blob: 603ea41d43360cf7289d511844f89a096feee917 [file] [log] [blame]
//===- LowerVectorShapeCast.cpp - Lower 'vector.shape_cast' operation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.shape_cast' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/UB//IR/UBOps.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include <numeric>
#define DEBUG_TYPE "vector-shape-cast-lowering"
using namespace mlir;
/// Perform the inplace update
/// rhs <- lhs + rhs
///
/// where `rhs` is a number expressed in mixed base `base` with most signficant
/// dimensions on the left. For example if `rhs` is {a,b,c} and `base` is
/// {5,3,2} then `rhs` has value a*3*2 + b*2 + c.
///
/// Some examples where `base` is {5,3,2}:
/// rhs = {0,0,0}, lhs = 1 --> rhs = {0,0,1}
/// rhs = {0,0,1}, lhs = 1 --> rhs = {0,1,0}
/// rhs = {0,0,0}, lhs = 25 --> rhs = {4,0,1}
///
/// Invalid:
/// rhs = {0,0,2}, lhs = 1 : rhs not in base {5,3,2}
///
/// Overflows not handled correctly:
/// rhs = {4,2,1}, lhs = 2 --> rhs = {0,0,0} (not {0,0,1})
static void inplaceAdd(int64_t lhs, ArrayRef<int64_t> base,
MutableArrayRef<int64_t> rhs) {
// For dimensions in [numIndices - 1, ..., 3, 2, 1, 0]:
for (int dim : llvm::reverse(llvm::seq<int>(0, rhs.size()))) {
int64_t dimBase = base[dim];
assert(rhs[dim] < dimBase && "rhs not in base");
int64_t incremented = rhs[dim] + lhs;
// If the incremented value excedes the dimension base, we must spill to the
// next most significant dimension and repeat (we might need to spill to
// more significant dimensions multiple times).
lhs = incremented / dimBase;
rhs[dim] = incremented % dimBase;
if (lhs == 0)
break;
}
}
namespace {
/// shape_cast is converted to a sequence of extract, extract_strided_slice,
/// insert_strided_slice, and insert operations. The running example will be:
///
/// %0 = vector.shape_cast %arg0 :
/// vector<2x2x3x4x7x11xi8> to vector<8x6x7x11xi8>
///
/// In this example the source and result shapes share a common suffix of 7x11.
/// This means we can always decompose the shape_cast into extract, insert, and
/// their strided equivalents, on vectors with shape suffix 7x11.
///
/// The greatest common divisor (gcd) of the first dimension preceding the
/// common suffix is gcd(4,6) = 2. The algorithm implemented here will operate
/// on vectors with shapes that are `multiples` of (what we define as) the
/// 'atomic shape', 2x7x11. The atomic shape is `gcd` x `common-suffix`.
///
/// vector<2x2x3x4x7x11xi8> to
/// vector<8x6x7x11xi8>
/// | ||||
/// | ++++------------> common suffix of 7x11
/// +-----------------> gcd(4,6) is 2 | |
/// | | |
/// v v v
/// atomic shape <----- 2x7x11
///
///
///
/// The decomposition implemented in this pattern consists of a sequence of
/// repeated steps:
///
/// (1) Extract vectors from the suffix of the source.
/// In our example this is 2x2x3x4x7x11 -> 4x7x11.
///
/// (2) Do extract_strided_slice down to the atomic shape.
/// In our example this is 4x7x11 -> 2x7x11.
///
/// (3) Do insert_strided_slice to the suffix of the result.
/// In our example this is 2x7x11 -> 6x7x11.
///
/// (4) insert these vectors into the result vector.
/// In our example this is 6x7x11 -> 8x6x7x11.
///
/// These steps occur with different periods. In this example
/// (1) occurs 12 times,
/// (2) and (3) occur 24 times, and
/// (4) occurs 8 times.
///
/// Two special cases are handled independently in this pattern
/// (i) A shape_cast that just does leading 1 insertion/removal
/// (ii) A shape_cast where the gcd is 1.
///
/// These 2 cases can have more compact IR generated by not using the generic
/// algorithm described above.
///
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
// Case (i) of description.
// Assumes source and result shapes are identical up to some leading ones.
static LogicalResult leadingOnesLowering(vector::ShapeCastOp shapeCast,
PatternRewriter &rewriter) {
const Location loc = shapeCast.getLoc();
const VectorType sourceType = shapeCast.getSourceVectorType();
const VectorType resultType = shapeCast.getResultVectorType();
const int64_t sourceRank = sourceType.getRank();
const int64_t resultRank = resultType.getRank();
const int64_t delta = sourceRank - resultRank;
const int64_t sourceLeading = delta > 0 ? delta : 0;
const int64_t resultLeading = delta > 0 ? 0 : -delta;
const Value source = shapeCast.getSource();
const Value poison = ub::PoisonOp::create(rewriter, loc, resultType);
const Value extracted = vector::ExtractOp::create(
rewriter, loc, source, SmallVector<int64_t>(sourceLeading, 0));
const Value result =
vector::InsertOp::create(rewriter, loc, extracted, poison,
SmallVector<int64_t>(resultLeading, 0));
rewriter.replaceOp(shapeCast, result);
return success();
}
// Case (ii) of description.
// Assumes a shape_cast where the suffix shape of the source starting at
// `sourceDim` and the suffix shape of the result starting at `resultDim` are
// identical.
static LogicalResult noStridedSliceLowering(vector::ShapeCastOp shapeCast,
int64_t sourceDim,
int64_t resultDim,
PatternRewriter &rewriter) {
const Location loc = shapeCast.getLoc();
const Value source = shapeCast.getSource();
const ArrayRef<int64_t> sourceShape =
shapeCast.getSourceVectorType().getShape();
const VectorType resultType = shapeCast.getResultVectorType();
const ArrayRef<int64_t> resultShape = resultType.getShape();
const int64_t nSlices =
std::accumulate(sourceShape.begin(), sourceShape.begin() + sourceDim, 1,
std::multiplies<int64_t>());
SmallVector<int64_t> extractIndex(sourceDim, 0);
SmallVector<int64_t> insertIndex(resultDim, 0);
Value result = ub::PoisonOp::create(rewriter, loc, resultType);
for (int i = 0; i < nSlices; ++i) {
Value extracted =
vector::ExtractOp::create(rewriter, loc, source, extractIndex);
result = vector::InsertOp::create(rewriter, loc, extracted, result,
insertIndex);
inplaceAdd(1, sourceShape.take_front(sourceDim), extractIndex);
inplaceAdd(1, resultShape.take_front(resultDim), insertIndex);
}
rewriter.replaceOp(shapeCast, result);
return success();
}
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType sourceType = op.getSourceVectorType();
VectorType resultType = op.getResultVectorType();
if (sourceType.isScalable() || resultType.isScalable())
return rewriter.notifyMatchFailure(
op,
"shape_cast where vectors are scalable not handled by this pattern");
const ArrayRef<int64_t> sourceShape = sourceType.getShape();
const ArrayRef<int64_t> resultShape = resultType.getShape();
const int64_t sourceRank = sourceType.getRank();
const int64_t resultRank = resultType.getRank();
const int64_t numElms = sourceType.getNumElements();
const Value source = op.getSource();
// Set the first dimension (starting at the end) in the source and result
// respectively where the dimension sizes differ. Using the running example:
//
// dimensions: [0 1 2 3 4 5 ] [0 1 2 3 ]
// shapes: (2,2,3,4,7,11) -> (8,6,7,11)
// ^ ^
// | |
// sourceSuffixStartDim is 3 |
// |
// resultSuffixStartDim is 1
int64_t sourceSuffixStartDim = sourceRank - 1;
int64_t resultSuffixStartDim = resultRank - 1;
while (sourceSuffixStartDim >= 0 && resultSuffixStartDim >= 0 &&
(sourceType.getDimSize(sourceSuffixStartDim) ==
resultType.getDimSize(resultSuffixStartDim))) {
--sourceSuffixStartDim;
--resultSuffixStartDim;
}
// This is the case (i) where there are just some leading ones to contend
// with in the source or result. It can be handled with a single
// extract/insert pair.
if (resultSuffixStartDim < 0 || sourceSuffixStartDim < 0)
return leadingOnesLowering(op, rewriter);
const int64_t sourceSuffixStartDimSize =
sourceType.getDimSize(sourceSuffixStartDim);
const int64_t resultSuffixStartDimSize =
resultType.getDimSize(resultSuffixStartDim);
const int64_t greatestCommonDivisor =
std::gcd(sourceSuffixStartDimSize, resultSuffixStartDimSize);
const int64_t stridedSliceRank = sourceRank - sourceSuffixStartDim;
const size_t extractPeriod =
sourceSuffixStartDimSize / greatestCommonDivisor;
const size_t insertPeriod =
resultSuffixStartDimSize / greatestCommonDivisor;
SmallVector<int64_t> atomicShape(sourceShape.begin() + sourceSuffixStartDim,
sourceShape.end());
atomicShape[0] = greatestCommonDivisor;
const int64_t numAtomicElms = std::accumulate(
atomicShape.begin(), atomicShape.end(), 1, std::multiplies<int64_t>());
const size_t nAtomicSlices = numElms / numAtomicElms;
// This is the case (ii) where the strided dimension size is 1. More compact
// IR is generated in this case if we just extract and insert the elements
// directly. In other words, we don't use extract_strided_slice and
// insert_strided_slice.
if (greatestCommonDivisor == 1)
return noStridedSliceLowering(op, sourceSuffixStartDim + 1,
resultSuffixStartDim + 1, rewriter);
// The insert_strided_slice result's type
const ArrayRef<int64_t> insertStridedShape =
resultShape.drop_front(resultSuffixStartDim);
const VectorType insertStridedType =
VectorType::get(insertStridedShape, resultType.getElementType());
SmallVector<int64_t> extractIndex(sourceSuffixStartDim, 0);
SmallVector<int64_t> insertIndex(resultSuffixStartDim, 0);
SmallVector<int64_t> extractOffsets(stridedSliceRank, 0);
SmallVector<int64_t> insertOffsets(stridedSliceRank, 0);
const SmallVector<int64_t> sizes(stridedSliceRank, 1);
Value extracted = {};
Value extractedStrided = {};
Value insertedSlice = {};
Value result = ub::PoisonOp::create(rewriter, loc, resultType);
const Value partResult =
ub::PoisonOp::create(rewriter, loc, insertStridedType);
for (size_t i = 0; i < nAtomicSlices; ++i) {
const size_t extractStridedPhase = i % extractPeriod;
const size_t insertStridedPhase = i % insertPeriod;
// vector.extract
if (extractStridedPhase == 0) {
extracted =
vector::ExtractOp::create(rewriter, loc, source, extractIndex);
inplaceAdd(1, sourceShape.take_front(sourceSuffixStartDim),
extractIndex);
}
// vector.extract_strided_slice
extractOffsets[0] = extractStridedPhase * greatestCommonDivisor;
extractedStrided = vector::ExtractStridedSliceOp::create(
rewriter, loc, extracted, extractOffsets, atomicShape, sizes);
// vector.insert_strided_slice
if (insertStridedPhase == 0) {
insertedSlice = partResult;
}
insertOffsets[0] = insertStridedPhase * greatestCommonDivisor;
insertedSlice = vector::InsertStridedSliceOp::create(
rewriter, loc, extractedStrided, insertedSlice, insertOffsets, sizes);
// vector.insert
if (insertStridedPhase + 1 == insertPeriod) {
result = vector::InsertOp::create(rewriter, loc, insertedSlice, result,
insertIndex);
inplaceAdd(1, resultType.getShape().take_front(resultSuffixStartDim),
insertIndex);
}
}
rewriter.replaceOp(op, result);
return success();
}
};
/// A shape_cast lowering for scalable vectors with a single trailing scalable
/// dimension. This is similar to the general shape_cast lowering but makes use
/// of vector.scalable.insert and vector.scalable.extract to move elements a
/// subvector at a time.
///
/// E.g.:
/// ```
/// // Flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<2x1x[4]xi32> to vector<[8]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Flatten scalable vector
/// %c = arith.constant dense<0> : vector<[8]xi32>
/// %0 = vector.extract %arg0[0, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %1 = vector.scalable.insert %0, %c[0] : vector<[4]xi32> into vector<[8]xi32>
/// %2 = vector.extract %arg0[1, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %3 = vector.scalable.insert %2, %1[4] : vector<[4]xi32> into vector<[8]xi32>
/// ```
/// or:
/// ```
/// // Un-flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<[8]xi32> to vector<2x1x[4]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Un-flatten scalable vector
/// %c = arith.constant dense<0> : vector<2x1x[4]xi32>
/// %0 = vector.scalable.extract %arg0[0] : vector<[4]xi32> from vector<[8]xi32>
/// %1 = vector.insert %0, %c [0, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// %2 = vector.scalable.extract %arg0[4] : vector<[4]xi32> from vector<[8]xi32>
/// %3 = vector.insert %2, %1 [1, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// ```
class ScalableShapeCastOpRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
auto srcRank = sourceVectorType.getRank();
auto resRank = resultVectorType.getRank();
// This can only lower shape_casts where both the source and result types
// have a single trailing scalable dimension. This is because there are no
// legal representation of other scalable types in LLVM (and likely won't be
// soon). There are also (currently) no operations that can index or extract
// from >= 2-D scalable vectors or scalable vectors of fixed vectors.
if (!isTrailingDimScalable(sourceVectorType) ||
!isTrailingDimScalable(resultVectorType)) {
return rewriter.notifyMatchFailure(
op, "trailing dims are not scalable, not handled by this pattern");
}
// The sizes of the trailing dimension of the source and result vectors, the
// size of subvector to move, and the number of elements in the vectors.
// These are "min" sizes as they are the size when vscale == 1.
auto minSourceTrailingSize = sourceVectorType.getShape().back();
auto minResultTrailingSize = resultVectorType.getShape().back();
auto minExtractionSize =
std::min(minSourceTrailingSize, minResultTrailingSize);
int64_t minNumElts = 1;
for (auto size : sourceVectorType.getShape())
minNumElts *= size;
// The subvector type to move from the source to the result. Note that this
// is a scalable vector. This rewrite will generate code in terms of the
// "min" size (vscale == 1 case), that scales to any vscale.
auto extractionVectorType = VectorType::get(
{minExtractionSize}, sourceVectorType.getElementType(), {true});
Value result = ub::PoisonOp::create(rewriter, loc, resultVectorType);
SmallVector<int64_t> srcIdx(srcRank, 0);
SmallVector<int64_t> resIdx(resRank, 0);
// TODO: Try rewriting this with StaticTileOffsetRange (from IndexingUtils)
// once D150000 lands.
Value currentResultScalableVector;
Value currentSourceScalableVector;
for (int64_t i = 0; i < minNumElts; i += minExtractionSize) {
// 1. Extract a scalable subvector from the source vector.
if (!currentSourceScalableVector) {
if (srcRank != 1) {
currentSourceScalableVector =
vector::ExtractOp::create(rewriter, loc, op.getSource(),
llvm::ArrayRef(srcIdx).drop_back());
} else {
currentSourceScalableVector = op.getSource();
}
}
Value sourceSubVector = currentSourceScalableVector;
if (minExtractionSize < minSourceTrailingSize) {
sourceSubVector = vector::ScalableExtractOp::create(
rewriter, loc, extractionVectorType, sourceSubVector,
srcIdx.back());
}
// 2. Insert the scalable subvector into the result vector.
if (!currentResultScalableVector) {
if (minExtractionSize == minResultTrailingSize) {
currentResultScalableVector = sourceSubVector;
} else if (resRank != 1) {
currentResultScalableVector = vector::ExtractOp::create(
rewriter, loc, result, llvm::ArrayRef(resIdx).drop_back());
} else {
currentResultScalableVector = result;
}
}
if (minExtractionSize < minResultTrailingSize) {
currentResultScalableVector = vector::ScalableInsertOp::create(
rewriter, loc, sourceSubVector, currentResultScalableVector,
resIdx.back());
}
// 3. Update the source and result scalable vectors if needed.
if (resIdx.back() + minExtractionSize >= minResultTrailingSize &&
currentResultScalableVector != result) {
// Finished row of result. Insert complete scalable vector into result
// (n-D) vector.
result = vector::InsertOp::create(rewriter, loc,
currentResultScalableVector, result,
llvm::ArrayRef(resIdx).drop_back());
currentResultScalableVector = {};
}
if (srcIdx.back() + minExtractionSize >= minSourceTrailingSize) {
// Finished row of source.
currentSourceScalableVector = {};
}
// 4. Increment the insert/extract indices, stepping by minExtractionSize
// for the trailing dimensions.
inplaceAdd(minExtractionSize, sourceVectorType.getShape(), srcIdx);
inplaceAdd(minExtractionSize, resultVectorType.getShape(), resIdx);
}
rewriter.replaceOp(op, result);
return success();
}
static bool isTrailingDimScalable(VectorType type) {
return type.getRank() >= 1 && type.getScalableDims().back() &&
!llvm::is_contained(type.getScalableDims().drop_back(), true);
}
};
} // namespace
void mlir::vector::populateVectorShapeCastLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ShapeCastOpRewritePattern, ScalableShapeCastOpRewritePattern>(
patterns.getContext(), benefit);
}