| //===- TilingInterfaceImpl.cpp - Implementation of TilingInterface -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h" |
| |
| #include "mlir/Analysis/SliceAnalysis.h" |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| #include "mlir/Interfaces/TilingInterface.h" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods for implementation of Tiling Interface for Linalg ops |
| //===----------------------------------------------------------------------===// |
| |
| /// Return the SSA values that represent the data point accessed using a given |
| /// `indexingMap` for a given point in the iteration space represented by `ivs`. |
| static SmallVector<Value> getIndicesForAccess(OpBuilder &b, Location loc, |
| AffineMap indexingMap, |
| ValueRange ivs) { |
| SmallVector<Value> indices; |
| indices.reserve(indexingMap.getNumResults()); |
| for (auto result : indexingMap.getResults()) { |
| AffineMap m = AffineMap::get(indexingMap.getNumDims(), |
| indexingMap.getNumSymbols(), result); |
| Value v = b.create<AffineApplyOp>(loc, m, ivs); |
| indices.push_back(v); |
| } |
| return indices; |
| } |
| |
| /// Method to inline the payload of a `linalgOp` given the iteration space |
| /// point and values for the arguments of the payload. |
| static LogicalResult inlinePayload(OpBuilder &b, LinalgOp linalgOp, |
| ValueRange ivs, ValueRange argValues) { |
| Block *body = linalgOp.getBlock(); |
| BlockAndValueMapping map; |
| map.map(body->getArguments(), argValues); |
| for (auto &op : body->without_terminator()) { |
| if (auto indexOp = dyn_cast<IndexOp>(&op)) { |
| map.map(indexOp.getResult(), ivs[indexOp.getDim()]); |
| continue; |
| } |
| b.clone(op, map); |
| } |
| |
| Operation *terminator = body->getTerminator(); |
| Location loc = terminator->getLoc(); |
| for (const auto &operand : llvm::enumerate(terminator->getOperands())) { |
| Value toStore = map.lookupOrDefault(operand.value()); |
| OpOperand *storeInto = linalgOp.getDpsInitOperand(operand.index()); |
| auto indices = getIndicesForAccess( |
| b, loc, linalgOp.getMatchingIndexingMap(storeInto), ivs); |
| b.create<memref::StoreOp>( |
| loc, toStore, linalgOp.getDpsInitOperand(operand.index())->get(), |
| indices); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // External Model for implementing `TilingInterface` for `LinalgOp`s. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// External model implementation of TilingInterface for LinalgOps. An external |
| /// model implementation is used for now till the use of `TilingInterface` is |
| /// on-par with the current Linalg tiling + fusion patterns. Once it is |
| /// maybe possible to move this into the op-definition (though there are |
| /// advantages to leaving it as an external model) |
| template <typename LinalgOpTy> |
| struct LinalgOpTilingInterface |
| : public TilingInterface::ExternalModel<LinalgOpTilingInterface<LinalgOpTy>, |
| LinalgOpTy> { |
| /// Return the loop iterator type. |
| SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const { |
| LinalgOpTy concreteOp = cast<LinalgOpTy>(op); |
| return llvm::to_vector(llvm::map_range( |
| concreteOp.getIteratorTypesArray(), [](StringRef iteratorType) { |
| return utils::symbolizeIteratorType(iteratorType).value(); |
| })); |
| } |
| |
| /// Return the iteration domain range. |
| SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const { |
| OpBuilder::InsertionGuard g(b); |
| b.setInsertionPoint(op); |
| Location loc = op->getLoc(); |
| LinalgOp linalgOp = cast<LinalgOp>(op); |
| SmallVector<OpFoldResult> allShapesSizes = |
| linalgOp.createFlatListOfOperandDims(b, loc); |
| AffineMap map = linalgOp.getShapesToLoopsMap(); |
| |
| return llvm::to_vector( |
| llvm::map_range(map.getResults(), [&](AffineExpr loopExpr) { |
| OpFoldResult ofr = |
| makeComposedFoldedAffineApply(b, loc, loopExpr, allShapesSizes); |
| return Range{b.getIndexAttr(0), ofr, b.getIndexAttr(1)}; |
| })); |
| } |
| |
| // Instantiate the tiled implementation of the operation. |
| SmallVector<Operation *> |
| getTiledImplementation(Operation *op, OpBuilder &b, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes) const { |
| // Leave the `sizeBounds` value empty. That is only needed when the `sizes` |
| // specified could lead to out of bounds accesses. |
| Location loc = op->getLoc(); |
| LinalgOp linalgOp = cast<LinalgOp>(op); |
| SmallVector<Value> valuesToTile = linalgOp->getOperands(); |
| SmallVector<Value, 4> tiledOperands = makeTiledShapes( |
| b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true); |
| |
| SmallVector<Type> resultTensorTypes = |
| getTensorOutputTypes(linalgOp, tiledOperands); |
| |
| Operation *tiledOp = |
| linalgOp.clone(b, loc, resultTensorTypes, tiledOperands); |
| offsetIndices(b, cast<LinalgOp>(tiledOp), offsets); |
| |
| return {tiledOp}; |
| } |
| |
| // Return the details of the output tile generated by the tiled |
| // implementation. |
| LogicalResult |
| getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| SmallVector<OpFoldResult> &resultOffsets, |
| SmallVector<OpFoldResult> &resultSizes) const { |
| Location loc = op->getLoc(); |
| LinalgOp linalgOp = cast<LinalgOp>(op); |
| |
| AffineExpr d0; |
| bindDims(b.getContext(), d0); |
| SmallVector<OpFoldResult> subShapeSizes = |
| llvm::to_vector(llvm::map_range(sizes, [&](OpFoldResult ofr) { |
| return makeComposedFoldedAffineApply(b, loc, d0 - 1, ofr); |
| })); |
| |
| OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber); |
| SliceParameters sliceParams = computeSliceParameters( |
| b, loc, outOperand->get(), sizes, |
| linalgOp.getMatchingIndexingMap(outOperand), offsets, |
| /*ubs*/ {}, subShapeSizes, true); |
| resultOffsets = sliceParams.offsets; |
| resultSizes = sliceParams.sizes; |
| return success(); |
| } |
| |
| FailureOr<Value> generateResultTileValue(Operation *op, OpBuilder &b, |
| unsigned resultNumber, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes) const { |
| auto linalgOp = cast<LinalgOp>(op); |
| |
| // Check that the indexing map used for the output is a projected |
| // permutation. This could be relaxed with a more general approach that can |
| // map the offsets and sizes from the result to iteration space tiles |
| // (filling in full extent for dimensions not used to access the result). |
| AffineMap indexingMap = |
| linalgOp.getIndexingMapMatchingResult(op->getResult(resultNumber)); |
| if (!indexingMap.isProjectedPermutation()) { |
| return op->emitOpError( |
| "unhandled tiled implementation generation when result is not " |
| "accessed using a permuted projection"); |
| } |
| |
| auto numLoops = linalgOp.getNumLoops(); |
| auto tilingInterfaceOp = cast<TilingInterface>(op); |
| SmallVector<OpFoldResult> iterationTileOffsets(numLoops), |
| iterationTileSizes(numLoops); |
| if (!indexingMap.isPermutation()) { |
| SmallVector<Range> iterationDomain = |
| tilingInterfaceOp.getIterationDomain(b); |
| for (const auto &range : llvm::enumerate(iterationDomain)) { |
| iterationTileOffsets[range.index()] = range.value().offset; |
| iterationTileSizes[range.index()] = range.value().size; |
| } |
| } |
| for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) { |
| unsigned dimPosition = |
| resultExpr.value().cast<AffineDimExpr>().getPosition(); |
| iterationTileOffsets[dimPosition] = offsets[resultExpr.index()]; |
| iterationTileSizes[dimPosition] = sizes[resultExpr.index()]; |
| } |
| |
| SmallVector<Operation *> tiledOp = tilingInterfaceOp.getTiledImplementation( |
| b, iterationTileOffsets, iterationTileSizes); |
| if (tiledOp.size() != 1) |
| return op->emitOpError("failed to generate tiled implementation"); |
| |
| return tiledOp[0]->getResult(resultNumber); |
| } |
| |
| LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder, |
| Location loc, |
| ValueRange ivs) const { |
| auto linalgOp = cast<LinalgOp>(op); |
| if (!linalgOp.hasBufferSemantics()) |
| return op->emitOpError("expected operation to have buffer semantics"); |
| |
| SmallVector<Value> indexedValues; |
| indexedValues.reserve(linalgOp->getNumOperands()); |
| Location linalgOpLoc = op->getLoc(); |
| /// Load the data corresponding to the block arguments that |
| /// represent input operands. |
| for (OpOperand &operand : linalgOp->getOpOperands()) { |
| if (!linalgOp.payloadUsesValueFromOperand(&operand)) { |
| indexedValues.push_back(nullptr); |
| continue; |
| } |
| if (linalgOp.isScalar(&operand)) { |
| indexedValues.push_back(operand.get()); |
| continue; |
| } |
| SmallVector<Value> indices = getIndicesForAccess( |
| builder, linalgOpLoc, linalgOp.getMatchingIndexingMap(&operand), ivs); |
| Value load = |
| builder.create<memref::LoadOp>(linalgOpLoc, operand.get(), indices); |
| indexedValues.push_back(load); |
| } |
| |
| /// Inline the op payload and store the result. |
| return inlinePayload(builder, linalgOp, ivs, indexedValues); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // External Model for implementing `PartialReductionInterface` for `LinalgOp`s. |
| //===----------------------------------------------------------------------===// |
| |
| /// External model implementation of PartialReductionInterface for LinalgOps. |
| template <typename LinalgOpTy> |
| struct LinalgOpPartialReductionInterface |
| : public PartialReductionOpInterface::ExternalModel< |
| LinalgOpPartialReductionInterface<LinalgOpTy>, LinalgOpTy> { |
| FailureOr<Operation *> generateInitialTensorForPartialReduction( |
| Operation *op, OpBuilder &b, Location loc, ArrayRef<OpFoldResult> sizes, |
| ArrayRef<int> reductionDims) const { |
| auto linalgOp = cast<LinalgOp>(op); |
| OpBuilder::InsertionGuard guard(b); |
| assert(reductionDims.size() == 1 && |
| "only support single reduction right now."); |
| if (linalgOp.hasBufferSemantics()) |
| return op->emitOpError("expected operation to have tensor semantics"); |
| // Insert the new parallel dimension based on the index of the reduction |
| // loop. This could be controlled by user for more flexibility. |
| int64_t insertSplitDimension = reductionDims[0]; |
| |
| SmallVector<Operation *, 4> combinerOps; |
| if (!matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps) || |
| combinerOps.size() != 1) |
| return op->emitOpError("Failed to anaysis the reduction operation."); |
| |
| Operation *reductionOp = combinerOps[0]; |
| Optional<Attribute> identity = getNeutralElement(reductionOp); |
| if (!identity.has_value()) |
| return op->emitOpError( |
| "Failed to get an identity value for the reduction operation."); |
| |
| // Calculate the new shape, we insert the new dimension based on the index |
| // of the reduction dimension. |
| SmallVector<int64_t> newOutputShape; |
| ArrayRef<int64_t> oldShape = |
| linalgOp.getShape(linalgOp.getDpsInitOperand(0)); |
| SmallVector<Value> dynamicDims; |
| for (int64_t idx : llvm::seq<int64_t>(0, oldShape.size() + 1)) { |
| if (idx == insertSplitDimension) { |
| dispatchIndexOpFoldResults(sizes[idx], dynamicDims, newOutputShape, |
| ShapedType::kDynamicStrideOrOffset); |
| continue; |
| } |
| int64_t oldIdx = idx < insertSplitDimension ? idx : idx - 1; |
| int64_t dim = oldShape[oldIdx]; |
| newOutputShape.push_back(dim); |
| if (ShapedType::isDynamic(dim)) |
| dynamicDims.push_back(b.createOrFold<tensor::DimOp>( |
| loc, linalgOp.getDpsInitOperand(0)->get(), oldIdx)); |
| } |
| Value emptyTensor = b.create<tensor::EmptyOp>( |
| loc, newOutputShape, linalgOp.getRegionOutputArgs()[0].getType(), |
| dynamicDims); |
| Value constantOp = b.create<arith::ConstantOp>(loc, *identity); |
| auto identityTensor = |
| b.create<linalg::FillOp>(loc, constantOp, emptyTensor); |
| return identityTensor.getOperation(); |
| } |
| |
| Operation *tileToPartialReduction(Operation *op, OpBuilder &b, Location loc, |
| ValueRange init, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<int> reductionDims) const { |
| OpBuilder::InsertionGuard guard(b); |
| auto linalgOp = cast<LinalgOp>(op); |
| assert(reductionDims.size() == 1 && |
| "only support single reduction right now."); |
| int64_t insertSplitDimension = reductionDims[0]; |
| |
| AffineMap oldOutputMap = |
| linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0)); |
| SmallVector<AffineExpr> outputExpr; |
| for (auto &[idx, expr] : llvm::enumerate(oldOutputMap.getResults())) { |
| if (static_cast<int64_t>(idx) == insertSplitDimension) { |
| outputExpr.push_back(b.getAffineDimExpr(reductionDims[0])); |
| } |
| outputExpr.push_back(expr); |
| } |
| if (insertSplitDimension == oldOutputMap.getNumResults()) |
| outputExpr.push_back(b.getAffineDimExpr(reductionDims[0])); |
| |
| // Step 1: Extract a slice of the input operands. |
| SmallVector<Value> valuesToTile = linalgOp.getDpsInputOperands(); |
| SmallVector<Value, 4> tiledOperands = |
| makeTiledShapes(b, loc, op, valuesToTile, offsets, sizes, {}, true); |
| |
| // Step 2: Extract the accumulator operands |
| SmallVector<OpFoldResult> strides(offsets.size(), b.getIndexAttr(1)); |
| SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0)); |
| // TODO: use SubsetExtractOpInterface once it is available. |
| Value out = b.create<tensor::ExtractSliceOp>(loc, init[0], outOffsets, |
| sizes, strides); |
| |
| // Step3. create a generic op where the reduction dimension is replaced by a |
| // parallel dimension of the size of reduction. |
| SmallVector<StringRef> newIteratorTypes = linalgOp.getIteratorTypesArray(); |
| newIteratorTypes[reductionDims[0]] = getParallelIteratorTypeName(); |
| SmallVector<AffineMap> newMaps = linalgOp.getIndexingMapsArray(); |
| newMaps.back() = AffineMap::get(newMaps.back().getNumDims(), 0, outputExpr, |
| linalgOp.getContext()); |
| auto genericOp = |
| b.create<GenericOp>(loc, TypeRange({out.getType()}), tiledOperands, |
| ValueRange({out}), newMaps, newIteratorTypes); |
| BlockAndValueMapping mapping; |
| op->getRegion(0).cloneInto(&genericOp.getRegion(), |
| genericOp.getRegion().begin(), mapping); |
| return genericOp.getOperation(); |
| } |
| |
| Operation *mergeReductions(Operation *op, OpBuilder &b, Location loc, |
| ValueRange partialReduce, |
| ArrayRef<int> reductionDims) const { |
| auto linalgOp = cast<LinalgOp>(op); |
| assert(reductionDims.size() == 1 && |
| "only support single reduction right now."); |
| int64_t dimToMerge = reductionDims[0]; |
| |
| // Then create a new reduction that only reduce the newly added dimension |
| // from the previous op. |
| int64_t intermRank = |
| partialReduce[0].getType().cast<ShapedType>().getRank(); |
| AffineMap inputMap = b.getMultiDimIdentityMap(intermRank); |
| SmallVector<StringRef> reductionIteratorTypes; |
| SmallVector<AffineExpr> exprs; |
| for (int64_t i : llvm::seq<int64_t>(0, intermRank)) { |
| if (dimToMerge == i) { |
| reductionIteratorTypes.push_back(getReductionIteratorTypeName()); |
| } else { |
| exprs.push_back(b.getAffineDimExpr(i)); |
| reductionIteratorTypes.push_back(getParallelIteratorTypeName()); |
| } |
| } |
| AffineMap outputMap = |
| AffineMap::get(intermRank, 0, exprs, op->getContext()); |
| SmallVector<AffineMap> reductionMaps = {inputMap, outputMap}; |
| |
| SmallVector<Operation *, 4> combinerOps; |
| matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps); |
| Operation *reductionOp = combinerOps[0]; |
| |
| auto reduction = b.create<GenericOp>( |
| loc, op->getResultTypes(), ValueRange({partialReduce[0]}), |
| SmallVector<Value>{linalgOp.getDpsInitOperands()}, reductionMaps, |
| reductionIteratorTypes, |
| [reductionOp](OpBuilder &b, Location loc, ValueRange inputs) { |
| Operation *clonedReductionOp = b.clone(*reductionOp); |
| clonedReductionOp->setOperand(0, inputs[0]); |
| clonedReductionOp->setOperand(1, inputs[1]); |
| b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0)); |
| }); |
| return reduction.getOperation(); |
| } |
| }; |
| |
| } // namespace |
| |
| template <typename OpType> |
| static void registerOne(MLIRContext *ctx) { |
| OpType::template attachInterface<LinalgOpTilingInterface<OpType>>(*ctx); |
| OpType::template attachInterface<LinalgOpPartialReductionInterface<OpType>>( |
| *ctx); |
| } |
| |
| /// Variadic helper function. |
| template <typename... OpTypes> |
| static void registerAll(MLIRContext *ctx) { |
| (registerOne<OpTypes>(ctx), ...); |
| } |
| |
| #define GET_OP_LIST |
| |
| void mlir::linalg::registerTilingInterfaceExternalModels( |
| DialectRegistry ®istry) { |
| registry.addExtension(+[](MLIRContext *ctx, linalg::LinalgDialect *dialect) { |
| registerOne<linalg::GenericOp>(ctx); |
| registerAll< |
| #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" |
| >(ctx); |
| }); |
| } |