRVBuiltins.td`.
constexpr int64_t localMemFenceFlag = 1;
Location loc = op->getLoc();
Value flag =
LLVM::ConstantOp::create(rewriter, loc, flagTy, localMemFenceFlag);
rewriter.replaceOp(op, createSPIRVBuiltinCall(loc, rewriter, func, flag));
return success();
}
};
//===----------------------------------------------------------------------===//
// SPIR-V Builtins
//===----------------------------------------------------------------------===//
/// Replace `gpu.*` with an `llvm.call` to the corresponding SPIR-V builtin with
/// a constant argument for the `dimension` attribute. Return type will depend
/// on index width option:
/// ```
/// // %thread_id_y = gpu.thread_id y
/// %c1 = llvm.mlir.constant(1: i32) : i32
/// %0 = llvm.call spir_funccc @_Z12get_local_idj(%c1) : (i32) -> i64
/// ```
struct LaunchConfigConversion : ConvertToLLVMPattern {
LaunchConfigConversion(StringRef funcName, StringRef rootOpName,
MLIRContext *context,
const LLVMTypeConverter &typeConverter,
PatternBenefit benefit)
: ConvertToLLVMPattern(rootOpName, context, typeConverter, benefit),
funcName(funcName) {}
virtual gpu::Dimension getDimension(Operation *op) const = 0;
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type dimTy = rewriter.getI32Type();
Type indexTy = getTypeConverter()->getIndexType();
LLVM::LLVMFuncOp func = lookupOrCreateSPIRVFn(moduleOp, funcName, dimTy,
indexTy, /*isMemNone=*/true,
/*isConvergent=*/false);
Location loc = op->getLoc();
gpu::Dimension dim = getDimension(op);
Value dimVal = LLVM::ConstantOp::create(rewriter, loc, dimTy,
static_cast<int64_t>(dim));
rewriter.replaceOp(op, createSPIRVBuiltinCall(loc, rewriter, func, dimVal));
return success();
}
StringRef funcName;
};
template <typename SourceOp>
struct LaunchConfigOpConversion final : LaunchConfigConversion {
static StringRef getFuncName();
explicit LaunchConfigOpConversion(const LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: LaunchConfigConversion(getFuncName(), SourceOp::getOperationName(),
&typeConverter.getContext(), typeConverter,
benefit) {}
gpu::Dimension getDimension(Operation *op) const final {
return cast<SourceOp>(op).getDimension();
}
};
template <>
StringRef LaunchConfigOpConversion<gpu::BlockIdOp>::getFuncName() {
return "_Z12get_group_idj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::GridDimOp>::getFuncName() {
return "_Z14get_num_groupsj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::BlockDimOp>::getFuncName() {
return "_Z14get_local_sizej";
}
template <>
StringRef LaunchConfigOpConversion<gpu::ThreadIdOp>::getFuncName() {
return "_Z12get_local_idj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::GlobalIdOp>::getFuncName() {
return "_Z13get_global_idj";
}
//===----------------------------------------------------------------------===//
// Shuffles
//===----------------------------------------------------------------------===//
/// Replace `gpu.shuffle` with an `llvm.call` to the corresponding SPIR-V
/// builtin for `shuffleResult`, keeping `value` and `offset` arguments, and a
/// `true` constant for the `valid` result type. Conversion will only take place
/// if `width` is constant and equal to the `subgroup` pass option:
/// ```
/// // %0 = gpu.shuffle idx %value, %offset, %width : f64
/// %0 = llvm.call spir_funccc @_Z17sub_group_shuffledj(%value, %offset)
/// : (f64, i32) -> f64
/// ```
struct GPUShuffleConversion final : ConvertOpToLLVMPattern<gpu::ShuffleOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
static StringRef getBaseName(gpu::ShuffleMode mode) {
switch (mode) {
case gpu::ShuffleMode::IDX:
return "sub_group_shuffle";
case gpu::ShuffleMode::XOR:
return "sub_group_shuffle_xor";
case gpu::ShuffleMode::UP:
return "sub_group_shuffle_up";
case gpu::ShuffleMode::DOWN:
return "sub_group_shuffle_down";
}
llvm_unreachable("Unhandled shuffle mode");
}
static std::optional<StringRef> getTypeMangling(Type type) {
return TypeSwitch<Type, std::optional<StringRef>>(type)
.Case<Float16Type>([](auto) { return "Dhj"; })
.Case<Float32Type>([](auto) { return "fj"; })
.Case<Float64Type>([](auto) { return "dj"; })
.Case<IntegerType>([](auto intTy) -> std::optional<StringRef> {
switch (intTy.getWidth()) {
case 8:
return "cj";
case 16:
return "sj";
case 32:
return "ij";
case 64:
return "lj";
}
return std::nullopt;
})
.Default([](auto) { return std::nullopt; });
}
static std::optional<std::string> getFuncName(gpu::ShuffleMode mode,
Type type) {
StringRef baseName = getBaseName(mode);
std::optional<StringRef> typeMangling = getTypeMangling(type);
if (!typeMangling)
return std::nullopt;
return llvm::formatv("_Z{}{}{}", baseName.size(), baseName,
typeMangling.value());
}
/// Get the subgroup size from the target or return a default.
static std::optional<int> getSubgroupSize(Operation *op) {
auto parentFunc = op->getParentOfType<LLVM::LLVMFuncOp>();
if (!parentFunc)
return std::nullopt;
return parentFunc.getIntelReqdSubGroupSize();
}
static bool hasValidWidth(gpu::ShuffleOp op) {
llvm::APInt val;
Value width = op.getWidth();
return matchPattern(width, m_ConstantInt(&val)) &&
val == getSubgroupSize(op);
}
static Value bitcastOrExtBeforeShuffle(Value oldVal, Location loc,
ConversionPatternRewriter &rewriter) {
return TypeSwitch<Type, Value>(oldVal.getType())
.Case([&](BFloat16Type) {
return LLVM::BitcastOp::create(rewriter, loc, rewriter.getI16Type(),
oldVal);
})
.Case([&](IntegerType intTy) -> Value {
if (intTy.getWidth() == 1)
return LLVM::ZExtOp::create(rewriter, loc, rewriter.getI8Type(),
oldVal);
return oldVal;
})
.Default(oldVal);
}
static Value bitcastOrTruncAfterShuffle(Value oldVal, Type newTy,
Location loc,
ConversionPatternRewriter &rewriter) {
return TypeSwitch<Type, Value>(newTy)
.Case([&](BFloat16Type) {
return LLVM::BitcastOp::create(rewriter, loc, newTy, oldVal);
})
.Case([&](IntegerType intTy) -> Value {
if (intTy.getWidth() == 1)
return LLVM::TruncOp::create(rewriter, loc, newTy, oldVal);
return oldVal;
})
.Default(oldVal);
}
LogicalResult
matchAndRewrite(gpu::ShuffleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
if (!hasValidWidth(op))
return rewriter.notifyMatchFailure(
op, "shuffle width and subgroup size mismatch");
Location loc = op->getLoc();
Value inValue =
bitcastOrExtBeforeShuffle(adaptor.getValue(), loc, rewriter);
std::optional<std::string> funcName =
getFuncName(op.getMode(), inValue.getType());
if (!funcName)
return rewriter.notifyMatchFailure(op, "unsupported value type");
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type valueType = inValue.getType();
Type offsetType = adaptor.getOffset().getType();
Type resultType = valueType;
LLVM::LLVMFuncOp func = lookupOrCreateSPIRVFn(
moduleOp, funcName.value(), {valueType, offsetType}, resultType,
/*isMemNone=*/false, /*isConvergent=*/true);
std::array<Value, 2> args{inValue, adaptor.getOffset()};
Value result =
createSPIRVBuiltinCall(loc, rewriter, func, args).getResult();
Value resultOrConversion =
bitcastOrTruncAfterShuffle(result, op.getType(0), loc, rewriter);
Value trueVal =
LLVM::ConstantOp::create(rewriter, loc, rewriter.getI1Type(), true);
rewriter.replaceOp(op, {resultOrConversion, trueVal});
return success();
}
};
class MemorySpaceToOpenCLMemorySpaceConverter final : public TypeConverter {
public:
MemorySpaceToOpenCLMemorySpaceConverter(MLIRContext *ctx) {
addConversion([](Type t) { return t; });
addConversion([ctx](BaseMemRefType memRefType) -> std::optional<Type> {
// Attach global addr space attribute to memrefs with no addr space attr
Attribute memSpaceAttr = memRefType.getMemorySpace();
if (memSpaceAttr)
return std::nullopt;
unsigned globalAddrspace = storageClassToAddressSpace(
spirv::ClientAPI::OpenCL, spirv::StorageClass::CrossWorkgroup);
Attribute addrSpaceAttr =
IntegerAttr::get(IntegerType::get(ctx, 64), globalAddrspace);
if (auto rankedType = dyn_cast<MemRefType>(memRefType)) {
return MemRefType::get(memRefType.getShape(),
memRefType.getElementType(),
rankedType.getLayout(), addrSpaceAttr);
}
return UnrankedMemRefType::get(memRefType.getElementType(),
addrSpaceAttr);
});
addConversion([this](FunctionType type) {
auto inputs = llvm::map_to_vector(
type.getInputs(), [this](Type ty) { return convertType(ty); });
auto results = llvm::map_to_vector(
type.getResults(), [this](Type ty) { return convertType(ty); });
return FunctionType::get(type.getContext(), inputs, results);
});
}
};
//===----------------------------------------------------------------------===//
// Subgroup query ops.
//===----------------------------------------------------------------------===//
template <typename SubgroupOp>
struct GPUSubgroupOpConversion final : ConvertOpToLLVMPattern<SubgroupOp> {
using ConvertOpToLLVMPattern<SubgroupOp>::ConvertOpToLLVMPattern;
using ConvertToLLVMPattern::getTypeConverter;
LogicalResult
matchAndRewrite(SubgroupOp op, typename SubgroupOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
constexpr StringRef funcName = [] {
if constexpr (std::is_same_v<SubgroupOp, gpu::SubgroupIdOp>) {
return "_Z16get_sub_group_id";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::LaneIdOp>) {
return "_Z22get_sub_group_local_id";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::NumSubgroupsOp>) {
return "_Z18get_num_sub_groups";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::SubgroupSizeOp>) {
return "_Z18get_sub_group_size";
}
}();
Operation *moduleOp =
op->template getParentWithTrait<OpTrait::SymbolTable>();
Type resultTy = rewriter.getI32Type();
LLVM::LLVMFuncOp func =
lookupOrCreateSPIRVFn(moduleOp, funcName, {}, resultTy,
/*isMemNone=*/false, /*isConvergent=*/false);
Location loc = op->getLoc();
Value result = createSPIRVBuiltinCall(loc, rewriter, func, {}).getResult();
Type indexTy = getTypeConverter()->getIndexType();
if (resultTy != indexTy) {
if (indexTy.getIntOrFloatBitWidth() < resultTy.getIntOrFloatBitWidth()) {
return failure();
}
result = LLVM::ZExtOp::create(rewriter, loc, indexTy, result);
}
rewriter.replaceOp(op, result);
return success();
}
};
//===----------------------------------------------------------------------===//
// GPU To LLVM-SPV Pass.
//===----------------------------------------------------------------------===//
struct GPUToLLVMSPVConversionPass final
: impl::ConvertGpuOpsToLLVMSPVOpsBase<GPUToLLVMSPVConversionPass> {
using Base::Base;
void runOnOperation() final {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
LowerToLLVMOptions options(context);
options.overrideIndexBitwidth(this->use64bitIndex ? 64 : 32);
LLVMTypeConverter converter(context, options);
LLVMConversionTarget target(*context);
// Force OpenCL address spaces when they are not present
{
MemorySpaceToOpenCLMemorySpaceConverter converter(context);
AttrTypeReplacer replacer;
replacer.addReplacement([&converter](BaseMemRefType origType)
-> std::optional<BaseMemRefType> {
return converter.convertType<BaseMemRefType>(origType);
});
replacer.recursivelyReplaceElementsIn(getOperation(),
/*replaceAttrs=*/true,
/*replaceLocs=*/false,
/*replaceTypes=*/true);
}
target.addIllegalOp<gpu::BarrierOp, gpu::BlockDimOp, gpu::BlockIdOp,
gpu::GPUFuncOp, gpu::GlobalIdOp, gpu::GridDimOp,
gpu::LaneIdOp, gpu::NumSubgroupsOp, gpu::ReturnOp,
gpu::ShuffleOp, gpu::SubgroupIdOp, gpu::SubgroupSizeOp,
gpu::ThreadIdOp>();
populateGpuToLLVMSPVConversionPatterns(converter, patterns);
populateGpuMemorySpaceAttributeConversions(converter);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// GPU To LLVM-SPV Patterns.
//===----------------------------------------------------------------------===//
namespace mlir {
namespace {
static unsigned
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace addressSpace) {
constexpr spirv::ClientAPI clientAPI = spirv::ClientAPI::OpenCL;
return storageClassToAddressSpace(clientAPI,
addressSpaceToStorageClass(addressSpace));
}
} // namespace
void populateGpuToLLVMSPVConversionPatterns(
const LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<GPUBarrierConversion, GPUReturnOpLowering, GPUShuffleConversion,
GPUSubgroupOpConversion<gpu::LaneIdOp>,
GPUSubgroupOpConversion<gpu::NumSubgroupsOp>,
GPUSubgroupOpConversion<gpu::SubgroupIdOp>,
GPUSubgroupOpConversion<gpu::SubgroupSizeOp>,
LaunchConfigOpConversion<gpu::BlockDimOp>,
LaunchConfigOpConversion<gpu::BlockIdOp>,
LaunchConfigOpConversion<gpu::GlobalIdOp>,
LaunchConfigOpConversion<gpu::GridDimOp>,
LaunchConfigOpConversion<gpu::ThreadIdOp>>(typeConverter);
MLIRContext *context = &typeConverter.getContext();
unsigned privateAddressSpace =
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace::Private);
unsigned localAddressSpace =
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace::Workgroup);
OperationName llvmFuncOpName(LLVM::LLVMFuncOp::getOperationName(), context);
StringAttr kernelBlockSizeAttributeName =
LLVM::LLVMFuncOp::getReqdWorkGroupSizeAttrName(llvmFuncOpName);
patterns.add<GPUFuncOpLowering>(
typeConverter,
GPUFuncOpLoweringOptions{
privateAddressSpace, localAddressSpace,
/*kernelAttributeName=*/{}, kernelBlockSizeAttributeName,
LLVM::CConv::SPIR_KERNEL, LLVM::CConv::SPIR_FUNC,
/*encodeWorkgroupAttributionsAsArguments=*/true});
}
void populateGpuMemorySpaceAttributeConversions(TypeConverter &typeConverter) {
populateGpuMemorySpaceAttributeConversions(typeConverter,
gpuAddressSpaceToOCLAddressSpace);
}
} // namespace mlir