| //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Passes.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/SCF/Transforms/Transforms.h" |
| #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/FoldUtils.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_LINALGLOWERTOAFFINELOOPS |
| #define GEN_PASS_DEF_LINALGLOWERTOLOOPS |
| #define GEN_PASS_DEF_LINALGLOWERTOPARALLELLOOPS |
| #include "mlir/Dialect/Linalg/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc, |
| AffineMap map, |
| ArrayRef<Value> vals) { |
| if (map.isEmpty()) |
| return {}; |
| |
| assert(map.getNumInputs() == vals.size()); |
| SmallVector<Value> res; |
| res.reserve(map.getNumResults()); |
| auto dims = map.getNumDims(); |
| for (auto e : map.getResults()) { |
| auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e); |
| SmallVector<Value> operands(vals.begin(), vals.end()); |
| canonicalizeMapAndOperands(&exprMap, &operands); |
| res.push_back(b.create<AffineApplyOp>(loc, exprMap, operands)); |
| } |
| return res; |
| } |
| |
| template <typename LoadOpTy, typename StoreOpTy, typename OpType> |
| static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op, |
| ArrayRef<Value> indexedValues, |
| ArrayRef<SmallVector<Value>> indexing, |
| ArrayRef<Value> outputBuffers) { |
| auto &block = op->getRegion(0).front(); |
| BlockAndValueMapping map; |
| map.map(block.getArguments(), indexedValues); |
| for (auto &op : block.without_terminator()) { |
| auto *newOp = b.clone(op, map); |
| map.map(op.getResults(), newOp->getResults()); |
| } |
| |
| Operation *terminator = block.getTerminator(); |
| for (OpOperand &operand : terminator->getOpOperands()) { |
| Value toStore = map.lookupOrDefault(operand.get()); |
| b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()], |
| indexing[operand.getOperandNumber()]); |
| } |
| } |
| |
| // Returns a pair that contains input indices and output indices of a |
| // SingleInputPoolingOp `op`. |
| struct InputAndOutputIndices { |
| SmallVector<Value> inputs; |
| SmallVector<Value> outputs; |
| }; |
| template <typename SingleInputPoolingOp> |
| static InputAndOutputIndices |
| getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs, |
| SingleInputPoolingOp op) { |
| auto mapsRange = op.getIndexingMapsArray(); |
| auto maps = llvm::to_vector<8>( |
| llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); |
| return InputAndOutputIndices{ |
| makeCanonicalAffineApplies(b, loc, maps[0], allIvs), |
| makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; |
| } |
| |
| /// Emits the MLIR for the scalar part of the generic op by: |
| /// 1. Emitting load ops for each input and output view in order. This is |
| /// achieved by applying the appropriate input or output map to the |
| /// enclosing induction variables. |
| /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars |
| /// from point 1. above. |
| /// 3. Emitting store ops to store the results of 2. to the output |
| /// views. |
| /// |
| /// An example output may resemble: |
| /// |
| /// ``` |
| /// scf.for %i = %c0 to %0 step %c1 { |
| /// scf.for %j = %c0 to %1 step %c1 { |
| /// scf.for %k = %c0 to %4 step %c1 { |
| /// %11 = load %arg0[%i, %j] : |
| /// memref<?x?xf32, stride_specification> |
| /// %12 = load %arg1[%i, %j, %k] : |
| /// memref<?x?x?xf32, stride_specification> |
| /// %13 = load %arg2[%i, %k, %j] : |
| /// memref<?x?x?xf32, stride_specification> |
| /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) |
| /// store %14#0, %arg1[%i, %j, %k] : |
| /// memref<?x?x?Xf32, stride_specification> |
| /// store %14#1, %arg2[%i, %k, %j] : |
| /// memref<?x?x?Xf32, stride_specification> |
| /// } |
| /// } |
| /// } |
| /// ``` |
| template <typename LoadOpTy, typename StoreOpTy> |
| static void emitScalarImplementation(OpBuilder &b, Location loc, |
| ArrayRef<Value> allIvs, |
| LinalgOp linalgOp) { |
| assert(linalgOp.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| SmallVector<Value> indexedValues; |
| indexedValues.reserve(linalgOp->getNumOperands()); |
| |
| auto allIvsPlusDims = SmallVector<Value>(allIvs.begin(), allIvs.end()); |
| |
| // TODO: Avoid the loads if the corresponding argument of the |
| // region has no uses. |
| // 1.a. Emit load from input operand or for scalars access the operand itself. |
| for (OpOperand *inputOperand : linalgOp.getDpsInputOperands()) { |
| if (linalgOp.isScalar(inputOperand)) { |
| indexedValues.push_back(inputOperand->get()); |
| continue; |
| } |
| auto indexing = makeCanonicalAffineApplies( |
| b, loc, linalgOp.getMatchingIndexingMap(inputOperand), allIvsPlusDims); |
| indexedValues.push_back( |
| b.create<LoadOpTy>(loc, inputOperand->get(), indexing)); |
| } |
| // 1.b. Emit load from output views. |
| for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) { |
| SmallVector<Value> indexing = makeCanonicalAffineApplies( |
| b, loc, linalgOp.getMatchingIndexingMap(outputOperand), allIvsPlusDims); |
| indexedValues.push_back( |
| b.create<LoadOpTy>(loc, outputOperand->get(), indexing)); |
| } |
| |
| // TODO: When a region inliner exists, use it. |
| // 2. Inline region, currently only works for a single basic block. |
| // 3. Emit store. |
| SmallVector<SmallVector<Value>, 8> indexing; |
| SmallVector<Value> outputBuffers; |
| for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) { |
| if (!outputOperand->get().getType().isa<MemRefType>()) |
| continue; |
| indexing.push_back(makeCanonicalAffineApplies( |
| b, loc, linalgOp.getMatchingIndexingMap(outputOperand), |
| allIvsPlusDims)); |
| outputBuffers.push_back(outputOperand->get()); |
| } |
| inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues, |
| indexing, outputBuffers); |
| } |
| |
| /// Replace the index operations in the body of the loop nest by the matching |
| /// induction variables. |
| static void replaceIndexOpsByInductionVariables(LinalgOp linalgOp, |
| PatternRewriter &rewriter, |
| ArrayRef<Operation *> loopOps) { |
| // Extract the induction variables of the loop nest from outer to inner. |
| SmallVector<Value> allIvs; |
| for (Operation *loopOp : loopOps) { |
| llvm::TypeSwitch<Operation *>(loopOp) |
| .Case([&](scf::ParallelOp parallelOp) { |
| allIvs.append(parallelOp.getInductionVars().begin(), |
| parallelOp.getInductionVars().end()); |
| }) |
| .Case([&](scf::ForOp forOp) { |
| allIvs.push_back(forOp.getInductionVar()); |
| }) |
| .Case([&](AffineForOp affineForOp) { |
| allIvs.push_back(affineForOp.getInductionVar()); |
| }) |
| .Default([&](Operation *op) { assert(false && "unexpected op"); }); |
| } |
| assert(linalgOp.getNumLoops() == allIvs.size() && |
| "expected the number of loops and induction variables to match"); |
| // Replace the index operations in the body of the innermost loop op. |
| if (!loopOps.empty()) { |
| LoopLikeOpInterface loopOp = loopOps.back(); |
| for (IndexOp indexOp : |
| llvm::make_early_inc_range(loopOp.getLoopBody().getOps<IndexOp>())) |
| rewriter.replaceOp(indexOp, allIvs[indexOp.getDim()]); |
| } |
| } |
| |
| template <typename LoopTy> |
| static FailureOr<LinalgLoops> linalgOpToLoopsImpl(PatternRewriter &rewriter, |
| LinalgOp linalgOp) { |
| using LoadOpTy = std::conditional_t<std::is_same<LoopTy, AffineForOp>::value, |
| AffineLoadOp, memref::LoadOp>; |
| using StoreOpTy = std::conditional_t<std::is_same<LoopTy, AffineForOp>::value, |
| AffineStoreOp, memref::StoreOp>; |
| |
| // The flattened loopToOperandRangesMaps is expected to be an invertible |
| // permutation map (which is asserted in the inverse calculation). |
| assert(linalgOp.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| |
| auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc()); |
| auto iteratorTypes = linalgOp.getIteratorTypesArray(); |
| |
| SmallVector<Value> allIvs; |
| GenerateLoopNest<LoopTy>::doit( |
| rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes, |
| [&](OpBuilder &b, Location loc, ValueRange ivs, |
| ValueRange operandValuesToUse) -> scf::ValueVector { |
| assert(operandValuesToUse == linalgOp->getOperands() && |
| "expect operands are captured and not passed by loop argument"); |
| allIvs.append(ivs.begin(), ivs.end()); |
| emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs, linalgOp); |
| return scf::ValueVector{}; |
| }); |
| // Number of loop ops might be different from the number of ivs since some |
| // loops like affine.parallel and scf.parallel have multiple ivs. |
| SetVector<Operation *> loopSet; |
| for (Value iv : allIvs) { |
| if (!iv) |
| return failure(); |
| // The induction variable is a block argument of the entry block of the |
| // loop operation. |
| BlockArgument ivVal = iv.dyn_cast<BlockArgument>(); |
| if (!ivVal) |
| return failure(); |
| loopSet.insert(ivVal.getOwner()->getParentOp()); |
| } |
| LinalgLoops loops(loopSet.begin(), loopSet.end()); |
| // Replace all index operations in the loop body. |
| replaceIndexOpsByInductionVariables(linalgOp, rewriter, loops); |
| return loops; |
| } |
| |
| namespace { |
| template <typename LoopType> |
| class LinalgRewritePattern : public RewritePattern { |
| public: |
| LinalgRewritePattern(MLIRContext *context) |
| : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} |
| |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| auto linalgOp = dyn_cast<LinalgOp>(op); |
| if (!isa<LinalgOp>(op)) |
| return failure(); |
| if (failed(linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp))) |
| return failure(); |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| }; |
| |
| /// Local folding pattern for AffineApplyOp that we can apply greedily. |
| /// This replaces AffineApplyOp by the proper value in cases where the |
| /// associated map is trivial. |
| /// A trivial map here is defined as a map with a single result and either: |
| /// 1. Zero operand + returns a single AffineConstantExpr |
| /// 2. One operand + returns a single AffineDimExpr |
| /// 3. One operand + returns a single AffineSymbolExpr |
| // |
| /// In the first case, the AffineApplyOp is replaced by a new constant. In the |
| /// other cases, it is replaced by its unique operand. |
| struct FoldAffineOp : public RewritePattern { |
| FoldAffineOp(MLIRContext *context) |
| : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {} |
| |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op); |
| auto map = affineApplyOp.getAffineMap(); |
| if (map.getNumResults() != 1 || map.getNumInputs() > 1) |
| return failure(); |
| |
| AffineExpr expr = map.getResult(0); |
| if (map.getNumInputs() == 0) { |
| if (auto val = expr.dyn_cast<AffineConstantExpr>()) { |
| rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, val.getValue()); |
| return success(); |
| } |
| return failure(); |
| } |
| if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) { |
| rewriter.replaceOp(op, op->getOperand(0)); |
| return success(); |
| } |
| return failure(); |
| } |
| }; |
| |
| template <typename LoopType> |
| static void lowerLinalgToLoopsImpl(func::FuncOp funcOp) { |
| MLIRContext *context = funcOp.getContext(); |
| RewritePatternSet patterns(context); |
| patterns.add<LinalgRewritePattern<LoopType>>(context); |
| memref::DimOp::getCanonicalizationPatterns(patterns, context); |
| tensor::DimOp::getCanonicalizationPatterns(patterns, context); |
| AffineApplyOp::getCanonicalizationPatterns(patterns, context); |
| patterns.add<FoldAffineOp>(context); |
| // Just apply the patterns greedily. |
| (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); |
| } |
| |
| struct LowerToAffineLoops |
| : public impl::LinalgLowerToAffineLoopsBase<LowerToAffineLoops> { |
| void getDependentDialects(DialectRegistry ®istry) const override { |
| registry.insert<memref::MemRefDialect>(); |
| } |
| void runOnOperation() override { |
| lowerLinalgToLoopsImpl<AffineForOp>(getOperation()); |
| } |
| }; |
| |
| struct LowerToLoops : public impl::LinalgLowerToLoopsBase<LowerToLoops> { |
| void getDependentDialects(DialectRegistry ®istry) const override { |
| registry.insert<memref::MemRefDialect, scf::SCFDialect>(); |
| } |
| void runOnOperation() override { |
| lowerLinalgToLoopsImpl<scf::ForOp>(getOperation()); |
| } |
| }; |
| |
| struct LowerToParallelLoops |
| : public impl::LinalgLowerToParallelLoopsBase<LowerToParallelLoops> { |
| void runOnOperation() override { |
| lowerLinalgToLoopsImpl<scf::ParallelOp>(getOperation()); |
| } |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<OperationPass<func::FuncOp>> |
| mlir::createConvertLinalgToLoopsPass() { |
| return std::make_unique<LowerToLoops>(); |
| } |
| |
| std::unique_ptr<OperationPass<func::FuncOp>> |
| mlir::createConvertLinalgToParallelLoopsPass() { |
| return std::make_unique<LowerToParallelLoops>(); |
| } |
| |
| std::unique_ptr<OperationPass<func::FuncOp>> |
| mlir::createConvertLinalgToAffineLoopsPass() { |
| return std::make_unique<LowerToAffineLoops>(); |
| } |
| |
| /// Emits a loop nest of `affine.for` with the proper body for `linalgOp`. |
| FailureOr<LinalgLoops> |
| mlir::linalg::linalgOpToAffineLoops(PatternRewriter &rewriter, |
| LinalgOp linalgOp) { |
| return linalgOpToLoopsImpl<AffineForOp>(rewriter, linalgOp); |
| } |
| |
| /// Emits a loop nest of `scf.for` with the proper body for `linalgOp`. |
| FailureOr<LinalgLoops> mlir::linalg::linalgOpToLoops(PatternRewriter &rewriter, |
| LinalgOp linalgOp) { |
| return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp); |
| } |
| |
| /// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`. |
| FailureOr<LinalgLoops> |
| mlir::linalg::linalgOpToParallelLoops(PatternRewriter &rewriter, |
| LinalgOp linalgOp) { |
| return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp); |
| } |