| //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the linalg dialect Vectorization transformations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/SliceAnalysis.h" |
| #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <type_traits> |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| #define DEBUG_TYPE "linalg-vectorization" |
| |
| #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") |
| #define LDBG(X) LLVM_DEBUG(DBGS() << X) |
| |
| /// Try to vectorize `convOp` as a convolution. |
| static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, |
| LinalgOp convOp); |
| |
| /// Return the unique instance of OpType in `block` if it is indeed unique. |
| /// Return null if none or more than 1 instances exist. |
| template <typename OpType> |
| static OpType getSingleOpOfType(Block &block) { |
| OpType res; |
| block.walk([&](OpType op) { |
| if (res) { |
| res = nullptr; |
| return WalkResult::interrupt(); |
| } |
| res = op; |
| return WalkResult::advance(); |
| }); |
| return res; |
| } |
| |
| /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a |
| /// projectedPermutation, compress the unused dimensions to serve as a |
| /// permutation_map for a vector transfer operation. |
| /// For example, given a linalg op such as: |
| /// |
| /// ``` |
| /// %0 = linalg.generic { |
| /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, |
| /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> |
| /// } |
| /// ins(%0 : tensor<2x3x4xf32>) |
| /// outs(%1 : tensor<5x6xf32>) |
| /// ``` |
| /// |
| /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine |
| /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second |
| /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. |
| static AffineMap reindexIndexingMap(AffineMap map) { |
| assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && |
| "expected projected permutation"); |
| auto res = compressUnusedDims(map); |
| assert(res.getNumDims() == res.getNumResults() && |
| "expected reindexed map with same number of dims and results"); |
| return res; |
| } |
| |
| /// Helper enum to represent conv1d input traversal order. |
| enum class Conv1DOpOrder { |
| Ncw, // Corresponds to operation that traverses the input in (n, c, w) order. |
| Nwc // Corresponds to operation that traverses the input in (n, w, c) order. |
| }; |
| |
| /// Helper data structure to represent the result of vectorization. |
| /// In certain specific cases, like terminators, we do not want to propagate/ |
| enum VectorizationStatus { |
| /// Op failed to vectorize. |
| Failure = 0, |
| /// Op vectorized and custom function took care of replacement logic |
| NoReplace, |
| /// Op vectorized into a new Op whose results will replace original Op's |
| /// results. |
| NewOp |
| // TODO: support values if Op vectorized to Many-Ops whose results we need to |
| // aggregate for replacement. |
| }; |
| struct VectorizationResult { |
| /// Return status from vectorizing the current op. |
| enum VectorizationStatus status = VectorizationStatus::Failure; |
| /// New vectorized operation to replace the current op. |
| /// Replacement behavior is specified by `status`. |
| Operation *newOp; |
| }; |
| |
| llvm::Optional<vector::CombiningKind> |
| mlir::linalg::getCombinerOpKind(Operation *combinerOp) { |
| using ::mlir::vector::CombiningKind; |
| |
| if (!combinerOp) |
| return llvm::None; |
| return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>( |
| combinerOp) |
| .Case<arith::AddIOp, arith::AddFOp>( |
| [&](auto op) { return CombiningKind::ADD; }) |
| .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; }) |
| .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; }) |
| .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; }) |
| .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; }) |
| .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; }) |
| .Case<arith::MulIOp, arith::MulFOp>( |
| [&](auto op) { return CombiningKind::MUL; }) |
| .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; }) |
| .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; }) |
| .Default([&](auto op) { return llvm::None; }); |
| } |
| |
| /// Check whether `outputOperand` is a reduction with a single combiner |
| /// operation. Return the combiner operation of the reduction. Return |
| /// nullptr otherwise. Multiple reduction operations would impose an |
| /// ordering between reduction dimensions and is currently unsupported in |
| /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != |
| /// max(min(X)) |
| // TODO: use in LinalgOp verification, there is a circular dependency atm. |
| static Operation *matchLinalgReduction(OpOperand *outputOperand) { |
| auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); |
| unsigned outputPos = |
| outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs(); |
| // Only single combiner operations are supported for now. |
| SmallVector<Operation *, 4> combinerOps; |
| if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || |
| combinerOps.size() != 1) |
| return nullptr; |
| |
| // Return the combiner operation. |
| return combinerOps[0]; |
| } |
| |
| /// Broadcast `value` to a vector of `shape` if possible. Return value |
| /// otherwise. |
| static Value broadcastIfNeeded(OpBuilder &b, Value value, |
| ArrayRef<int64_t> shape) { |
| // If no shape to broadcast to, just return `value`. |
| if (shape.empty()) |
| return value; |
| VectorType targetVectorType = |
| VectorType::get(shape, getElementTypeOrSelf(value)); |
| if (vector::isBroadcastableTo(value.getType(), targetVectorType) != |
| vector::BroadcastableToResult::Success) |
| return value; |
| Location loc = b.getInsertionPoint()->getLoc(); |
| return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); |
| } |
| |
| /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This |
| /// assumes that `reductionOp` has two operands and one of them is the reduction |
| /// initial value. |
| static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, |
| Value valueToReduce, Value acc, |
| const SmallVector<bool> &reductionMask) { |
| auto maybeKind = getCombinerOpKind(reduceOp); |
| assert(maybeKind && "Failed precondition: could not get reduction kind"); |
| return b.create<vector::MultiDimReductionOp>( |
| reduceOp->getLoc(), valueToReduce, acc, reductionMask, *maybeKind); |
| } |
| |
| static SmallVector<bool> getReductionMask(LinalgOp linalgOp) { |
| return llvm::to_vector( |
| llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator)); |
| } |
| |
| /// Build a vector.transfer_write of `value` into `outputOperand` at indices set |
| /// to all `0`; where `outputOperand` is an output operand of the LinalgOp |
| /// currently being vectorized. If `dest` has null rank, build an memref.store. |
| /// Return the produced value or null if no value is produced. |
| static Value buildVectorWrite(OpBuilder &b, Value value, |
| OpOperand *outputOperand) { |
| Operation *write; |
| Location loc = value.getLoc(); |
| auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); |
| ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand); |
| auto vectorType = VectorType::get( |
| shape, getElementTypeOrSelf(outputOperand->get().getType())); |
| if (vectorType.getRank() > 0) { |
| // 0-d case is still special: do not invert the reindexing map. |
| AffineMap map = |
| reindexIndexingMap(linalgOp.getMatchingIndexingMap(outputOperand)); |
| SmallVector<int64_t> transposeShape = |
| applyPermutationMap(inversePermutation(map), vectorType.getShape()); |
| assert(!transposeShape.empty() && "unexpected empty transpose shape"); |
| vectorType = VectorType::get(transposeShape, vectorType.getElementType()); |
| SmallVector<Value> indices(linalgOp.getRank(outputOperand), |
| b.create<arith::ConstantIndexOp>(loc, 0)); |
| value = broadcastIfNeeded(b, value, vectorType.getShape()); |
| write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), |
| indices, map); |
| } else { |
| if (!value.getType().isa<VectorType>()) |
| value = b.create<vector::BroadcastOp>(loc, vectorType, value); |
| assert(value.getType() == vectorType && "incorrect type"); |
| write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), |
| ValueRange{}); |
| } |
| LDBG("vectorized op: " << *write); |
| if (!write->getResults().empty()) |
| return write->getResult(0); |
| return Value(); |
| } |
| |
| // Custom vectorization precondition function type. This is intented to be used |
| // with CustomVectorizationHook. Returns success if the correpsonding custom |
| // hook can vectorize the op. |
| using CustomVectorizationPrecondition = |
| std::function<LogicalResult(Operation *)>; |
| |
| // Custom vectorization function type. Produce a vector form of Operation* |
| // assuming all its vectorized operands are already in the BlockAndValueMapping. |
| // Return nullptr if the Operation cannot be vectorized. |
| using CustomVectorizationHook = std::function<VectorizationResult( |
| Operation *, const BlockAndValueMapping &)>; |
| |
| /// Helper function to vectorize the terminator of a `linalgOp`. New result |
| /// vector values are appended to `newResults`. Return |
| /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it |
| /// should not try to map produced operations and instead return the results |
| /// using the `newResults` vector making them available to the |
| /// vectorization algorithm for RAUW. This function is meant to be used as a |
| /// CustomVectorizationHook. |
| static VectorizationResult |
| vectorizeLinalgYield(OpBuilder &b, Operation *op, |
| const BlockAndValueMapping &bvm, LinalgOp linalgOp, |
| SmallVectorImpl<Value> &newResults) { |
| auto yieldOp = dyn_cast<linalg::YieldOp>(op); |
| if (!yieldOp) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| for (const auto &outputs : llvm::enumerate(yieldOp.getValues())) { |
| // TODO: Scan for an opportunity for reuse. |
| // TODO: use a map. |
| Value vectorValue = bvm.lookup(outputs.value()); |
| Value newResult = buildVectorWrite( |
| b, vectorValue, linalgOp.getDpsInitOperand(outputs.index())); |
| if (newResult) |
| newResults.push_back(newResult); |
| } |
| return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; |
| } |
| |
| /// Helper function to vectorize the index operations of a `linalgOp`. Return |
| /// VectorizationStatus::NewOp to signal the vectorization algorithm that it |
| /// should map the produced operations. This function is meant to be used as a |
| /// CustomVectorizationHook. |
| static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, |
| LinalgOp linalgOp) { |
| IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); |
| if (!indexOp) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| auto loc = indexOp.getLoc(); |
| // Compute the static loop sizes of the index op. |
| auto targetShape = linalgOp.computeStaticLoopSizes(); |
| // Compute a one-dimensional index vector for the index op dimension. |
| SmallVector<int64_t> constantSeq = |
| llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.getDim()])); |
| auto constantOp = |
| b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); |
| // Return the one-dimensional index vector if it lives in the trailing |
| // dimension of the iteration space since the vectorization algorithm in this |
| // case can handle the broadcast. |
| if (indexOp.getDim() == targetShape.size() - 1) |
| return VectorizationResult{VectorizationStatus::NewOp, constantOp}; |
| // Otherwise permute the targetShape to move the index dimension last, |
| // broadcast the one-dimensional index vector to the permuted shape, and |
| // finally transpose the broadcasted index vector to undo the permutation. |
| std::swap(targetShape[indexOp.getDim()], targetShape.back()); |
| auto broadCastOp = b.create<vector::BroadcastOp>( |
| loc, VectorType::get(targetShape, b.getIndexType()), constantOp); |
| SmallVector<int64_t> transposition = |
| llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); |
| std::swap(transposition.back(), transposition[indexOp.getDim()]); |
| auto transposeOp = |
| b.create<vector::TransposeOp>(loc, broadCastOp, transposition); |
| return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; |
| } |
| |
| /// Helper function to check if the tensor.extract can be vectorized by the |
| /// custom hook vectorizeTensorExtract. |
| static LogicalResult tensorExtractVectorizationPrecondition(Operation *op) { |
| tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); |
| if (!extractOp) |
| return failure(); |
| |
| // Currently only supports extraction with an 1-D index. |
| if (extractOp.getIndices().size() != 1) |
| return failure(); |
| |
| if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType())) |
| return failure(); |
| |
| if (llvm::any_of(extractOp->getResultTypes(), [](Type type) { |
| return !VectorType::isValidElementType(type); |
| })) { |
| return failure(); |
| } |
| |
| return success(); |
| } |
| |
| /// Helper function to vectorize the tensor.extract operations. Returns |
| /// VectorizationStatus::NewOp to signal the vectorization algorithm that it |
| /// should map the produced operations. This function is meant to be used as a |
| /// CustomVectorizationHook. |
| static VectorizationResult |
| vectorizeTensorExtract(OpBuilder &b, Operation *op, LinalgOp linalgOp, |
| const BlockAndValueMapping &bvm) { |
| tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); |
| if (!extractOp) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| auto loc = extractOp.getLoc(); |
| |
| // Currently only supports extraction with an 1-D index. Checked in the |
| // tensorExtractVectorizationPrecondition. |
| assert(extractOp.getIndices().size() == 1); |
| |
| auto indexVec = bvm.lookup(extractOp.getIndices()[0]); |
| // Compute the static loop sizes of the extract op. |
| auto targetShape = linalgOp.computeStaticLoopSizes(); |
| |
| SmallVector<Value> gatherIndices; |
| gatherIndices.push_back(b.create<arith::ConstantIndexOp>(loc, 0)); |
| |
| auto maskConstantOp = b.create<arith::ConstantOp>( |
| loc, |
| DenseIntElementsAttr::get(VectorType::get(targetShape, b.getI1Type()), |
| /*value=*/true)); |
| |
| auto resultType = |
| VectorType::get(targetShape, extractOp.getResult().getType()); |
| auto passThruConstantOp = |
| b.create<arith::ConstantOp>(loc, b.getZeroAttr(resultType)); |
| |
| auto gatherOp = b.create<vector::GatherOp>( |
| loc, resultType, extractOp.getTensor(), gatherIndices, indexVec, |
| maskConstantOp, passThruConstantOp); |
| |
| return VectorizationResult{VectorizationStatus::NewOp, gatherOp}; |
| } |
| |
| /// Emit reduction operations if the shapes of the value to reduce is different |
| /// that the result shape. |
| static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, |
| Value reduceValue, Value initialValue, |
| const BlockAndValueMapping &bvm) { |
| Value reduceVec = bvm.lookup(reduceValue); |
| Value outputVec = bvm.lookup(initialValue); |
| auto reduceType = reduceVec.getType().dyn_cast<VectorType>(); |
| auto outputType = outputVec.getType().dyn_cast<VectorType>(); |
| // Reduce only if needed as the value may already have been reduce for |
| // contraction vectorization. |
| if (!reduceType || |
| (outputType && reduceType.getShape() == outputType.getShape())) |
| return nullptr; |
| SmallVector<bool> reductionMask = getReductionMask(linalgOp); |
| return buildMultiDimReduce(b, op, reduceVec, outputVec, reductionMask); |
| } |
| |
| /// Generic vectorization for a single operation `op`, given already vectorized |
| /// operands carried by `bvm`. Vectorization occurs as follows: |
| /// 1. Try to apply any of the `customVectorizationHooks` and return its |
| /// result on success. |
| /// 2. Clone any constant in the current scope without vectorization: each |
| /// consumer of the constant will later determine the shape to which the |
| /// constant needs to be broadcast to. |
| /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose |
| /// of the `customVectorizationHooks` to cover such cases. |
| /// 4. Clone `op` in vector form to a vector of shape prescribed by the first |
| /// operand of maximal rank. Other operands have smaller rank and are |
| /// broadcast accordingly. It is assumed this broadcast is always legal, |
| /// otherwise, it means one of the `customVectorizationHooks` is incorrect. |
| /// |
| /// This function assumes all operands of `op` have been vectorized and are in |
| /// the `bvm` mapping. As a consequence, this function is meant to be called on |
| /// a topologically-sorted list of ops. |
| /// This function does not update `bvm` but returns a VectorizationStatus that |
| /// instructs the caller what `bvm` update needs to occur. |
| static VectorizationResult |
| vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op, |
| const BlockAndValueMapping &bvm, |
| ArrayRef<CustomVectorizationHook> customVectorizationHooks) { |
| LDBG("vectorize op " << *op); |
| |
| // 1. Try to apply any CustomVectorizationHook. |
| if (!customVectorizationHooks.empty()) { |
| for (auto &customFunc : customVectorizationHooks) { |
| VectorizationResult result = customFunc(op, bvm); |
| if (result.status == VectorizationStatus::Failure) |
| continue; |
| return result; |
| } |
| } |
| |
| // 2. Constant ops don't get vectorized but rather broadcasted at their users. |
| // Clone so that the constant is not confined to the linalgOp block . |
| if (isa<arith::ConstantOp, func::ConstantOp>(op)) |
| return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; |
| |
| // 3. Only ElementwiseMappable are allowed in the generic vectorization. |
| if (!OpTrait::hasElementwiseMappableTraits(op)) |
| return VectorizationResult{VectorizationStatus::Failure, nullptr}; |
| |
| // 4 . Check if the operation is a reduction. |
| SmallVector<std::pair<Value, Value>> reductionOperands; |
| for (Value operand : op->getOperands()) { |
| auto arg = operand.dyn_cast<BlockArgument>(); |
| if (!arg || arg.getArgNumber() < linalgOp.getNumDpsInputs()) |
| continue; |
| SmallVector<Operation *> reductionOps; |
| Value reduceValue = matchReduction( |
| linalgOp.getRegionOutputArgs(), |
| arg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps); |
| if (!reduceValue) |
| continue; |
| reductionOperands.push_back(std::make_pair(reduceValue, operand)); |
| } |
| if (!reductionOperands.empty()) { |
| assert(reductionOperands.size() == 1); |
| Operation *reduceOp = |
| reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first, |
| reductionOperands[0].second, bvm); |
| if (reduceOp) |
| return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; |
| } |
| |
| // 5. Generic vectorization path for ElementwiseMappable ops. |
| // a. first get the first max ranked shape. |
| SmallVector<int64_t, 4> firstMaxRankedShape; |
| for (Value operand : op->getOperands()) { |
| auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); |
| if (vt && firstMaxRankedShape.size() < vt.getShape().size()) |
| firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); |
| } |
| // b. broadcast each op if needed. |
| auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { |
| return firstMaxRankedShape.empty() |
| ? bvm.lookup(v) |
| : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); |
| }); |
| // c. for elementwise, the result is the vector with the firstMaxRankedShape |
| auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { |
| return firstMaxRankedShape.empty() |
| ? t |
| : VectorType::get(firstMaxRankedShape, t); |
| }); |
| |
| // Build and return the new op. |
| return VectorizationResult{ |
| VectorizationStatus::NewOp, |
| b.create(op->getLoc(), op->getName().getIdentifier(), |
| llvm::to_vector<4>(vectorizedOperands), |
| llvm::to_vector<4>(returnTypes), op->getAttrs())}; |
| } |
| |
| /// Generic vectorization function that rewrites the body of a `linalgOp` into |
| /// vector form. Generic vectorization proceeds as follows: |
| /// 1. Verify the `linalgOp` has one non-empty region. |
| /// 2. Values defined above the region are mapped to themselves and will be |
| /// broadcasted on a per-need basis by their consumers. |
| /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d |
| /// load). |
| /// TODO: Reuse opportunities for RAR dependencies. |
| /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. |
| /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration |
| /// indices. |
| /// 5. Iteratively call vectorizeOneOp on the region operations. |
| /// |
| /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is |
| /// performed to the maximal common vector size implied by the `linalgOp` |
| /// iteration space. This eager broadcasting is introduced in the |
| /// permutation_map of the vector.transfer_read operations. The eager |
| /// broadcasting makes it trivial to detrmine where broadcast, transposes and |
| /// reductions should occur, without any bookkeeping. The tradeoff is that, in |
| /// the absence of good canonicalizations, the amount of work increases. |
| /// This is not deemed a problem as we expect canonicalizations and foldings to |
| /// aggressively clean up the useless work. |
| static LogicalResult |
| vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp, |
| SmallVectorImpl<Value> &newResults) { |
| Block *block = linalgOp.getBlock(); |
| |
| // 2. Values defined above the region can only be broadcast for now. Make them |
| // map to themselves. |
| BlockAndValueMapping bvm; |
| SetVector<Value> valuesSet; |
| mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); |
| bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); |
| |
| if (linalgOp.getNumDpsInits() == 0) |
| return failure(); |
| |
| // TODO: the common vector shape is equal to the static loop sizes only when |
| // all indexing maps are projected permutations. For convs and stencils the |
| // logic will need to evolve. |
| SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); |
| |
| // 3. Turn all BBArgs into vector.transfer_read / load. |
| Location loc = linalgOp.getLoc(); |
| Value zero = b.create<arith::ConstantIndexOp>(loc, 0); |
| for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) { |
| BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand); |
| if (linalgOp.isScalar(opOperand)) { |
| bvm.map(bbarg, opOperand->get()); |
| continue; |
| } |
| VectorType readType; |
| AffineMap map; |
| // TODO: can we keep this simplification? |
| // if (linalgOp.getShape(&opOperand).empty()) { |
| // readType = VectorType::get({}, bbarg.getType()); |
| // } else { |
| if (opOperand->getOperandNumber() < linalgOp.getNumDpsInputs()) { |
| map = inverseAndBroadcastProjectedPermutation( |
| linalgOp.getMatchingIndexingMap(opOperand)); |
| readType = VectorType::get(commonVectorShape, |
| getElementTypeOrSelf(opOperand->get())); |
| } else { |
| map = inversePermutation( |
| reindexIndexingMap(linalgOp.getMatchingIndexingMap(opOperand))); |
| readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), |
| getElementTypeOrSelf(opOperand->get())); |
| } |
| // } |
| |
| auto shape = linalgOp.getShape(opOperand); |
| SmallVector<Value> indices(shape.size(), zero); |
| Value readValue = b.create<vector::TransferReadOp>( |
| loc, readType, opOperand->get(), indices, map); |
| // Not all ops support 0-d vectors, extract the scalar for now. |
| // TODO: remove this. |
| if (readValue.getType().cast<VectorType>().getRank() == 0) |
| readValue = b.create<vector::ExtractElementOp>(loc, readValue); |
| |
| LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); |
| bvm.map(bbarg, readValue); |
| bvm.map(opOperand->get(), readValue); |
| } |
| |
| SmallVector<CustomVectorizationHook> hooks; |
| // 4a. Register CustomVectorizationHook for yieldOp. |
| CustomVectorizationHook vectorizeYield = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); |
| }; |
| hooks.push_back(vectorizeYield); |
| |
| // 4b. Register CustomVectorizationHook for indexOp. |
| CustomVectorizationHook vectorizeIndex = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| return vectorizeLinalgIndex(b, op, linalgOp); |
| }; |
| hooks.push_back(vectorizeIndex); |
| |
| // 4c. Register CustomVectorizationHook for extractOp. |
| CustomVectorizationHook vectorizeExtract = |
| [&](Operation *op, |
| const BlockAndValueMapping &bvm) -> VectorizationResult { |
| return vectorizeTensorExtract(b, op, linalgOp, bvm); |
| }; |
| hooks.push_back(vectorizeExtract); |
| |
| // 5. Iteratively call `vectorizeOneOp` to each op in the slice. |
| for (Operation &op : block->getOperations()) { |
| VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks); |
| if (result.status == VectorizationStatus::Failure) { |
| LDBG("failed to vectorize: " << op); |
| return failure(); |
| } |
| if (result.status == VectorizationStatus::NewOp) { |
| LDBG("new vector op: " << *result.newOp;); |
| bvm.map(op.getResults(), result.newOp->getResults()); |
| } |
| } |
| |
| return success(); |
| } |
| |
| // TODO: probably need some extra checks for reduction followed by consumer |
| // ops that may not commute (e.g. linear reduction + non-linear instructions). |
| static LogicalResult reductionPreconditions(LinalgOp op) { |
| if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) { |
| LDBG("reduction precondition failed: no reduction iterator"); |
| return failure(); |
| } |
| for (OpOperand *opOperand : op.getDpsInitOperands()) { |
| AffineMap indexingMap = op.getMatchingIndexingMap(opOperand); |
| if (indexingMap.isPermutation()) |
| continue; |
| |
| Operation *reduceOp = matchLinalgReduction(opOperand); |
| if (!reduceOp || !getCombinerOpKind(reduceOp)) { |
| LDBG("reduction precondition failed: reduction detection failed"); |
| return failure(); |
| } |
| } |
| return success(); |
| } |
| |
| static LogicalResult vectorizeStaticLinalgOpPrecondition( |
| linalg::LinalgOp op, |
| ArrayRef<CustomVectorizationPrecondition> customPreconditions) { |
| |
| // All types in the body should be a supported element type for VectorType. |
| for (Operation &innerOp : op->getRegion(0).front()) { |
| // Check if any custom hook can vectorize the inner op. |
| if (llvm::any_of( |
| customPreconditions, |
| [&](const CustomVectorizationPrecondition &customPrecondition) { |
| return succeeded(customPrecondition(&innerOp)); |
| })) { |
| continue; |
| } |
| if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { |
| return !VectorType::isValidElementType(type); |
| })) { |
| return failure(); |
| } |
| if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { |
| return !VectorType::isValidElementType(type); |
| })) { |
| return failure(); |
| } |
| } |
| if (isElementwise(op)) |
| return success(); |
| // TODO: isaConvolutionOpInterface that can also infer from generic features. |
| // But we will still need stride/dilation attributes that will be annoying to |
| // reverse-engineer... |
| if (isa<ConvolutionOpInterface>(op.getOperation())) |
| return success(); |
| // TODO: the common vector shape is equal to the static loop sizes only when |
| // all indexing maps are projected permutations. For convs and stencils the |
| // logic will need to evolve. |
| if (!allIndexingsAreProjectedPermutation(op)) { |
| LDBG("precondition failed: not projected permutations"); |
| return failure(); |
| } |
| if (failed(reductionPreconditions(op))) { |
| LDBG("precondition failed: reduction preconditions"); |
| return failure(); |
| } |
| return success(); |
| } |
| |
| LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(LinalgOp linalgOp) { |
| // All types must be static shape to go to vector. |
| if (linalgOp.hasDynamicShape()) { |
| LDBG("precondition failed: dynamic shape"); |
| return failure(); |
| } |
| |
| SmallVector<CustomVectorizationPrecondition> customPreconditions; |
| |
| // Register CustomVectorizationPrecondition for extractOp. |
| customPreconditions.push_back(tensorExtractVectorizationPrecondition); |
| |
| return vectorizeStaticLinalgOpPrecondition(linalgOp, customPreconditions); |
| } |
| |
| LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, |
| LinalgOp linalgOp) { |
| if (failed(vectorizeLinalgOpPrecondition(linalgOp))) |
| return failure(); |
| |
| SmallVector<Value> results; |
| // TODO: isaConvolutionOpInterface that can also infer from generic |
| // features. Will require stride/dilation attributes inference. |
| FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp); |
| if (succeeded(convOr)) { |
| llvm::append_range(results, (*convOr)->getResults()); |
| } else { |
| if (failed(vectorizeLinalgOpPrecondition(linalgOp))) |
| return failure(); |
| LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp); |
| if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results))) |
| return failure(); |
| } |
| |
| if (!results.empty()) |
| rewriter.replaceOp(linalgOp, results); |
| else |
| rewriter.eraseOp(linalgOp); |
| |
| return success(); |
| } |
| |
| LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, |
| memref::CopyOp copyOp) { |
| |
| auto srcType = copyOp.getSource().getType().cast<MemRefType>(); |
| auto dstType = copyOp.getTarget().getType().cast<MemRefType>(); |
| if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) |
| return failure(); |
| |
| auto readType = |
| VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType)); |
| auto writeType = |
| VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType)); |
| |
| Location loc = copyOp->getLoc(); |
| Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); |
| SmallVector<Value> indices(srcType.getRank(), zero); |
| |
| Value readValue = rewriter.create<vector::TransferReadOp>( |
| loc, readType, copyOp.getSource(), indices, |
| rewriter.getMultiDimIdentityMap(srcType.getRank())); |
| if (readValue.getType().cast<VectorType>().getRank() == 0) { |
| readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue); |
| readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue); |
| } |
| Operation *writeValue = rewriter.create<vector::TransferWriteOp>( |
| loc, readValue, copyOp.getTarget(), indices, |
| rewriter.getMultiDimIdentityMap(srcType.getRank())); |
| rewriter.replaceOp(copyOp, writeValue->getResults()); |
| return success(); |
| } |
| |
| //----------------------------------------------------------------------------// |
| // Misc. vectorization patterns. |
| //----------------------------------------------------------------------------// |
| |
| /// Helper function that retrieves the value of an IntegerAttr. |
| static int64_t getIntFromAttr(Attribute attr) { |
| return attr.cast<IntegerAttr>().getInt(); |
| } |
| |
| /// Given an ArrayRef of OpFoldResults, return a vector of Values. |
| /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are |
| /// not supported. |
| static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, |
| ArrayRef<OpFoldResult> ofrs) { |
| SmallVector<Value> result; |
| for (auto o : ofrs) { |
| if (auto val = o.template dyn_cast<Value>()) { |
| result.push_back(val); |
| } else { |
| result.push_back(builder.create<arith::ConstantIndexOp>( |
| loc, getIntFromAttr(o.template get<Attribute>()))); |
| } |
| } |
| return result; |
| } |
| |
| /// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and |
| /// InsertSliceOp. For now, only constant padding values are supported. |
| /// If there is enough static type information, TransferReadOps and |
| /// TransferWriteOps may be generated instead of InsertSliceOps. |
| struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { |
| GenericPadOpVectorizationPattern(MLIRContext *context, |
| PatternBenefit benefit = 1) |
| : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} |
| /// Vectorize the copying of a tensor::PadOp's source. This is possible if |
| /// each dimension size is statically know in the source type or the result |
| /// type (or both). |
| static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, |
| tensor::PadOp padOp, Value dest) { |
| auto sourceType = padOp.getSourceType(); |
| auto resultType = padOp.getResultType(); |
| |
| // Copy cannot be vectorized if pad value is non-constant and source shape |
| // is dynamic. In case of a dynamic source shape, padding must be appended |
| // by TransferReadOp, but TransferReadOp supports only constant padding. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) { |
| if (!sourceType.hasStaticShape()) |
| return failure(); |
| // Create dummy padding value. |
| auto elemType = sourceType.getElementType(); |
| padValue = rewriter.create<arith::ConstantOp>( |
| padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); |
| } |
| |
| SmallVector<int64_t> vecShape; |
| SmallVector<bool> readInBounds; |
| SmallVector<bool> writeInBounds; |
| for (unsigned i = 0; i < sourceType.getRank(); ++i) { |
| if (!sourceType.isDynamicDim(i)) { |
| vecShape.push_back(sourceType.getDimSize(i)); |
| // Source shape is statically known: Neither read nor write are |
| // out-of- bounds. |
| readInBounds.push_back(true); |
| writeInBounds.push_back(true); |
| } else if (!resultType.isDynamicDim(i)) { |
| // Source shape is not statically known, but result shape is. |
| // Vectorize with size of result shape. This may be larger than the |
| // source size. |
| vecShape.push_back(resultType.getDimSize(i)); |
| // Read may be out-of-bounds because the result size could be larger |
| // than the source size. |
| readInBounds.push_back(false); |
| // Write is out-of-bounds if low padding > 0. |
| writeInBounds.push_back( |
| getConstantIntValue(padOp.getMixedLowPad()[i]) == |
| static_cast<int64_t>(0)); |
| } else { |
| // Neither source nor result dim of padOp is static. Cannot vectorize |
| // the copy. |
| return failure(); |
| } |
| } |
| auto vecType = VectorType::get(vecShape, sourceType.getElementType()); |
| |
| // Generate TransferReadOp. |
| SmallVector<Value> readIndices( |
| vecType.getRank(), |
| rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); |
| auto read = rewriter.create<vector::TransferReadOp>( |
| padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, |
| ArrayRef<bool>{readInBounds}); |
| |
| // If `dest` is a FillOp and the TransferWriteOp would overwrite the |
| // entire tensor, write directly to the FillOp's operand. |
| if (llvm::equal(vecShape, resultType.getShape()) && |
| llvm::all_of(writeInBounds, [](bool b) { return b; })) |
| if (auto fill = dest.getDefiningOp<FillOp>()) |
| dest = fill.output(); |
| |
| // Generate TransferWriteOp. |
| auto writeIndices = |
| ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds}); |
| |
| return success(); |
| } |
| }; |
| |
| /// Base pattern for rewriting tensor::PadOps whose result is consumed by a |
| /// given operation type OpTy. |
| template <typename OpTy> |
| struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> { |
| using OpRewritePattern<tensor::PadOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| PatternRewriter &rewriter) const final { |
| bool changed = false; |
| // Insert users in vector, because some users may be replaced/removed. |
| for (auto *user : llvm::to_vector<4>(padOp->getUsers())) |
| if (auto op = dyn_cast<OpTy>(user)) |
| changed |= rewriteUser(rewriter, padOp, op).succeeded(); |
| return success(changed); |
| } |
| |
| protected: |
| virtual LogicalResult rewriteUser(PatternRewriter &rewriter, |
| tensor::PadOp padOp, OpTy op) const = 0; |
| }; |
| |
| /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: |
| /// ``` |
| /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %r = vector.transfer_read %0[%c0, %c0], %cst |
| /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %r = vector.transfer_read %src[%c0, %c0], %padding |
| /// {in_bounds = [true, true]} |
| /// : tensor<?x?xf32>, vector<17x5xf32> |
| /// ``` |
| /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be |
| /// sure that the original padding value %cst was never used. |
| /// |
| /// This rewrite is possible if: |
| /// - `xferOp` has no out-of-bounds dims or mask. |
| /// - Low padding is static 0. |
| /// - Single, scalar padding value. |
| struct PadOpVectorizationWithTransferReadPattern |
| : public VectorizePadOpUserPattern<vector::TransferReadOp> { |
| using VectorizePadOpUserPattern< |
| vector::TransferReadOp>::VectorizePadOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, |
| vector::TransferReadOp xferOp) const override { |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // Padding value of existing `xferOp` is unused. |
| if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) |
| return failure(); |
| |
| rewriter.updateRootInPlace(xferOp, [&]() { |
| SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); |
| xferOp->setAttr(xferOp.getInBoundsAttrName(), |
| rewriter.getBoolArrayAttr(inBounds)); |
| xferOp.getSourceMutable().assign(padOp.getSource()); |
| xferOp.getPaddingMutable().assign(padValue); |
| }); |
| |
| return success(); |
| } |
| }; |
| |
| /// Rewrite use of tensor::PadOp result in TransferWriteOp. |
| /// This pattern rewrites TransferWriteOps that write to a padded tensor |
| /// value, where the same amount of padding is immediately removed again after |
| /// the write. In such cases, the TransferWriteOp can write to the non-padded |
| /// tensor value and apply out-of-bounds masking. E.g.: |
| /// ``` |
| /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] |
| /// : tensor<...> to tensor<?x?xf32> |
| /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %2 = vector.transfer_write %vec, %1[...] |
| /// : vector<17x5xf32>, tensor<17x5xf32> |
| /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] |
| /// : tensor<17x5xf32> to tensor<?x?xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] |
| /// : tensor<...> to tensor<?x?xf32> |
| /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, |
| /// tensor<?x?xf32> |
| /// ``` |
| /// Note: It is important that the ExtractSliceOp %r resizes the result of the |
| /// TransferWriteOp to the same size as the input of the TensorPadOp (or an |
| /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ |
| /// from %r's old dimensions. |
| /// |
| /// This rewrite is possible if: |
| /// - Low padding is static 0. |
| /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This |
| /// ExtractSliceOp trims the same amount of padding that was added |
| /// beforehand. |
| /// - Single, scalar padding value. |
| struct PadOpVectorizationWithTransferWritePattern |
| : public VectorizePadOpUserPattern<vector::TransferWriteOp> { |
| using VectorizePadOpUserPattern< |
| vector::TransferWriteOp>::VectorizePadOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, |
| vector::TransferWriteOp xferOp) const override { |
| // TODO: support 0-d corner case. |
| if (xferOp.getTransferRank() == 0) |
| return failure(); |
| |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // TransferWriteOp result must be directly consumed by an ExtractSliceOp. |
| if (!xferOp->hasOneUse()) |
| return failure(); |
| auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); |
| if (!trimPadding) |
| return failure(); |
| // Only static zero offsets supported when trimming padding. |
| if (!trimPadding.hasZeroOffset()) |
| return failure(); |
| // trimPadding must remove the amount of padding that was added earlier. |
| if (!hasSameTensorSize(padOp.getSource(), trimPadding)) |
| return failure(); |
| |
| // Insert the new TransferWriteOp at position of the old TransferWriteOp. |
| rewriter.setInsertionPoint(xferOp); |
| |
| SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); |
| auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| xferOp, padOp.getSource().getType(), xferOp.getVector(), |
| padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), |
| xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); |
| rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); |
| |
| return success(); |
| } |
| |
| /// Check if `beforePadding` and `afterTrimming` have the same tensor size, |
| /// i.e., same dimensions. |
| /// |
| /// Dimensions may be static, dynamic or mix of both. In case of dynamic |
| /// dimensions, this function tries to infer the (static) tensor size by |
| /// looking at the defining op and utilizing op-specific knowledge. |
| /// |
| /// This is a conservative analysis. In case equal tensor sizes cannot be |
| /// proven statically, this analysis returns `false` even though the tensor |
| /// sizes may turn out to be equal at runtime. |
| bool hasSameTensorSize(Value beforePadding, |
| tensor::ExtractSliceOp afterTrimming) const { |
| // If the input to tensor::PadOp is a CastOp, try with with both CastOp |
| // result and CastOp operand. |
| if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) |
| if (hasSameTensorSize(castOp.getSource(), afterTrimming)) |
| return true; |
| |
| auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); |
| auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); |
| // Only RankedTensorType supported. |
| if (!t1 || !t2) |
| return false; |
| // Rank of both values must be the same. |
| if (t1.getRank() != t2.getRank()) |
| return false; |
| |
| // All static dimensions must be the same. Mixed cases (e.g., dimension |
| // static in `t1` but dynamic in `t2`) are not supported. |
| for (unsigned i = 0; i < t1.getRank(); ++i) { |
| if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) |
| return false; |
| if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) |
| return false; |
| } |
| |
| // Nothing more to check if all dimensions are static. |
| if (t1.getNumDynamicDims() == 0) |
| return true; |
| |
| // All dynamic sizes must be the same. The only supported case at the |
| // moment is when `beforePadding` is an ExtractSliceOp (or a cast |
| // thereof). |
| |
| // Apart from CastOp, only ExtractSliceOp is supported. |
| auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); |
| if (!beforeSlice) |
| return false; |
| |
| assert(static_cast<size_t>(t1.getRank()) == |
| beforeSlice.getMixedSizes().size()); |
| assert(static_cast<size_t>(t2.getRank()) == |
| afterTrimming.getMixedSizes().size()); |
| |
| for (unsigned i = 0; i < t1.getRank(); ++i) { |
| // Skip static dimensions. |
| if (!t1.isDynamicDim(i)) |
| continue; |
| auto size1 = beforeSlice.getMixedSizes()[i]; |
| auto size2 = afterTrimming.getMixedSizes()[i]; |
| |
| // Case 1: Same value or same constant int. |
| if (isEqualConstantIntOrValue(size1, size2)) |
| continue; |
| |
| // Other cases: Take a deeper look at defining ops of values. |
| auto v1 = size1.dyn_cast<Value>(); |
| auto v2 = size2.dyn_cast<Value>(); |
| if (!v1 || !v2) |
| return false; |
| |
| // Case 2: Both values are identical AffineMinOps. (Should not happen if |
| // CSE is run.) |
| auto minOp1 = v1.getDefiningOp<AffineMinOp>(); |
| auto minOp2 = v2.getDefiningOp<AffineMinOp>(); |
| if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && |
| minOp1.operands() == minOp2.operands()) |
| continue; |
| |
| // Add additional cases as needed. |
| } |
| |
| // All tests passed. |
| return true; |
| } |
| }; |
| |
| /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: |
| /// ``` |
| /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> |
| /// %r = tensor.insert_slice %0 |
| /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] |
| /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> |
| /// ``` |
| /// is rewritten to: |
| /// ``` |
| /// %0 = vector.transfer_read %src[%c0, %c0], %padding |
| /// : tensor<?x?xf32>, vector<17x5xf32> |
| /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] |
| /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> |
| /// ``` |
| /// |
| /// This rewrite is possible if: |
| /// - Low padding is static 0. |
| /// - `padOp` result shape is static. |
| /// - The entire padded tensor is inserted. |
| /// (Implies that sizes of `insertOp` are all static.) |
| /// - Only unit strides in `insertOp`. |
| /// - Single, scalar padding value. |
| /// - `padOp` result not used as destination. |
| struct PadOpVectorizationWithInsertSlicePattern |
| : public VectorizePadOpUserPattern<tensor::InsertSliceOp> { |
| using VectorizePadOpUserPattern< |
| tensor::InsertSliceOp>::VectorizePadOpUserPattern; |
| |
| LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, |
| tensor::InsertSliceOp insertOp) const override { |
| // Low padding must be static 0. |
| if (!padOp.hasZeroLowPad()) |
| return failure(); |
| // Only unit stride supported. |
| if (!insertOp.hasUnitStride()) |
| return failure(); |
| // Pad value must be a constant. |
| auto padValue = padOp.getConstantPaddingValue(); |
| if (!padValue) |
| return failure(); |
| // Dynamic shapes not supported. |
| if (!padOp.getResult().getType().cast<ShapedType>().hasStaticShape()) |
| return failure(); |
| // Pad result not used as destination. |
| if (insertOp.getDest() == padOp.getResult()) |
| return failure(); |
| |
| auto vecType = VectorType::get(padOp.getType().getShape(), |
| padOp.getType().getElementType()); |
| unsigned vecRank = vecType.getRank(); |
| unsigned tensorRank = insertOp.getType().getRank(); |
| |
| // Check if sizes match: Insert the entire tensor into most minor dims. |
| // (No permutations allowed.) |
| SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); |
| expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); |
| if (!llvm::all_of( |
| llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { |
| return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); |
| })) |
| return failure(); |
| |
| // Insert the TransferReadOp and TransferWriteOp at the position of the |
| // InsertSliceOp. |
| rewriter.setInsertionPoint(insertOp); |
| |
| // Generate TransferReadOp: Read entire source tensor and add high |
| // padding. |
| SmallVector<Value> readIndices( |
| vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); |
| auto read = rewriter.create<vector::TransferReadOp>( |
| padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); |
| |
| // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at |
| // specified offsets. Write is fully in-bounds because a InsertSliceOp's |
| // source must fit into the destination at the specified offsets. |
| auto writeIndices = |
| ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); |
| SmallVector<bool> inBounds(vecRank, true); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| insertOp, read, insertOp.getDest(), writeIndices, |
| ArrayRef<bool>{inBounds}); |
| |
| return success(); |
| } |
| }; |
| |
| void mlir::linalg::populatePadOpVectorizationPatterns( |
| RewritePatternSet &patterns, PatternBenefit baseBenefit) { |
| patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(), |
| baseBenefit); |
| // Try these specialized patterns first before resorting to the generic one. |
| patterns.add<PadOpVectorizationWithTransferReadPattern, |
| PadOpVectorizationWithTransferWritePattern, |
| PadOpVectorizationWithInsertSlicePattern>( |
| patterns.getContext(), baseBenefit.getBenefit() + 1); |
| } |
| |
| //----------------------------------------------------------------------------// |
| // Forwarding patterns |
| //----------------------------------------------------------------------------// |
| |
| /// Check whether there is any interleaved use of any `values` between |
| /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value |
| /// is in a different block. |
| static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, |
| ValueRange values) { |
| if (firstOp->getBlock() != secondOp->getBlock() || |
| !firstOp->isBeforeInBlock(secondOp)) { |
| LDBG("interleavedUses precondition failed, firstOp: " |
| << *firstOp << ", second op: " << *secondOp); |
| return true; |
| } |
| for (auto v : values) { |
| for (auto &u : v.getUses()) { |
| Operation *owner = u.getOwner(); |
| if (owner == firstOp || owner == secondOp) |
| continue; |
| // TODO: this is too conservative, use dominance info in the future. |
| if (owner->getBlock() == firstOp->getBlock() && |
| (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) |
| continue; |
| LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp |
| << ", second op: " << *secondOp); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Return the unique subview use of `v` if it is indeed unique, null |
| /// otherwise. |
| static memref::SubViewOp getSubViewUseIfUnique(Value v) { |
| memref::SubViewOp subViewOp; |
| for (auto &u : v.getUses()) { |
| if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { |
| if (subViewOp) |
| return memref::SubViewOp(); |
| subViewOp = newSubViewOp; |
| } |
| } |
| return subViewOp; |
| } |
| |
| /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, |
| /// when available. |
| LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( |
| vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { |
| |
| // TODO: support mask. |
| if (xferOp.getMask()) |
| return failure(); |
| |
| // Transfer into `view`. |
| Value viewOrAlloc = xferOp.getSource(); |
| if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && |
| !viewOrAlloc.getDefiningOp<memref::AllocOp>()) |
| return failure(); |
| |
| LDBG(viewOrAlloc); |
| |
| // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. |
| memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); |
| if (!subViewOp) |
| return failure(); |
| Value subView = subViewOp.getResult(); |
| LDBG("with subView " << subView); |
| |
| // Find the copy into `subView` without interleaved uses. |
| memref::CopyOp copyOp; |
| for (auto &u : subView.getUses()) { |
| if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { |
| assert(newCopyOp.getTarget().getType().isa<MemRefType>()); |
| if (newCopyOp.getTarget() != subView) |
| continue; |
| LDBG("copy candidate " << *newCopyOp); |
| if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) |
| continue; |
| copyOp = newCopyOp; |
| break; |
| } |
| } |
| if (!copyOp) |
| return failure(); |
| LDBG("with copy " << *copyOp); |
| |
| // Find the fill into `viewOrAlloc` without interleaved uses before the |
| // copy. |
| FillOp maybeFillOp; |
| for (auto &u : viewOrAlloc.getUses()) { |
| if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { |
| assert(newFillOp.output().getType().isa<MemRefType>()); |
| if (newFillOp.output() != viewOrAlloc) |
| continue; |
| LDBG("fill candidate " << *newFillOp); |
| if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) |
| continue; |
| maybeFillOp = newFillOp; |
| break; |
| } |
| } |
| // Ensure padding matches. |
| if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) |
| return failure(); |
| if (maybeFillOp) |
| LDBG("with maybeFillOp " << *maybeFillOp); |
| |
| // `in` is the subview that memref.copy reads. Replace it. |
| Value in = copyOp.getSource(); |
| |
| // memref.copy + linalg.fill can be used to create a padded local buffer. |
| // The `masked` attribute is only valid on this padded buffer. |
| // When forwarding to vector.transfer_read, the attribute must be reset |
| // conservatively. |
| Value res = rewriter.create<vector::TransferReadOp>( |
| xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(), |
| xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), |
| // in_bounds is explicitly reset |
| /*inBoundsAttr=*/ArrayAttr()); |
| |
| if (maybeFillOp) |
| rewriter.eraseOp(maybeFillOp); |
| rewriter.eraseOp(copyOp); |
| rewriter.replaceOp(xferOp, res); |
| |
| return success(); |
| } |
| |
| /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, |
| /// when available. |
| LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( |
| vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { |
| // TODO: support mask. |
| if (xferOp.getMask()) |
| return failure(); |
| |
| // Transfer into `viewOrAlloc`. |
| Value viewOrAlloc = xferOp.getSource(); |
| if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && |
| !viewOrAlloc.getDefiningOp<memref::AllocOp>()) |
| return failure(); |
| |
| // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. |
| memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); |
| if (!subViewOp) |
| return failure(); |
| Value subView = subViewOp.getResult(); |
| |
| // Find the copy from `subView` without interleaved uses. |
| memref::CopyOp copyOp; |
| for (auto &u : subViewOp.getResult().getUses()) { |
| if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { |
| if (newCopyOp.getSource() != subView) |
| continue; |
| if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) |
| continue; |
| copyOp = newCopyOp; |
| break; |
| } |
| } |
| if (!copyOp) |
| return failure(); |
| |
| // `out` is the subview copied into that we replace. |
| assert(copyOp.getTarget().getType().isa<MemRefType>()); |
| Value out = copyOp.getTarget(); |
| |
| // Forward vector.transfer into copy. |
| // memref.copy + linalg.fill can be used to create a padded local buffer. |
| // The `masked` attribute is only valid on this padded buffer. |
| // When forwarding to vector.transfer_write, the attribute must be reset |
| // conservatively. |
| rewriter.create<vector::TransferWriteOp>( |
| xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(), |
| xferOp.getPermutationMapAttr(), xferOp.getMask(), |
| // in_bounds is explicitly reset |
| /*inBoundsAttr=*/ArrayAttr()); |
| |
| rewriter.eraseOp(copyOp); |
| rewriter.eraseOp(xferOp); |
| |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Convolution vectorization patterns |
| //===----------------------------------------------------------------------===// |
| |
| template <int N> |
| static void bindShapeDims(ShapedType shapedType) {} |
| |
| template <int N, typename IntTy, typename... IntTy2> |
| static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { |
| val = shapedType.getShape()[N]; |
| bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...); |
| } |
| |
| /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). |
| template <typename... IntTy> |
| static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { |
| bindShapeDims<0>(shapedType, vals...); |
| } |
| |
| namespace { |
| /// Generate a vector implementation for either: |
| /// ``` |
| /// Op def: ( n, w, c, kw, f ) |
| /// Iters: ({Par(), Par(), Par(), Red(), Red()}) |
| /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} |
| /// ``` |
| /// kw is unrolled, w is unrolled iff dilationW > 1. |
| /// |
| /// or |
| /// |
| /// ``` |
| /// Op def: ( n, c, w, f, kw ) |
| /// Iters: ({Par(), Par(), Par(), Red(), Red()}) |
| /// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} |
| /// ``` |
| /// kw is unrolled, w is unrolled iff dilationW > 1. |
| /// |
| /// or |
| /// |
| /// ``` |
| /// Op def: ( n, w, c, kw ) |
| /// Iters: ({Par(), Par(), Par(), Red()}) |
| /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} |
| /// ``` |
| /// kw is unrolled, w is unrolled iff dilationW > 1. |
| struct Conv1DGenerator : public StructuredGenerator<LinalgOp> { |
| Conv1DGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW, |
| int dilationW) |
| : StructuredGenerator<LinalgOp>(builder, linalgOp), strideW(strideW), |
| dilationW(dilationW) { |
| // Determine whether `linalgOp` can be generated with this generator |
| if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1) |
| return; |
| lhsShaped = linalgOp.getDpsInputOperand(0)->get(); |
| rhsShaped = linalgOp.getDpsInputOperand(1)->get(); |
| resShaped = linalgOp.getDpsInitOperand(0)->get(); |
| lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>(); |
| rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>(); |
| resShapedType = resShaped.getType().dyn_cast<ShapedType>(); |
| if (!lhsShapedType || !rhsShapedType || !resShapedType) |
| return; |
| if (lhsShapedType.getRank() != 3 || |
| (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) || |
| resShapedType.getRank() != 3) |
| return; |
| |
| // Check for reduction `add` preceded by `mul`. |
| Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0)); |
| if (!reduceOp) |
| return; |
| llvm::Optional<vector::CombiningKind> maybeKind; |
| maybeKind = getCombinerOpKind(reduceOp); |
| if (!maybeKind || *maybeKind != vector::CombiningKind::ADD) |
| return; |
| // Check for single `mul` predecessor. The `mul` operands must be block |
| // arguments or extension of block arguments. |
| Operation *mulOp = nullptr; |
| for (Value operand : reduceOp->getOperands()) { |
| if (operand.isa<BlockArgument>()) |
| continue; |
| if (mulOp) |
| return; |
| mulOp = operand.getDefiningOp(); |
| if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) |
| return; |
| } |
| if (!mulOp) |
| return; |
| for (Value operand : mulOp->getOperands()) { |
| if (Operation *def = operand.getDefiningOp()) { |
| if (!isa<CastOpInterface>(def)) |
| return; |
| operand = def->getOperand(0); |
| } |
| if (!operand.isa<BlockArgument>()) |
| return; |
| } |
| // The op is now known to be valid. |
| valid = true; |
| } |
| |
| /// Generate a vector implementation for: |
| /// ``` |
| /// Op def: ( n, w, c, kw, f ) |
| /// Iters: ({Par(), Par(), Par(), Red(), Red()}) |
| /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} |
| /// ``` |
| /// kw is always unrolled. |
| /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is |
| /// > 1. |
| FailureOr<Operation *> conv(Conv1DOpOrder conv1DOpOrder) { |
| if (!valid) |
| return failure(); |
| |
| int64_t nSize, wSize, cSize, kwSize, fSize; |
| SmallVector<int64_t, 3> lhsShape, rhsShape, resShape; |
| switch (conv1DOpOrder) { |
| case Conv1DOpOrder::Nwc: |
| // kernel{kw, c, f} |
| bindShapeDims(rhsShapedType, kwSize, cSize, fSize); |
| // out{n, w, f} |
| bindShapeDims(resShapedType, nSize, wSize); |
| lhsShape = {nSize, |
| // iw = ow * sw + kw * dw - 1 |
| // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) |
| // Perform the proper inclusive -> exclusive -> inclusive. |
| ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - |
| 1, |
| cSize}; |
| rhsShape = {kwSize, cSize, fSize}; |
| resShape = {nSize, wSize, fSize}; |
| break; |
| case Conv1DOpOrder::Ncw: |
| // kernel{f, c, kw} |
| bindShapeDims(rhsShapedType, fSize, cSize, kwSize); |
| // out{n, f, w} |
| bindShapeDims(resShapedType, nSize, fSize, wSize); |
| lhsShape = {nSize, cSize, |
| // iw = ow * sw + kw * dw - 1 |
| // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) |
| // Perform the proper inclusive -> exclusive -> inclusive. |
| ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - |
| 1}; |
| rhsShape = {fSize, cSize, kwSize}; |
| resShape = {nSize, fSize, wSize}; |
| break; |
| } |
| |
| vector::TransferWriteOp write; |
| Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); |
| |
| // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. |
| // When strideW == 1, we can batch the contiguous loads and avoid |
| // unrolling |
| int64_t wSizeStep = strideW == 1 ? wSize : 1; |
| |
| Type lhsEltType = lhsShapedType.getElementType(); |
| Type rhsEltType = rhsShapedType.getElementType(); |
| Type resEltType = resShapedType.getElementType(); |
| auto lhsType = VectorType::get(lhsShape, lhsEltType); |
| auto rhsType = VectorType::get(rhsShape, rhsEltType); |
| auto resType = VectorType::get(resShape, resEltType); |
| // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, |
| // 0]. |
| Value lhs = builder.create<vector::TransferReadOp>( |
| loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); |
| // Read rhs slice of size {kw, c, f} @ [0, 0, 0]. |
| Value rhs = builder.create<vector::TransferReadOp>( |
| loc, rhsType, rhsShaped, ValueRange{zero, zero, zero}); |
| // Read res slice of size {n, w, f} @ [0, 0, 0]. |
| Value res = builder.create<vector::TransferReadOp>( |
| loc, resType, resShaped, ValueRange{zero, zero, zero}); |
| |
| // The base vectorization case is input: {n,w,c}, weight: {kw,c,f}, output: |
| // {n,w,f}. To reuse the base pattern vectorization case, we do pre |
| // transpose on input, weight, and output. |
| switch (conv1DOpOrder) { |
| case Conv1DOpOrder::Nwc: |
| // Base case, so no transposes necessary. |
| break; |
| case Conv1DOpOrder::Ncw: { |
| // To match base vectorization case, we pre-transpose current case. |
| // ncw -> nwc |
| static constexpr std::array<int64_t, 3> permLhs = {0, 2, 1}; |
| lhs = builder.create<vector::TransposeOp>(loc, lhs, permLhs); |
| // fcw -> wcf |
| static constexpr std::array<int64_t, 3> permRhs = {2, 1, 0}; |
| rhs = builder.create<vector::TransposeOp>(loc, rhs, permRhs); |
| // nfw -> nwf |
| static constexpr std::array<int64_t, 3> permRes = {0, 2, 1}; |
| res = builder.create<vector::TransposeOp>(loc, res, permRes); |
| break; |
| } |
| } |
| |
| //===------------------------------------------------------------------===// |
| // Begin vector-only rewrite part |
| //===------------------------------------------------------------------===// |
| // Unroll along kw and read slices of lhs and rhs. |
| SmallVector<Value> lhsVals, rhsVals, resVals; |
| // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]. |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( |
| loc, lhs, |
| /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, |
| /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1})); |
| } |
| } |
| // Extract rhs slice of size {c, f} @ [kw]. |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| rhsVals.push_back(builder.create<vector::ExtractOp>( |
| loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); |
| } |
| // Extract res slice: {n, wSizeStep, f} @ [0, w, 0]. |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( |
| loc, res, |
| /*offsets=*/ArrayRef<int64_t>{0, w, 0}, |
| /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1})); |
| } |
| |
| auto linearIndex = [&](int64_t kw, int64_t w) { |
| return kw * (wSize / wSizeStep) + w; |
| }; |
| |
| // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| resVals[w] = conv1dSliceAsContraction( |
| builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); |
| } |
| } |
| |
| // Write back res slice: {n, wSizeStep, f} @ [0, w, 0]. |
| // This does not depend on kw. |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| res = builder.create<vector::InsertStridedSliceOp>( |
| loc, resVals[w], res, |
| /*offsets=*/ArrayRef<int64_t>{0, w, 0}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1}); |
| } |
| //===------------------------------------------------------------------===// |
| // End vector-only rewrite part |
| //===------------------------------------------------------------------===// |
| |
| // The base vectorization case is output: {n,w,f} |
| // To reuse the result from base pattern vectorization case, we post |
| // transpose the base case result. |
| switch (conv1DOpOrder) { |
| case Conv1DOpOrder::Nwc: |
| // Base case, so no transposes necessary. |
| break; |
| case Conv1DOpOrder::Ncw: { |
| // nwf -> nfw |
| static constexpr std::array<int64_t, 3> perm = {0, 2, 1}; |
| res = builder.create<vector::TransposeOp>(loc, res, perm); |
| break; |
| } |
| } |
| |
| // Write back res slice of size {n, w, f} @ [0, 0, 0]. |
| return builder |
| .create<vector::TransferWriteOp>(loc, res, resShaped, |
| ValueRange{zero, zero, zero}) |
| .getOperation(); |
| } |
| |
| // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} |
| Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs, |
| Value rhs, Value res) { |
| vector::IteratorType par = vector::IteratorType::parallel; |
| vector::IteratorType red = vector::IteratorType::reduction; |
| AffineExpr n, w, f, c; |
| bindDims(ctx, n, w, f, c); |
| return builder.create<vector::ContractionOp>( |
| loc, lhs, rhs, res, |
| /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, |
| /*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red}); |
| } |
| |
| /// Generate a vector implementation for: |
| /// ``` |
| /// Op def: ( n, w, c, kw) |
| /// Iters: ({Par(), Par(), Par(), Red()}) |
| /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} |
| /// ``` |
| /// kw is always unrolled. |
| /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is |
| /// > 1. |
| FailureOr<Operation *> depthwiseConv() { |
| if (!valid) |
| return failure(); |
| |
| int64_t nSize, wSize, cSize, kwSize; |
| // kernel{kw, c} |
| bindShapeDims(rhsShapedType, kwSize, cSize); |
| // out{n, w, c} |
| bindShapeDims(resShapedType, nSize, wSize); |
| |
| vector::TransferWriteOp write; |
| Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); |
| |
| // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. |
| // When strideW == 1, we can batch the contiguous loads and avoid |
| // unrolling |
| int64_t wSizeStep = strideW == 1 ? wSize : 1; |
| |
| Type lhsEltType = lhsShapedType.getElementType(); |
| Type rhsEltType = rhsShapedType.getElementType(); |
| Type resEltType = resShapedType.getElementType(); |
| VectorType lhsType = VectorType::get( |
| {nSize, |
| // iw = ow * sw + kw * dw - 1 |
| // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) |
| ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, |
| cSize}, |
| lhsEltType); |
| VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType); |
| VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType); |
| |
| // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, |
| // 0]. |
| Value lhs = builder.create<vector::TransferReadOp>( |
| loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); |
| // Read rhs slice of size {kw, c} @ [0, 0]. |
| Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, |
| ValueRange{zero, zero}); |
| // Read res slice of size {n, w, c} @ [0, 0, 0]. |
| Value res = builder.create<vector::TransferReadOp>( |
| loc, resType, resShaped, ValueRange{zero, zero, zero}); |
| |
| //===------------------------------------------------------------------===// |
| // Begin vector-only rewrite part |
| //===------------------------------------------------------------------===// |
| // Unroll along kw and read slices of lhs and rhs. |
| SmallVector<Value> lhsVals, rhsVals, resVals; |
| // Extract lhs slice of size {n, wSizeStep, c} |
| // @ [0, sw * w + dw * kw, 0]. |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( |
| loc, lhs, |
| /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, |
| /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1})); |
| } |
| } |
| // Extract rhs slice of size {c} @ [kw]. |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| rhsVals.push_back(builder.create<vector::ExtractOp>( |
| loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); |
| } |
| // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( |
| loc, res, |
| /*offsets=*/ArrayRef<int64_t>{0, w, 0}, |
| /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1})); |
| } |
| |
| auto linearIndex = [&](int64_t kw, int64_t w) { |
| return kw * (wSize / wSizeStep) + w; |
| }; |
| |
| // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} |
| for (int64_t kw = 0; kw < kwSize; ++kw) { |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| resVals[w] = depthwiseConv1dSliceAsMulAcc( |
| builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); |
| } |
| } |
| |
| // Its possible we failed to create the Fma |
| for (auto v : resVals) { |
| if (!v) |
| return failure(); |
| } |
| |
| // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. |
| // This does not depend on kw. |
| for (int64_t w = 0; w < wSize; w += wSizeStep) { |
| res = builder.create<vector::InsertStridedSliceOp>( |
| loc, resVals[w], res, |
| /*offsets=*/ArrayRef<int64_t>{0, w, 0}, |
| /*strides=*/ArrayRef<int64_t>{1, 1, 1}); |
| } |
| //===------------------------------------------------------------------===// |
| // End vector-only rewrite part |
| //===------------------------------------------------------------------===// |
| |
| // Write back res slice of size {n, w, c} @ [0, 0, 0]. |
| return builder |
| .create<vector::TransferWriteOp>(loc, res, resShaped, |
| ValueRange{zero, zero, zero}) |
| .getOperation(); |
| } |
| |
| // Take a value of element type T and widen to the destination type. |
| Value promote(OpBuilder &b, Location loc, Value val, Type ty) { |
| if (val.getType() == ty) |
| return val; |
| |
| const int64_t srcWidth = |
| getElementTypeOrSelf(val.getType()).getIntOrFloatBitWidth(); |
| const int64_t destWidth = getElementTypeOrSelf(ty).getIntOrFloatBitWidth(); |
| |
| if (getElementTypeOrSelf(ty).isa<FloatType>() && srcWidth < destWidth) |
| return builder.create<arith::ExtFOp>(loc, ty, val); |
| |
| if (getElementTypeOrSelf(ty).isa<IntegerType>() && srcWidth < destWidth) |
| return builder.create<arith::ExtSIOp>(loc, ty, val); |
| |
| return nullptr; |
| } |
| |
| /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to MulAcc |
| Value depthwiseConv1dSliceAsMulAcc(OpBuilder &b, Location loc, Value lhs, |
| Value rhs, Value res) { |
| auto rhsTy = rhs.getType().cast<ShapedType>(); |
| auto resTy = res.getType().cast<ShapedType>(); |
| |
| // TODO(suderman): Change this to use a vector.ima intrinsic. |
| lhs = promote(b, loc, lhs, resTy); |
| |
| rhs = builder.create<vector::BroadcastOp>( |
| loc, resTy.clone(rhsTy.getElementType()), rhs); |
| rhs = promote(b, loc, rhs, resTy); |
| |
| if (!lhs || !rhs) |
| return nullptr; |
| |
| if (resTy.getElementType().isa<FloatType>()) |
| return b.create<vector::FMAOp>(loc, lhs, rhs, res); |
| |
| auto mul = b.create<arith::MulIOp>(loc, lhs, rhs); |
| return b.create<arith::AddIOp>(loc, mul, res); |
| } |
| |
| /// Entry point that transposes into the common form: |
| /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} |
| FailureOr<Operation *> generateNwcConv() { |
| AffineExpr n, w, f, kw, c; |
| bindDims(ctx, n, w, f, kw, c); |
| if (!iters({Par(), Par(), Par(), Red(), Red()})) |
| return failure(); |
| |
| // No transposition needed. |
| if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, |
| /*rhsIndex*/ {kw, c, f}, |
| /*resIndex*/ {n, w, f}})) |
| return conv(Conv1DOpOrder::Nwc); |
| return failure(); |
| } |
| |
| /// Entry point that transposes into the common form: |
| /// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} |
| FailureOr<Operation *> generateNcwConv() { |
| AffineExpr n, w, f, kw, c; |
| bindDims(ctx, n, f, w, c, kw); |
| if (!iters({Par(), Par(), Par(), Red(), Red()})) |
| return failure(); |
| |
| if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, |
| /*rhsIndex*/ {f, c, kw}, |
| /*resIndex*/ {n, f, w}})) |
| return conv(Conv1DOpOrder::Ncw); |
| |
| return failure(); |
| } |
| |
| /// Entry point that transposes into the common form: |
| /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} |
| FailureOr<Operation *> generateDilatedConv() { |
| AffineExpr n, w, c, kw; |
| bindDims(ctx, n, w, c, kw); |
| if (!iters({Par(), Par(), Par(), Red()})) |
| return failure(); |
| |
| // No transposition needed. |
| if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, |
| /*rhsIndex*/ {kw, c}, |
| /*resIndex*/ {n, w, c}})) |
| return depthwiseConv(); |
| return failure(); |
| } |
| |
| private: |
| bool valid = false; |
| int strideW, dilationW; |
| Value lhsShaped, rhsShaped, resShaped; |
| ShapedType lhsShapedType, rhsShapedType, resShapedType; |
| }; |
| } // namespace |
| |
| /// Helper function to vectorize a LinalgOp with convolution semantics. |
| // TODO: extend the generic vectorization to support windows and drop this. |
| static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) { |
| // The ConvolutionOpInterface gives us guarantees of existence for |
| // strides/dilations. However, we do not need to rely on those, we can simply |
| // use them if present, otherwise use the default and let the generic conv. |
| // matcher in the ConvGenerator succeed or fail. |
| auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides"); |
| auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations"); |
| auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1; |
| auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1; |
| Conv1DGenerator e(b, op, stride, dilation); |
| auto res = e.generateNwcConv(); |
| if (succeeded(res)) |
| return res; |
| res = e.generateNcwConv(); |
| if (succeeded(res)) |
| return res; |
| return e.generateDilatedConv(); |
| } |
| |
| struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> { |
| using OpInterfaceRewritePattern::OpInterfaceRewritePattern; |
| |
| LogicalResult matchAndRewrite(LinalgOp op, |
| PatternRewriter &rewriter) const override { |
| FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op); |
| if (failed(resultOrFail)) |
| return failure(); |
| Operation *newOp = *resultOrFail; |
| if (newOp->getNumResults() == 0) { |
| rewriter.eraseOp(op.getOperation()); |
| return success(); |
| } |
| assert(newOp->getNumResults() == 1 && "expected single result"); |
| rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); |
| return success(); |
| } |
| }; |
| |
| void mlir::linalg::populateConvolutionVectorizationPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<VectorizeConvolution>(patterns.getContext(), benefit); |
| } |