| //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the linalg dialect Fusion pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Passes.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Dominance.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| |
| #include <set> |
| |
| #define DEBUG_TYPE "linalg-fusion" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| /// Implements a simple high-level fusion pass on linalg structured operations. |
| /// |
| /// In each block, linalg ops are processed in reverse textual order. |
| /// Given a linalg op `O`, fusion occurs by: |
| /// 1. inspecting the linalg ops that write into the views read by `O`. There |
| /// are 2 cases: |
| /// a) buffer case: use the SSA value of the views and a simple alias |
| /// analysis on subview ops to determine producer-consumer dependences; |
| /// b) tensor case: use SSA use-def chains on extract_slice ops; |
| /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. |
| /// 3. inspect the fused ops and determine whether they have other remaining |
| /// LinalgOp uses. If not, then erase the original producing linalg op. |
| /// |
| /// More advanced use cases, analyses as well as profitability heuristics are |
| /// left for future work. |
| |
| struct ShapeDimension { |
| Value shape; |
| unsigned dimension; |
| }; |
| |
| // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies |
| // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps |
| // guarantees at least one such dimension is found. If multiple candidates exist |
| // they must agree by construction (i.e. have the same size) and we just return |
| // the first one. |
| static ShapeDimension |
| getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, |
| bool fromSubViewOpOnly = false) { |
| // Iterate over the inputs and outputs in order. |
| // Extract the subranges from the linearized ranges. |
| for (OpOperand &opOperand : op->getOpOperands()) { |
| // The method `getRangeFromOperandShape` requires using SubViewOp or |
| // ExtractSliceOps. If the value isn't defined from there continue. |
| // todo: The method should be adapted to get the values from |
| // `ViewInterface`. The interface needs a `getOrCreateRanges` method which |
| // currently returns a `linalg.range`. The fix here is to move this op to |
| // `std` dialect and add the method to `ViewInterface`. |
| if (fromSubViewOpOnly && |
| !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( |
| opOperand.get().getDefiningOp())) |
| continue; |
| |
| AffineMap map = op.getMatchingIndexingMap(&opOperand); |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " |
| << opOperand.getOperandNumber() << "\n"); |
| LLVM_DEBUG(llvm::dbgs() |
| << "getShapeDefiningLoopRange map: " << map << "\n"); |
| SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); |
| for (const auto &en : llvm::enumerate(map.getResults())) { |
| auto dimExpr = en.value().dyn_cast<AffineDimExpr>(); |
| if (!dimExpr) |
| continue; |
| if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) { |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " |
| << loopDepth << "\n"); |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " |
| << opOperand.get() << "\n"); |
| return ShapeDimension{opOperand.get(), |
| static_cast<unsigned>(en.index())}; |
| } |
| } |
| } |
| llvm_unreachable("Expect to be able to extract a shape defining loop range"); |
| } |
| |
| static SmallVector<Value> getTiledOperands(LinalgOp producer) { |
| return producer->getOperands(); |
| } |
| |
| /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` |
| /// provides the loop range information for the fused loops. The rest are |
| /// obtained from the producer itself, since they are not tiled + fused. |
| static LinalgOp fuse(OpBuilder &b, LinalgOp producer, |
| const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { |
| SmallVector<OpFoldResult> ivs, tileSizes, sizeBounds; |
| SmallVector<Range> loopRanges; |
| Location loc = producer.getLoc(); |
| |
| for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { |
| auto shapeDim = getShapeDefiningLoopRange(producer, i); |
| OpFoldResult dim = |
| createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension); |
| sizeBounds.push_back(dim); |
| auto it = fusedLoopsAndRanges.find(i); |
| if (it != fusedLoopsAndRanges.end()) { |
| ivs.push_back(it->second.offset); |
| tileSizes.push_back(it->second.size); |
| loopRanges.push_back(it->second); |
| LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " |
| << loopRanges.back() << "\n"); |
| } else { |
| tileSizes.push_back(b.getIndexAttr(0)); |
| loopRanges.push_back(Range{b.getIndexAttr(0), dim, b.getIndexAttr(1)}); |
| LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " |
| << loopRanges.back() << "\n"); |
| } |
| } |
| |
| SmallVector<Value, 8> clonedShapes; |
| clonedShapes.reserve(producer->getNumOperands()); |
| |
| // Compute subranges for all tensor input/output operands. |
| clonedShapes.append(makeTiledShapes( |
| b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds, |
| /**omitPartialTileCheck=*/false)); |
| |
| // Iterate over the results in order. |
| // Extract the subtensor type from the linearized range. |
| // Since we do not enforce any canonicalizations on the fly, this is always |
| // fully dynamic at construction time. |
| SmallVector<Type, 4> resultTypes; |
| resultTypes.reserve(producer->getNumResults()); |
| for (OpOperand *operand : producer.getDpsInitOperands()) { |
| auto tensorType = operand->get().getType().dyn_cast<RankedTensorType>(); |
| if (!tensorType) |
| continue; |
| unsigned rank = tensorType.getRank(); |
| SmallVector<int64_t, 4> staticOffsetsVector( |
| rank, ShapedType::kDynamicStrideOrOffset); |
| SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); |
| SmallVector<int64_t, 4> staticStridesVector( |
| rank, ShapedType::kDynamicStrideOrOffset); |
| resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( |
| tensorType, staticOffsetsVector, staticSizesVector, |
| staticStridesVector)); |
| } |
| |
| Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); |
| |
| // Shift all IndexOp results by the tile offset. |
| SmallVector<OpFoldResult> allIvs = llvm::to_vector( |
| llvm::map_range(loopRanges, [&](Range range) { return range.offset; })); |
| offsetIndices(b, clonedOp, allIvs); |
| |
| return clonedOp; |
| } |
| |
| /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is |
| /// expected to be defined by a subview op or an extract_slice op. |
| static Range getRangeFromOperandShape(OpBuilder &b, Location loc, |
| Value shapedOperand, unsigned dim) { |
| Operation *shapeProducingOp = shapedOperand.getDefiningOp(); |
| if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) |
| return subViewOp.getOrCreateRanges(b, loc)[dim]; |
| if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) |
| return sliceOp.getOrCreateRanges(b, loc)[dim]; |
| llvm_unreachable("SubviewOp or ExtractSliceOp expected"); |
| } |
| |
| /// Fuses the producer into the loop immediately enclosing the consumer. |
| /// This is achieved by "recomputing" the producer at the time it |
| /// is needed just before the consumer. |
| static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, |
| OpOperand &consumerOpOperand) { |
| LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); |
| DenseMap<unsigned, Range> fusedLoopsAndRanges; |
| Value shapedOperand = consumerOpOperand.get(); |
| for (const auto &en : llvm::enumerate(producerMap.getResults())) { |
| unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); |
| fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( |
| b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); |
| } |
| return fuse(b, producerOp, fusedLoopsAndRanges); |
| } |
| |
| // Encode structural fusion safety preconditions. |
| // Some of these will be lifted in the future with better analysis. |
| static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, |
| LinalgOp consumer) { |
| assert(producer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| assert(consumer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| if (producer.getNumDpsInits() != 1) { |
| LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); |
| return false; |
| } |
| // Only fuse when the producer block dominates. |
| DominanceInfo dom(producer.getOperation()); |
| if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { |
| LLVM_DEBUG( |
| llvm::dbgs() |
| << "\nNot structurally fusable (producer block does not dominate)"); |
| return false; |
| } |
| return true; |
| } |
| |
| bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, |
| LinalgOp consumer, |
| Value consumedView, |
| LinalgOp producer) { |
| assert(producer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| assert(consumer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| // Make some simple structural checks that alleviate the need for more |
| // complex analyses. |
| if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { |
| LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" |
| << *producer.getOperation()); |
| return false; |
| } |
| // Check for any interleaved write to consumedView. |
| if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { |
| LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" |
| << *producer.getOperation()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, |
| LinalgOp consumer, Value consumedView, |
| LinalgOp producer) { |
| assert(producer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| assert(consumer.hasBufferSemantics() && |
| "expected linalg op with buffer semantics"); |
| if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) |
| return false; |
| // Check for any fusion-preventing dependence to any shape read/written that |
| // would violate dependences. |
| if (!graph.findCoveringDependences(producer, consumer).empty()) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "\n***Not fusable due to an interleaved dependence:\t" |
| << *producer.getOperation()); |
| return false; |
| } |
| return true; |
| } |
| |
| /// For `consumer` with buffer semantics, find the Linalg operation on buffers |
| /// that is the last writer of `consumerOpOperand`. For now the fusable |
| /// dependence is returned as an instance of the `dependenceGraph`. |
| static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem> |
| findFusableProducer(OpOperand &consumerOpOperand, |
| const LinalgDependenceGraph &dependenceGraph) { |
| LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " |
| << consumerOpOperand.get() << " @" |
| << consumerOpOperand.getOperandNumber() << " in " |
| << *consumerOpOperand.getOwner() << "\n"); |
| LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); |
| if (!consumerOp) |
| return failure(); |
| |
| // Only consider RAW and WAW atm. |
| for (auto depType : { |
| LinalgDependenceGraph::DependenceType::RAW, |
| LinalgDependenceGraph::DependenceType::WAW, |
| }) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Dependencies into: " << *consumerOp.getOperation() << "\n"); |
| for (auto dependence : llvm::make_filter_range( |
| dependenceGraph.getDependencesInto(consumerOp, depType), |
| [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { |
| LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " |
| << elem.getIndexingValue() << " and " |
| << elem.getDependentValue() << "\n"); |
| Value v = elem.getIndexingValue(); |
| Optional<unsigned> operandNum = |
| elem.getIndexingOpViewOperandNum(); |
| return isa<LinalgOp>(elem.getDependentOp()) && |
| v == consumerOpOperand.get() && operandNum && |
| *operandNum == consumerOpOperand.getOperandNumber(); |
| })) { |
| // Consumer consumes this view, `isStructurallyFusableProducer` also |
| // checks whether it is a strict subview of the producer view. |
| auto producer = cast<LinalgOp>(dependence.getDependentOp()); |
| LLVM_DEBUG(llvm::dbgs() |
| << "\n" |
| << LinalgDependenceGraph::getDependenceTypeStr(depType) |
| << "producer: " << *dependence.getDependentOp() |
| << " view: " << dependence.getDependentValue() << "\n"); |
| |
| // If the producer and consumer have tensor semantics, the only dependence |
| // between them is through a RAW dependence and they are fusable by |
| // construction. For buffer semantics need additional checks. |
| if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && |
| isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), |
| producer)) |
| return dependence; |
| if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { |
| assert(dependence.dependenceType == |
| LinalgDependenceGraph::DependenceType::RAW); |
| return dependence; |
| } |
| } |
| } |
| return failure(); |
| } |
| |
| FailureOr<FusionInfo> |
| mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, |
| const LinalgDependenceGraph &graph) { |
| Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = |
| findFusableProducer(consumerOpOperand, graph); |
| if (!fusableDependence) |
| return failure(); |
| |
| LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); |
| if (!producerOp) |
| return failure(); |
| |
| // If producer is already in the same block as consumer, we are done. |
| if (consumerOpOperand.get().getParentBlock() == |
| fusableDependence->getDependentValue().getParentBlock()) |
| return failure(); |
| |
| Optional<AffineMap> producerMap = |
| fusableDependence->getDependentOpViewIndexingMap(); |
| if (!producerMap) |
| return failure(); |
| |
| // Must be a subview or an extract_slice to guarantee there are loops we can |
| // fuse into. |
| auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>(); |
| if (!subView) { |
| LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); |
| return failure(); |
| } |
| |
| // Fuse `producer` just before `consumer`. |
| OpBuilder::InsertionGuard g(b); |
| b.setInsertionPoint(consumerOpOperand.getOwner()); |
| LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " |
| << *consumerOpOperand.getOwner() << "\n"); |
| |
| auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); |
| return FusionInfo{producerOp, fusedProducer}; |
| } |
| |
| /// Walk back use-def chain through scf::For yields. |
| /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp |
| |
| // TODO(ravishankarm, ntv): This can be moved into the dependence graphs |
| // dependence tracking since the dependence tracking is similar to what is done |
| // w.r.t to buffers. |
| static void getProducerOfTensor(Value tensor, OpResult &opResult) { |
| if (!tensor.getType().isa<RankedTensorType>()) |
| return; |
| |
| while (true) { |
| LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); |
| if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { |
| opResult = tensor.cast<OpResult>(); |
| return; |
| } |
| if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { |
| tensor = sliceOp.getSource(); |
| continue; |
| } |
| if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { |
| if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { |
| tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); |
| continue; |
| } |
| } |
| return; |
| } |
| } |
| |
| FailureOr<FusionInfo> |
| mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { |
| Value inputTensor = consumerOpOperand.get(); |
| OpResult producerOpResult; |
| getProducerOfTensor(inputTensor, producerOpResult); |
| if (!producerOpResult) { |
| LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); |
| return failure(); |
| } |
| return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); |
| } |
| |
| FailureOr<FusionInfo> |
| mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, |
| OpOperand &consumerOpOperand) { |
| auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); |
| if (!producerOp) |
| return failure(); |
| |
| LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); |
| if (!consumerOp) |
| return failure(); |
| |
| Value inputTensor = consumerOpOperand.get(); |
| |
| // Must be an extract_slice op to guarantee there are loops we can fuse into. |
| auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); |
| if (!sliceOp) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "\nNot fusable, not an extract_slice op: " << inputTensor); |
| return failure(); |
| } |
| |
| // If producer is already in the same block as consumer, we are done. |
| if (consumerOpOperand.get().getParentBlock() == |
| producerOpResult.getParentBlock()) |
| return failure(); |
| |
| // Insert fused `producer` just before `consumer`. |
| OpBuilder::InsertionGuard g(b); |
| b.setInsertionPoint(consumerOp); |
| LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); |
| OpOperand *opOperand = |
| producerOp.getDpsInitOperand(producerOpResult.getResultNumber()); |
| LinalgOp fusedProducer = |
| fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand), |
| consumerOpOperand); |
| |
| // Replace use. |
| // Canonicalizations are not guaranteed to have happened before constructing |
| // `fusedProducer`. In the tensor case this can result in temporary type |
| // mismatches. Insert a `tensor.cast` op to propagate the transformation |
| // invariant that types are compatible. |
| Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); |
| Type consumerType = consumerOpOperand.get().getType(); |
| if (consumerType != def.getType()) |
| def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); |
| consumerOpOperand.set(def); |
| return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; |
| } |