| //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/Presburger/Simplex.h" |
| #include "mlir/Analysis/Presburger/Matrix.h" |
| #include "mlir/Support/MathExtras.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/Support/Compiler.h" |
| #include <numeric> |
| |
| using namespace mlir; |
| using namespace presburger; |
| |
| using Direction = Simplex::Direction; |
| |
| const int nullIndex = std::numeric_limits<int>::max(); |
| |
| // Return a + scale*b; |
| LLVM_ATTRIBUTE_UNUSED |
| static SmallVector<MPInt, 8> |
| scaleAndAddForAssert(ArrayRef<MPInt> a, const MPInt &scale, ArrayRef<MPInt> b) { |
| assert(a.size() == b.size()); |
| SmallVector<MPInt, 8> res; |
| res.reserve(a.size()); |
| for (unsigned i = 0, e = a.size(); i < e; ++i) |
| res.push_back(a[i] + scale * b[i]); |
| return res; |
| } |
| |
| SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) |
| : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0), |
| tableau(0, getNumFixedCols() + nVar), empty(false) { |
| colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); |
| for (unsigned i = 0; i < nVar; ++i) { |
| var.emplace_back(Orientation::Column, /*restricted=*/false, |
| /*pos=*/getNumFixedCols() + i); |
| colUnknown.push_back(i); |
| } |
| } |
| |
| SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, |
| const llvm::SmallBitVector &isSymbol) |
| : SimplexBase(nVar, mustUseBigM) { |
| assert(isSymbol.size() == nVar && "invalid bitmask!"); |
| // Invariant: nSymbol is the number of symbols that have been marked |
| // already and these occupy the columns |
| // [getNumFixedCols(), getNumFixedCols() + nSymbol). |
| for (unsigned symbolIdx : isSymbol.set_bits()) { |
| var[symbolIdx].isSymbol = true; |
| swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol); |
| ++nSymbol; |
| } |
| } |
| |
| const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { |
| assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); |
| return index >= 0 ? var[index] : con[~index]; |
| } |
| |
| const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { |
| assert(col < getNumColumns() && "Invalid column"); |
| return unknownFromIndex(colUnknown[col]); |
| } |
| |
| const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { |
| assert(row < getNumRows() && "Invalid row"); |
| return unknownFromIndex(rowUnknown[row]); |
| } |
| |
| Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { |
| assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); |
| return index >= 0 ? var[index] : con[~index]; |
| } |
| |
| Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { |
| assert(col < getNumColumns() && "Invalid column"); |
| return unknownFromIndex(colUnknown[col]); |
| } |
| |
| Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { |
| assert(row < getNumRows() && "Invalid row"); |
| return unknownFromIndex(rowUnknown[row]); |
| } |
| |
| unsigned SimplexBase::addZeroRow(bool makeRestricted) { |
| // Resize the tableau to accommodate the extra row. |
| unsigned newRow = tableau.appendExtraRow(); |
| assert(getNumRows() == getNumRows() && "Inconsistent tableau size"); |
| rowUnknown.push_back(~con.size()); |
| con.emplace_back(Orientation::Row, makeRestricted, newRow); |
| undoLog.push_back(UndoLogEntry::RemoveLastConstraint); |
| tableau(newRow, 0) = 1; |
| return newRow; |
| } |
| |
| /// Add a new row to the tableau corresponding to the given constant term and |
| /// list of coefficients. The coefficients are specified as a vector of |
| /// (variable index, coefficient) pairs. |
| unsigned SimplexBase::addRow(ArrayRef<MPInt> coeffs, bool makeRestricted) { |
| assert(coeffs.size() == var.size() + 1 && |
| "Incorrect number of coefficients!"); |
| assert(var.size() + getNumFixedCols() == getNumColumns() && |
| "inconsistent column count!"); |
| |
| unsigned newRow = addZeroRow(makeRestricted); |
| tableau(newRow, 1) = coeffs.back(); |
| if (usingBigM) { |
| // When the lexicographic pivot rule is used, instead of the variables |
| // |
| // x, y, z ... |
| // |
| // we internally use the variables |
| // |
| // M, M + x, M + y, M + z, ... |
| // |
| // where M is the big M parameter. As such, when the user tries to add |
| // a row ax + by + cz + d, we express it in terms of our internal variables |
| // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. |
| // |
| // Symbols don't use the big M parameter since they do not get lex |
| // optimized. |
| MPInt bigMCoeff(0); |
| for (unsigned i = 0; i < coeffs.size() - 1; ++i) |
| if (!var[i].isSymbol) |
| bigMCoeff -= coeffs[i]; |
| // The coefficient to the big M parameter is stored in column 2. |
| tableau(newRow, 2) = bigMCoeff; |
| } |
| |
| // Process each given variable coefficient. |
| for (unsigned i = 0; i < var.size(); ++i) { |
| unsigned pos = var[i].pos; |
| if (coeffs[i] == 0) |
| continue; |
| |
| if (var[i].orientation == Orientation::Column) { |
| // If a variable is in column position at column col, then we just add the |
| // coefficient for that variable (scaled by the common row denominator) to |
| // the corresponding entry in the new row. |
| tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0); |
| continue; |
| } |
| |
| // If the variable is in row position, we need to add that row to the new |
| // row, scaled by the coefficient for the variable, accounting for the two |
| // rows potentially having different denominators. The new denominator is |
| // the lcm of the two. |
| MPInt lcm = presburger::lcm(tableau(newRow, 0), tableau(pos, 0)); |
| MPInt nRowCoeff = lcm / tableau(newRow, 0); |
| MPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); |
| tableau(newRow, 0) = lcm; |
| for (unsigned col = 1, e = getNumColumns(); col < e; ++col) |
| tableau(newRow, col) = |
| nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col); |
| } |
| |
| tableau.normalizeRow(newRow); |
| // Push to undo log along with the index of the new constraint. |
| return con.size() - 1; |
| } |
| |
| namespace { |
| bool signMatchesDirection(const MPInt &elem, Direction direction) { |
| assert(elem != 0 && "elem should not be 0"); |
| return direction == Direction::Up ? elem > 0 : elem < 0; |
| } |
| |
| Direction flippedDirection(Direction direction) { |
| return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; |
| } |
| } // namespace |
| |
| /// We simply make the tableau consistent while maintaining a lexicopositive |
| /// basis transform, and then return the sample value. If the tableau becomes |
| /// empty, we return empty. |
| /// |
| /// Let the variables be x = (x_1, ... x_n). |
| /// Let the basis unknowns be y = (y_1, ... y_n). |
| /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b. |
| /// |
| /// As we will show below, A*y is either zero or lexicopositive. |
| /// Adding a lexicopositive vector to b will make it lexicographically |
| /// greater, so A*y + b is always equal to or lexicographically greater than b. |
| /// Thus, since we can attain x = b, that is the lexicographic minimum. |
| /// |
| /// We have that that every column in A is lexicopositive, i.e., has at least |
| /// one non-zero element, with the first such element being positive. Since for |
| /// the tableau to be consistent we must have non-negative sample values not |
| /// only for the constraints but also for the variables, we also have x >= 0 and |
| /// y >= 0, by which we mean every element in these vectors is non-negative. |
| /// |
| /// Proof that if every column in A is lexicopositive, and y >= 0, then |
| /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A. |
| /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next |
| /// row. If we run out of rows, A*y is zero and we are done; otherwise, we |
| /// encounter some row A_i that has a non-zero element. Every column is |
| /// lexicopositive and so has some positive element before any negative elements |
| /// occur, so the element in this row for any column, if non-zero, must be |
| /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are |
| /// non-negative, so if this is non-zero then it must be positive. Then the |
| /// first non-zero element of A*y is positive so A*y is lexicopositive. |
| /// |
| /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero |
| /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y |
| /// and we can completely ignore these columns of A. We now continue downwards, |
| /// looking for rows of A that have a non-zero element other than in the ignored |
| /// columns. If we find one, say A_k, once again these elements must be positive |
| /// since they are the first non-zero element in each of these columns, so if |
| /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we |
| /// add these to the set of ignored columns and continue to the next row. If we |
| /// run out of rows, then A*y is zero and we are done. |
| MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() { |
| if (restoreRationalConsistency().failed()) { |
| markEmpty(); |
| return OptimumKind::Empty; |
| } |
| return getRationalSample(); |
| } |
| |
| /// Given a row that has a non-integer sample value, add an inequality such |
| /// that this fractional sample value is cut away from the polytope. The added |
| /// inequality will be such that no integer points are removed. i.e., the |
| /// integer lexmin, if it exists, is the same with and without this constraint. |
| /// |
| /// Let the row be |
| /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d, |
| /// where s_1, ... s_m are the symbols and |
| /// y_1, ... y_n are the other basis unknowns. |
| /// |
| /// For this to be an integer, we want |
| /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d) |
| /// Note that this constraint must always hold, independent of the basis, |
| /// becuse the row unknown's value always equals this expression, even if *we* |
| /// later compute the sample value from a different expression based on a |
| /// different basis. |
| /// |
| /// Let us assume that M has a factor of d in it. Imposing this constraint on M |
| /// does not in any way hinder us from finding a value of M that is big enough. |
| /// Moreover, this function is only called when the symbolic part of the sample, |
| /// a_1*s_1 + ... + a_m*s_m, is known to be an integer. |
| /// |
| /// Also, we can safely reduce the coefficients modulo d, so we have: |
| /// |
| /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k` |
| /// |
| /// Note that all coefficient modulos here are non-negative. Also, all the |
| /// unknowns are non-negative here as both constraints and variables are |
| /// non-negative in LexSimplexBase. (We used the big M trick to make the |
| /// variables non-negative). Therefore, the LHS here is non-negative. |
| /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and |
| /// is therefore non-negative as well. |
| /// |
| /// So we have |
| /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0. |
| /// |
| /// The constraint is violated when added (it would be useless otherwise) |
| /// so we immediately try to move it to a column. |
| LogicalResult LexSimplexBase::addCut(unsigned row) { |
| MPInt d = tableau(row, 0); |
| unsigned cutRow = addZeroRow(/*makeRestricted=*/true); |
| tableau(cutRow, 0) = d; |
| tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d. |
| tableau(cutRow, 2) = 0; |
| for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) |
| tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d. |
| return moveRowUnknownToColumn(cutRow); |
| } |
| |
| Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const { |
| for (const Unknown &u : var) { |
| if (u.orientation == Orientation::Column) |
| continue; |
| // If the sample value is of the form (a/d)M + b/d, we need b to be |
| // divisible by d. We assume M contains all possible |
| // factors and is divisible by everything. |
| unsigned row = u.pos; |
| if (tableau(row, 1) % tableau(row, 0) != 0) |
| return row; |
| } |
| return {}; |
| } |
| |
| MaybeOptimum<SmallVector<MPInt, 8>> LexSimplex::findIntegerLexMin() { |
| // We first try to make the tableau consistent. |
| if (restoreRationalConsistency().failed()) |
| return OptimumKind::Empty; |
| |
| // Then, if the sample value is integral, we are done. |
| while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) { |
| // Otherwise, for the variable whose row has a non-integral sample value, |
| // we add a cut, a constraint that remove this rational point |
| // while preserving all integer points, thus keeping the lexmin the same. |
| // We then again try to make the tableau with the new constraint |
| // consistent. This continues until the tableau becomes empty, in which |
| // case there is no integer point, or until there are no variables with |
| // non-integral sample values. |
| // |
| // Failure indicates that the tableau became empty, which occurs when the |
| // polytope is integer empty. |
| if (addCut(*maybeRow).failed()) |
| return OptimumKind::Empty; |
| if (restoreRationalConsistency().failed()) |
| return OptimumKind::Empty; |
| } |
| |
| MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample(); |
| assert(!sample.isEmpty() && "If we reached here the sample should exist!"); |
| if (sample.isUnbounded()) |
| return OptimumKind::Unbounded; |
| return llvm::to_vector<8>( |
| llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger))); |
| } |
| |
| bool LexSimplex::isSeparateInequality(ArrayRef<MPInt> coeffs) { |
| SimplexRollbackScopeExit scopeExit(*this); |
| addInequality(coeffs); |
| return findIntegerLexMin().isEmpty(); |
| } |
| |
| bool LexSimplex::isRedundantInequality(ArrayRef<MPInt> coeffs) { |
| return isSeparateInequality(getComplementIneq(coeffs)); |
| } |
| |
| SmallVector<MPInt, 8> |
| SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const { |
| SmallVector<MPInt, 8> sample; |
| sample.reserve(nSymbol + 1); |
| for (unsigned col = 3; col < 3 + nSymbol; ++col) |
| sample.push_back(tableau(row, col)); |
| sample.push_back(tableau(row, 1)); |
| return sample; |
| } |
| |
| SmallVector<MPInt, 8> |
| SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const { |
| SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(row); |
| // The inequality is equivalent to the GCD-normalized one. |
| normalizeRange(sample); |
| return sample; |
| } |
| |
| void LexSimplexBase::appendSymbol() { |
| appendVariable(); |
| swapColumns(3 + nSymbol, getNumColumns() - 1); |
| var.back().isSymbol = true; |
| nSymbol++; |
| } |
| |
| static bool isRangeDivisibleBy(ArrayRef<MPInt> range, const MPInt &divisor) { |
| assert(divisor > 0 && "divisor must be positive!"); |
| return llvm::all_of(range, |
| [divisor](const MPInt &x) { return x % divisor == 0; }); |
| } |
| |
| bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const { |
| MPInt denom = tableau(row, 0); |
| return tableau(row, 1) % denom == 0 && |
| isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom); |
| } |
| |
| /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that |
| /// has a symbolic sample value with fractional coefficients. |
| /// |
| /// Let the row be |
| /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d, |
| /// where s_1, ... s_m are the symbols and |
| /// y_1, ... y_n are the other basis unknowns. |
| /// |
| /// As in LexSimplex::addCut, for this to be an integer, we want |
| /// |
| /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d) |
| /// |
| /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that |
| /// |
| /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k |
| /// |
| /// where we take a modulo of the whole symbolic expression on the right to |
| /// bring it into the range [0, d - 1]. Therefore, as in addCut(), |
| /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have |
| /// k >= 0 as well. If all the a_i are divisible by d, then we can add the |
| /// constraint directly. Otherwise, we realize the modulo of the symbolic |
| /// expression by adding a division variable |
| /// |
| /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d |
| /// |
| /// to the symbol domain, so the equality becomes |
| /// |
| /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k |
| /// |
| /// So the cut is |
| /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0 |
| /// This constraint is violated when added so we immediately try to move it to a |
| /// column. |
| LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) { |
| MPInt d = tableau(row, 0); |
| if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) { |
| // The coefficients of symbols in the symbol numerator are divisible |
| // by the denominator, so we can add the constraint directly, |
| // i.e., ignore the symbols and add a regular cut as in addCut(). |
| return addCut(row); |
| } |
| |
| // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`. |
| SmallVector<MPInt, 8> divCoeffs; |
| divCoeffs.reserve(nSymbol + 1); |
| MPInt divDenom = d; |
| for (unsigned col = 3; col < 3 + nSymbol; ++col) |
| divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i |
| divCoeffs.push_back(mod(-tableau(row, 1), divDenom)); // -c%d. |
| normalizeDiv(divCoeffs, divDenom); |
| |
| domainSimplex.addDivisionVariable(divCoeffs, divDenom); |
| domainPoly.addLocalFloorDiv(divCoeffs, divDenom); |
| |
| // Update `this` to account for the additional symbol we just added. |
| appendSymbol(); |
| |
| // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0. |
| unsigned cutRow = addZeroRow(/*makeRestricted=*/true); |
| tableau(cutRow, 0) = d; |
| tableau(cutRow, 2) = 0; |
| |
| tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d). |
| for (unsigned col = 3; col < 3 + nSymbol - 1; ++col) |
| tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i. |
| tableau(cutRow, 3 + nSymbol - 1) = d; // q*d. |
| |
| for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) |
| tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i. |
| return moveRowUnknownToColumn(cutRow); |
| } |
| |
| void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const { |
| Matrix output(0, domainPoly.getNumVars() + 1); |
| output.reserveRows(result.lexmin.getNumOutputs()); |
| for (const Unknown &u : var) { |
| if (u.isSymbol) |
| continue; |
| |
| if (u.orientation == Orientation::Column) { |
| // M + u has a sample value of zero so u has a sample value of -M, i.e, |
| // unbounded. |
| result.unboundedDomain.unionInPlace(domainPoly); |
| return; |
| } |
| |
| MPInt denom = tableau(u.pos, 0); |
| if (tableau(u.pos, 2) < denom) { |
| // M + u has a sample value of fM + something, where f < 1, so |
| // u = (f - 1)M + something, which has a negative coefficient for M, |
| // and so is unbounded. |
| result.unboundedDomain.unionInPlace(domainPoly); |
| return; |
| } |
| assert(tableau(u.pos, 2) == denom && |
| "Coefficient of M should not be greater than 1!"); |
| |
| SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(u.pos); |
| for (MPInt &elem : sample) { |
| assert(elem % denom == 0 && "coefficients must be integral!"); |
| elem /= denom; |
| } |
| output.appendExtraRow(sample); |
| } |
| |
| // Store the output in a MultiAffineFunction and add it the result. |
| PresburgerSpace funcSpace = result.lexmin.getSpace(); |
| funcSpace.insertVar(VarKind::Local, 0, domainPoly.getNumLocalVars()); |
| |
| result.lexmin.addPiece( |
| {PresburgerSet(domainPoly), |
| MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())}); |
| } |
| |
| Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() { |
| // First look for rows that are clearly violated just from the big M |
| // coefficient, without needing to perform any simplex queries on the domain. |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| if (tableau(row, 2) < 0) |
| return row; |
| |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) { |
| if (tableau(row, 2) > 0) |
| continue; |
| if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) { |
| // Sample numerator always takes negative values in the symbol domain. |
| return row; |
| } |
| } |
| return {}; |
| } |
| |
| Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() { |
| for (const Unknown &u : var) { |
| if (u.orientation == Orientation::Column) |
| continue; |
| assert(!u.isSymbol && "Symbol should not be in row orientation!"); |
| if (!isSymbolicSampleIntegral(u.pos)) |
| return u.pos; |
| } |
| return {}; |
| } |
| |
| /// The non-branching pivots are just the ones moving the rows |
| /// that are always violated in the symbol domain. |
| LogicalResult SymbolicLexSimplex::doNonBranchingPivots() { |
| while (Optional<unsigned> row = maybeGetAlwaysViolatedRow()) |
| if (moveRowUnknownToColumn(*row).failed()) |
| return failure(); |
| return success(); |
| } |
| |
| SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() { |
| SymbolicLexMin result(PresburgerSpace::getRelationSpace( |
| /*numDomain=*/domainPoly.getNumDimVars(), |
| /*numRange=*/var.size() - nSymbol, |
| /*numSymbols=*/domainPoly.getNumSymbolVars())); |
| |
| /// The algorithm is more naturally expressed recursively, but we implement |
| /// it iteratively here to avoid potential issues with stack overflows in the |
| /// compiler. We explicitly maintain the stack frames in a vector. |
| /// |
| /// To "recurse", we store the current "stack frame", i.e., state variables |
| /// that we will need when we "return", into `stack`, increment `level`, and |
| /// `continue`. To "tail recurse", we just `continue`. |
| /// To "return", we decrement `level` and `continue`. |
| /// |
| /// When there is no stack frame for the current `level`, this indicates that |
| /// we have just "recursed" or "tail recursed". When there does exist one, |
| /// this indicates that we have just "returned" from recursing. There is only |
| /// one point at which non-tail calls occur so we always "return" there. |
| unsigned level = 1; |
| struct StackFrame { |
| int splitIndex; |
| unsigned snapshot; |
| unsigned domainSnapshot; |
| IntegerRelation::CountsSnapshot domainPolyCounts; |
| }; |
| SmallVector<StackFrame, 8> stack; |
| |
| while (level > 0) { |
| assert(level >= stack.size()); |
| if (level > stack.size()) { |
| if (empty || domainSimplex.findIntegerLexMin().isEmpty()) { |
| // No integer points; return. |
| --level; |
| continue; |
| } |
| |
| if (doNonBranchingPivots().failed()) { |
| // Could not find pivots for violated constraints; return. |
| --level; |
| continue; |
| } |
| |
| SmallVector<MPInt, 8> symbolicSample; |
| unsigned splitRow = 0; |
| for (unsigned e = getNumRows(); splitRow < e; ++splitRow) { |
| if (tableau(splitRow, 2) > 0) |
| continue; |
| assert(tableau(splitRow, 2) == 0 && |
| "Non-branching pivots should have been handled already!"); |
| |
| symbolicSample = getSymbolicSampleIneq(splitRow); |
| if (domainSimplex.isRedundantInequality(symbolicSample)) |
| continue; |
| |
| // It's neither redundant nor separate, so it takes both positive and |
| // negative values, and hence constitutes a row for which we need to |
| // split the domain and separately run each case. |
| assert(!domainSimplex.isSeparateInequality(symbolicSample) && |
| "Non-branching pivots should have been handled already!"); |
| break; |
| } |
| |
| if (splitRow < getNumRows()) { |
| unsigned domainSnapshot = domainSimplex.getSnapshot(); |
| IntegerRelation::CountsSnapshot domainPolyCounts = |
| domainPoly.getCounts(); |
| |
| // First, we consider the part of the domain where the row is not |
| // violated. We don't have to do any pivots for the row in this case, |
| // but we record the additional constraint that defines this part of |
| // the domain. |
| domainSimplex.addInequality(symbolicSample); |
| domainPoly.addInequality(symbolicSample); |
| |
| // Recurse. |
| // |
| // On return, the basis as a set is preserved but not the internal |
| // ordering within rows or columns. Thus, we take note of the index of |
| // the Unknown that caused the split, which may be in a different |
| // row when we come back from recursing. We will need this to recurse |
| // on the other part of the split domain, where the row is violated. |
| // |
| // Note that we have to capture the index above and not a reference to |
| // the Unknown itself, since the array it lives in might get |
| // reallocated. |
| int splitIndex = rowUnknown[splitRow]; |
| unsigned snapshot = getSnapshot(); |
| stack.push_back( |
| {splitIndex, snapshot, domainSnapshot, domainPolyCounts}); |
| ++level; |
| continue; |
| } |
| |
| // The tableau is rationally consistent for the current domain. |
| // Now we look for non-integral sample values and add cuts for them. |
| if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) { |
| if (addSymbolicCut(*row).failed()) { |
| // No integral points; return. |
| --level; |
| continue; |
| } |
| |
| // Rerun this level with the added cut constraint (tail recurse). |
| continue; |
| } |
| |
| // Record output and return. |
| recordOutput(result); |
| --level; |
| continue; |
| } |
| |
| if (level == stack.size()) { |
| // We have "returned" from "recursing". |
| const StackFrame &frame = stack.back(); |
| domainPoly.truncate(frame.domainPolyCounts); |
| domainSimplex.rollback(frame.domainSnapshot); |
| rollback(frame.snapshot); |
| const Unknown &u = unknownFromIndex(frame.splitIndex); |
| |
| // Drop the frame. We don't need it anymore. |
| stack.pop_back(); |
| |
| // Now we consider the part of the domain where the unknown `splitIndex` |
| // was negative. |
| assert(u.orientation == Orientation::Row && |
| "The split row should have been returned to row orientation!"); |
| SmallVector<MPInt, 8> splitIneq = |
| getComplementIneq(getSymbolicSampleIneq(u.pos)); |
| normalizeRange(splitIneq); |
| if (moveRowUnknownToColumn(u.pos).failed()) { |
| // The unknown can't be made non-negative; return. |
| --level; |
| continue; |
| } |
| |
| // The unknown can be made negative; recurse with the corresponding domain |
| // constraints. |
| domainSimplex.addInequality(splitIneq); |
| domainPoly.addInequality(splitIneq); |
| |
| // We are now taking care of the second half of the domain and we don't |
| // need to do anything else here after returning, so it's a tail recurse. |
| continue; |
| } |
| } |
| |
| return result; |
| } |
| |
| bool LexSimplex::rowIsViolated(unsigned row) const { |
| if (tableau(row, 2) < 0) |
| return true; |
| if (tableau(row, 2) == 0 && tableau(row, 1) < 0) |
| return true; |
| return false; |
| } |
| |
| Optional<unsigned> LexSimplex::maybeGetViolatedRow() const { |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| if (rowIsViolated(row)) |
| return row; |
| return {}; |
| } |
| |
| /// We simply look for violated rows and keep trying to move them to column |
| /// orientation, which always succeeds unless the constraints have no solution |
| /// in which case we just give up and return. |
| LogicalResult LexSimplex::restoreRationalConsistency() { |
| if (empty) |
| return failure(); |
| while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) |
| if (moveRowUnknownToColumn(*maybeViolatedRow).failed()) |
| return failure(); |
| return success(); |
| } |
| |
| // Move the row unknown to column orientation while preserving lexicopositivity |
| // of the basis transform. The sample value of the row must be non-positive. |
| // |
| // We only consider pivots where the pivot element is positive. Suppose no such |
| // pivot exists, i.e., some violated row has no positive coefficient for any |
| // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, |
| // where d is the denominator, s is the sample value and the c_i are the basis |
| // coefficients. If s != 0, then since any feasible assignment of the basis |
| // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i, |
| // any feasible assignment would violate this row and therefore the constraints |
| // have no solution. |
| // |
| // We can preserve lexicopositivity by picking the pivot column with positive |
| // pivot element that makes the lexicographically smallest change to the sample |
| // point. |
| // |
| // Proof. Let |
| // x = (x_1, ... x_n) be the variables, |
| // z = (z_1, ... z_m) be the constraints, |
| // y = (y_1, ... y_n) be the current basis, and |
| // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. |
| // B is basically the simplex tableau of our implementation except that instead |
| // of only describing the transform to get back the non-basis unknowns, it |
| // defines the values of all the unknowns in terms of the basis unknowns. |
| // Similarly, s is the column for the sample value. |
| // |
| // Our goal is to show that each column in B, restricted to the first n |
| // rows, is lexicopositive after the pivot if it is so before. This is |
| // equivalent to saying the columns in the whole matrix are lexicopositive; |
| // there must be some non-zero element in every column in the first n rows since |
| // the n variables cannot be spanned without using all the n basis unknowns. |
| // |
| // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot |
| // transform for the tableau derived for SimplexBase::pivot: |
| // |
| // pivot col other col pivot col other col |
| // pivot row a b -> pivot row 1/a -b/a |
| // other row c d other row c/a d - bc/a |
| // |
| // Similarly, a pivot results in B changing to B' and c to c'; the difference |
| // between the tableau and these matrices B and B' is that there is no special |
| // case for the pivot row, since it continues to represent the same unknown. The |
| // same formula applies for all rows: |
| // |
| // B'.col(j) = B.col(j) / B(i,j) |
| // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j |
| // and similarly, s' = s - s_i * B.col(j) / B(i,j). |
| // |
| // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0, |
| // the change in sample value when pivoting with column a is lexicographically |
| // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is |
| // lexicographically smaller than B.col(b) / B(i, b). |
| // |
| // Since B(i, j) > 0, column j remains lexicopositive. |
| // |
| // For the other columns, suppose C.col(k) is not lexicopositive. |
| // This means that for some p, for all t < p, |
| // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and |
| // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), |
| // which is in contradiction to the fact that B.col(j) / B(i,j) must be |
| // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically |
| // minimizes the change in sample value. |
| LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { |
| Optional<unsigned> maybeColumn; |
| for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) { |
| if (tableau(row, col) <= 0) |
| continue; |
| maybeColumn = |
| !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); |
| } |
| |
| if (!maybeColumn) |
| return failure(); |
| |
| pivot(row, *maybeColumn); |
| return success(); |
| } |
| |
| unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, |
| unsigned colB) const { |
| // First, let's consider the non-symbolic case. |
| // A pivot causes the following change. (in the diagram the matrix elements |
| // are shown as rationals and there is no common denominator used) |
| // |
| // pivot col big M col const col |
| // pivot row a p b |
| // other row c q d |
| // | |
| // v |
| // |
| // pivot col big M col const col |
| // pivot row 1/a -p/a -b/a |
| // other row c/a q - pc/a d - bc/a |
| // |
| // Let the sample value of the pivot row be s = pM + b before the pivot. Since |
| // the pivot row represents a violated constraint we know that s < 0. |
| // |
| // If the variable is a non-pivot column, its sample value is zero before and |
| // after the pivot. |
| // |
| // If the variable is the pivot column, then its sample value goes from 0 to |
| // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample |
| // value is -s/a. |
| // |
| // If the variable is the pivot row, its sample value goes from s to 0, for a |
| // change of -s. |
| // |
| // If the variable is a non-pivot row, its sample value changes from |
| // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value |
| // is -(pM + b)(c/a) = -sc/a. |
| // |
| // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is |
| // fixed for all calls to this function since the row and tableau are fixed. |
| // The callee just wants to compare the return values with the return value of |
| // other invocations of the same function. So the -s is common for all |
| // comparisons involved and can be ignored, since -s is strictly positive. |
| // |
| // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as |
| // appropriate. This allows us to run the entire algorithm treating M |
| // symbolically, as the pivot to be performed does not depend on the value |
| // of M, so long as the sample value s is negative. Note that this is not |
| // because of any special feature of M; by the same argument, we ignore the |
| // symbols too. The caller ensure that the sample value s is negative for |
| // all possible values of the symbols. |
| auto getSampleChangeCoeffForVar = [this, row](unsigned col, |
| const Unknown &u) -> Fraction { |
| MPInt a = tableau(row, col); |
| if (u.orientation == Orientation::Column) { |
| // Pivot column case. |
| if (u.pos == col) |
| return {1, a}; |
| |
| // Non-pivot column case. |
| return {0, 1}; |
| } |
| |
| // Pivot row case. |
| if (u.pos == row) |
| return {1, 1}; |
| |
| // Non-pivot row case. |
| MPInt c = tableau(u.pos, col); |
| return {c, a}; |
| }; |
| |
| for (const Unknown &u : var) { |
| Fraction changeA = getSampleChangeCoeffForVar(colA, u); |
| Fraction changeB = getSampleChangeCoeffForVar(colB, u); |
| if (changeA < changeB) |
| return colA; |
| if (changeA > changeB) |
| return colB; |
| } |
| |
| // If we reached here, both result in exactly the same changes, so it |
| // doesn't matter which we return. |
| return colA; |
| } |
| |
| /// Find a pivot to change the sample value of the row in the specified |
| /// direction. The returned pivot row will involve `row` if and only if the |
| /// unknown is unbounded in the specified direction. |
| /// |
| /// To increase (resp. decrease) the value of a row, we need to find a live |
| /// column with a non-zero coefficient. If the coefficient is positive, we need |
| /// to increase (decrease) the value of the column, and if the coefficient is |
| /// negative, we need to decrease (increase) the value of the column. Also, |
| /// we cannot decrease the sample value of restricted columns. |
| /// |
| /// If multiple columns are valid, we break ties by considering a lexicographic |
| /// ordering where we prefer unknowns with lower index. |
| Optional<SimplexBase::Pivot> Simplex::findPivot(int row, |
| Direction direction) const { |
| Optional<unsigned> col; |
| for (unsigned j = 2, e = getNumColumns(); j < e; ++j) { |
| MPInt elem = tableau(row, j); |
| if (elem == 0) |
| continue; |
| |
| if (unknownFromColumn(j).restricted && |
| !signMatchesDirection(elem, direction)) |
| continue; |
| if (!col || colUnknown[j] < colUnknown[*col]) |
| col = j; |
| } |
| |
| if (!col) |
| return {}; |
| |
| Direction newDirection = |
| tableau(row, *col) < 0 ? flippedDirection(direction) : direction; |
| Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); |
| return Pivot{maybePivotRow.value_or(row), *col}; |
| } |
| |
| /// Swap the associated unknowns for the row and the column. |
| /// |
| /// First we swap the index associated with the row and column. Then we update |
| /// the unknowns to reflect their new position and orientation. |
| void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { |
| std::swap(rowUnknown[row], colUnknown[col]); |
| Unknown &uCol = unknownFromColumn(col); |
| Unknown &uRow = unknownFromRow(row); |
| uCol.orientation = Orientation::Column; |
| uRow.orientation = Orientation::Row; |
| uCol.pos = col; |
| uRow.pos = row; |
| } |
| |
| void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } |
| |
| /// Pivot pivotRow and pivotCol. |
| /// |
| /// Let R be the pivot row unknown and let C be the pivot col unknown. |
| /// Since initially R = a*C + sum b_i * X_i |
| /// (where the sum is over the other column's unknowns, x_i) |
| /// C = (R - (sum b_i * X_i))/a |
| /// |
| /// Let u be some other row unknown. |
| /// u = c*C + sum d_i * X_i |
| /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i |
| /// |
| /// This results in the following transform: |
| /// pivot col other col pivot col other col |
| /// pivot row a b -> pivot row 1/a -b/a |
| /// other row c d other row c/a d - bc/a |
| /// |
| /// Taking into account the common denominators p and q: |
| /// |
| /// pivot col other col pivot col other col |
| /// pivot row a/p b/p -> pivot row p/a -b/a |
| /// other row c/q d/q other row cp/aq (da - bc)/aq |
| /// |
| /// The pivot row transform is accomplished be swapping a with the pivot row's |
| /// common denominator and negating the pivot row except for the pivot column |
| /// element. |
| void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { |
| assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); |
| assert(!unknownFromColumn(pivotCol).isSymbol); |
| |
| swapRowWithCol(pivotRow, pivotCol); |
| std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); |
| // We need to negate the whole pivot row except for the pivot column. |
| if (tableau(pivotRow, 0) < 0) { |
| // If the denominator is negative, we negate the row by simply negating the |
| // denominator. |
| tableau(pivotRow, 0) = -tableau(pivotRow, 0); |
| tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); |
| } else { |
| for (unsigned col = 1, e = getNumColumns(); col < e; ++col) { |
| if (col == pivotCol) |
| continue; |
| tableau(pivotRow, col) = -tableau(pivotRow, col); |
| } |
| } |
| tableau.normalizeRow(pivotRow); |
| |
| for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { |
| if (row == pivotRow) |
| continue; |
| if (tableau(row, pivotCol) == 0) // Nothing to do. |
| continue; |
| tableau(row, 0) *= tableau(pivotRow, 0); |
| for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) { |
| if (col == pivotCol) |
| continue; |
| // Add rather than subtract because the pivot row has been negated. |
| tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) + |
| tableau(row, pivotCol) * tableau(pivotRow, col); |
| } |
| tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); |
| tableau.normalizeRow(row); |
| } |
| } |
| |
| /// Perform pivots until the unknown has a non-negative sample value or until |
| /// no more upward pivots can be performed. Return success if we were able to |
| /// bring the row to a non-negative sample value, and failure otherwise. |
| LogicalResult Simplex::restoreRow(Unknown &u) { |
| assert(u.orientation == Orientation::Row && |
| "unknown should be in row position"); |
| |
| while (tableau(u.pos, 1) < 0) { |
| Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); |
| if (!maybePivot) |
| break; |
| |
| pivot(*maybePivot); |
| if (u.orientation == Orientation::Column) |
| return success(); // the unknown is unbounded above. |
| } |
| return success(tableau(u.pos, 1) >= 0); |
| } |
| |
| /// Find a row that can be used to pivot the column in the specified direction. |
| /// This returns an empty optional if and only if the column is unbounded in the |
| /// specified direction (ignoring skipRow, if skipRow is set). |
| /// |
| /// If skipRow is set, this row is not considered, and (if it is restricted) its |
| /// restriction may be violated by the returned pivot. Usually, skipRow is set |
| /// because we don't want to move it to column position unless it is unbounded, |
| /// and we are either trying to increase the value of skipRow or explicitly |
| /// trying to make skipRow negative, so we are not concerned about this. |
| /// |
| /// If the direction is up (resp. down) and a restricted row has a negative |
| /// (positive) coefficient for the column, then this row imposes a bound on how |
| /// much the sample value of the column can change. Such a row with constant |
| /// term c and coefficient f for the column imposes a bound of c/|f| on the |
| /// change in sample value (in the specified direction). (note that c is |
| /// non-negative here since the row is restricted and the tableau is consistent) |
| /// |
| /// We iterate through the rows and pick the row which imposes the most |
| /// stringent bound, since pivoting with a row changes the row's sample value to |
| /// 0 and hence saturates the bound it imposes. We break ties between rows that |
| /// impose the same bound by considering a lexicographic ordering where we |
| /// prefer unknowns with lower index value. |
| Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, |
| Direction direction, |
| unsigned col) const { |
| Optional<unsigned> retRow; |
| // Initialize these to zero in order to silence a warning about retElem and |
| // retConst being used uninitialized in the initialization of `diff` below. In |
| // reality, these are always initialized when that line is reached since these |
| // are set whenever retRow is set. |
| MPInt retElem, retConst; |
| for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) { |
| if (skipRow && row == *skipRow) |
| continue; |
| MPInt elem = tableau(row, col); |
| if (elem == 0) |
| continue; |
| if (!unknownFromRow(row).restricted) |
| continue; |
| if (signMatchesDirection(elem, direction)) |
| continue; |
| MPInt constTerm = tableau(row, 1); |
| |
| if (!retRow) { |
| retRow = row; |
| retElem = elem; |
| retConst = constTerm; |
| continue; |
| } |
| |
| MPInt diff = retConst * elem - constTerm * retElem; |
| if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || |
| (diff != 0 && !signMatchesDirection(diff, direction))) { |
| retRow = row; |
| retElem = elem; |
| retConst = constTerm; |
| } |
| } |
| return retRow; |
| } |
| |
| bool SimplexBase::isEmpty() const { return empty; } |
| |
| void SimplexBase::swapRows(unsigned i, unsigned j) { |
| if (i == j) |
| return; |
| tableau.swapRows(i, j); |
| std::swap(rowUnknown[i], rowUnknown[j]); |
| unknownFromRow(i).pos = i; |
| unknownFromRow(j).pos = j; |
| } |
| |
| void SimplexBase::swapColumns(unsigned i, unsigned j) { |
| assert(i < getNumColumns() && j < getNumColumns() && |
| "Invalid columns provided!"); |
| if (i == j) |
| return; |
| tableau.swapColumns(i, j); |
| std::swap(colUnknown[i], colUnknown[j]); |
| unknownFromColumn(i).pos = i; |
| unknownFromColumn(j).pos = j; |
| } |
| |
| /// Mark this tableau empty and push an entry to the undo stack. |
| void SimplexBase::markEmpty() { |
| // If the set is already empty, then we shouldn't add another UnmarkEmpty log |
| // entry, since in that case the Simplex will be erroneously marked as |
| // non-empty when rolling back past this point. |
| if (empty) |
| return; |
| undoLog.push_back(UndoLogEntry::UnmarkEmpty); |
| empty = true; |
| } |
| |
| /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| /// is the current number of variables, then the corresponding inequality is |
| /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. |
| /// |
| /// We add the inequality and mark it as restricted. We then try to make its |
| /// sample value non-negative. If this is not possible, the tableau has become |
| /// empty and we mark it as such. |
| void Simplex::addInequality(ArrayRef<MPInt> coeffs) { |
| unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); |
| LogicalResult result = restoreRow(con[conIndex]); |
| if (failed(result)) |
| markEmpty(); |
| } |
| |
| /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| /// is the current number of variables, then the corresponding equality is |
| /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. |
| /// |
| /// We simply add two opposing inequalities, which force the expression to |
| /// be zero. |
| void SimplexBase::addEquality(ArrayRef<MPInt> coeffs) { |
| addInequality(coeffs); |
| SmallVector<MPInt, 8> negatedCoeffs; |
| for (const MPInt &coeff : coeffs) |
| negatedCoeffs.emplace_back(-coeff); |
| addInequality(negatedCoeffs); |
| } |
| |
| unsigned SimplexBase::getNumVariables() const { return var.size(); } |
| unsigned SimplexBase::getNumConstraints() const { return con.size(); } |
| |
| /// Return a snapshot of the current state. This is just the current size of the |
| /// undo log. |
| unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } |
| |
| unsigned SimplexBase::getSnapshotBasis() { |
| SmallVector<int, 8> basis; |
| for (int index : colUnknown) { |
| if (index != nullIndex) |
| basis.push_back(index); |
| } |
| savedBases.push_back(std::move(basis)); |
| |
| undoLog.emplace_back(UndoLogEntry::RestoreBasis); |
| return undoLog.size() - 1; |
| } |
| |
| void SimplexBase::removeLastConstraintRowOrientation() { |
| assert(con.back().orientation == Orientation::Row); |
| |
| // Move this unknown to the last row and remove the last row from the |
| // tableau. |
| swapRows(con.back().pos, getNumRows() - 1); |
| // It is not strictly necessary to shrink the tableau, but for now we |
| // maintain the invariant that the tableau has exactly getNumRows() |
| // rows. |
| tableau.resizeVertically(getNumRows() - 1); |
| rowUnknown.pop_back(); |
| con.pop_back(); |
| } |
| |
| // This doesn't find a pivot row only if the column has zero |
| // coefficients for every row. |
| // |
| // If the unknown is a constraint, this can't happen, since it was added |
| // initially as a row. Such a row could never have been pivoted to a column. So |
| // a pivot row will always be found if we have a constraint. |
| // |
| // If we have a variable, then the column has zero coefficients for every row |
| // iff no constraints have been added with a non-zero coefficient for this row. |
| Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { |
| for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) |
| if (tableau(row, col) != 0) |
| return row; |
| return {}; |
| } |
| |
| // It's not valid to remove the constraint by deleting the column since this |
| // would result in an invalid basis. |
| void Simplex::undoLastConstraint() { |
| if (con.back().orientation == Orientation::Column) { |
| // We try to find any pivot row for this column that preserves tableau |
| // consistency (except possibly the column itself, which is going to be |
| // deallocated anyway). |
| // |
| // If no pivot row is found in either direction, then the unknown is |
| // unbounded in both directions and we are free to perform any pivot at |
| // all. To do this, we just need to find any row with a non-zero |
| // coefficient for the column. findAnyPivotRow will always be able to |
| // find such a row for a constraint. |
| unsigned column = con.back().pos; |
| if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) { |
| pivot(*maybeRow, column); |
| } else if (Optional<unsigned> maybeRow = |
| findPivotRow({}, Direction::Down, column)) { |
| pivot(*maybeRow, column); |
| } else { |
| Optional<unsigned> row = findAnyPivotRow(column); |
| assert(row && "Pivot should always exist for a constraint!"); |
| pivot(*row, column); |
| } |
| } |
| removeLastConstraintRowOrientation(); |
| } |
| |
| // It's not valid to remove the constraint by deleting the column since this |
| // would result in an invalid basis. |
| void LexSimplexBase::undoLastConstraint() { |
| if (con.back().orientation == Orientation::Column) { |
| // When removing the last constraint during a rollback, we just need to find |
| // any pivot at all, i.e., any row with non-zero coefficient for the |
| // column, because when rolling back a lexicographic simplex, we always |
| // end by restoring the exact basis that was present at the time of the |
| // snapshot, so what pivots we perform while undoing doesn't matter as |
| // long as we get the unknown to row orientation and remove it. |
| unsigned column = con.back().pos; |
| Optional<unsigned> row = findAnyPivotRow(column); |
| assert(row && "Pivot should always exist for a constraint!"); |
| pivot(*row, column); |
| } |
| removeLastConstraintRowOrientation(); |
| } |
| |
| void SimplexBase::undo(UndoLogEntry entry) { |
| if (entry == UndoLogEntry::RemoveLastConstraint) { |
| // Simplex and LexSimplex handle this differently, so we call out to a |
| // virtual function to handle this. |
| undoLastConstraint(); |
| } else if (entry == UndoLogEntry::RemoveLastVariable) { |
| // Whenever we are rolling back the addition of a variable, it is guaranteed |
| // that the variable will be in column position. |
| // |
| // We can see this as follows: any constraint that depends on this variable |
| // was added after this variable was added, so the addition of such |
| // constraints should already have been rolled back by the time we get to |
| // rolling back the addition of the variable. Therefore, no constraint |
| // currently has a component along the variable, so the variable itself must |
| // be part of the basis. |
| assert(var.back().orientation == Orientation::Column && |
| "Variable to be removed must be in column orientation!"); |
| |
| if (var.back().isSymbol) |
| nSymbol--; |
| |
| // Move this variable to the last column and remove the column from the |
| // tableau. |
| swapColumns(var.back().pos, getNumColumns() - 1); |
| tableau.resizeHorizontally(getNumColumns() - 1); |
| var.pop_back(); |
| colUnknown.pop_back(); |
| } else if (entry == UndoLogEntry::UnmarkEmpty) { |
| empty = false; |
| } else if (entry == UndoLogEntry::UnmarkLastRedundant) { |
| nRedundant--; |
| } else if (entry == UndoLogEntry::RestoreBasis) { |
| assert(!savedBases.empty() && "No bases saved!"); |
| |
| SmallVector<int, 8> basis = std::move(savedBases.back()); |
| savedBases.pop_back(); |
| |
| for (int index : basis) { |
| Unknown &u = unknownFromIndex(index); |
| if (u.orientation == Orientation::Column) |
| continue; |
| for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e; |
| col++) { |
| assert(colUnknown[col] != nullIndex && |
| "Column should not be a fixed column!"); |
| if (llvm::is_contained(basis, colUnknown[col])) |
| continue; |
| if (tableau(u.pos, col) == 0) |
| continue; |
| pivot(u.pos, col); |
| break; |
| } |
| |
| assert(u.orientation == Orientation::Column && "No pivot found!"); |
| } |
| } |
| } |
| |
| /// Rollback to the specified snapshot. |
| /// |
| /// We undo all the log entries until the log size when the snapshot was taken |
| /// is reached. |
| void SimplexBase::rollback(unsigned snapshot) { |
| while (undoLog.size() > snapshot) { |
| undo(undoLog.back()); |
| undoLog.pop_back(); |
| } |
| } |
| |
| /// We add the usual floor division constraints: |
| /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division |
| /// variable. |
| /// |
| /// This constrains the remainder `coeffs - denom*q` to be in the |
| /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. |
| void SimplexBase::addDivisionVariable(ArrayRef<MPInt> coeffs, |
| const MPInt &denom) { |
| assert(denom > 0 && "Denominator must be positive!"); |
| appendVariable(); |
| |
| SmallVector<MPInt, 8> ineq(coeffs.begin(), coeffs.end()); |
| MPInt constTerm = ineq.back(); |
| ineq.back() = -denom; |
| ineq.push_back(constTerm); |
| addInequality(ineq); |
| |
| for (MPInt &coeff : ineq) |
| coeff = -coeff; |
| ineq.back() += denom - 1; |
| addInequality(ineq); |
| } |
| |
| void SimplexBase::appendVariable(unsigned count) { |
| if (count == 0) |
| return; |
| var.reserve(var.size() + count); |
| colUnknown.reserve(colUnknown.size() + count); |
| for (unsigned i = 0; i < count; ++i) { |
| var.emplace_back(Orientation::Column, /*restricted=*/false, |
| /*pos=*/getNumColumns() + i); |
| colUnknown.push_back(var.size() - 1); |
| } |
| tableau.resizeHorizontally(getNumColumns() + count); |
| undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); |
| } |
| |
| /// Add all the constraints from the given IntegerRelation. |
| void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { |
| assert(rel.getNumVars() == getNumVariables() && |
| "IntegerRelation must have same dimensionality as simplex"); |
| for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) |
| addInequality(rel.getInequality(i)); |
| for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) |
| addEquality(rel.getEquality(i)); |
| } |
| |
| MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction, |
| unsigned row) { |
| // Keep trying to find a pivot for the row in the specified direction. |
| while (Optional<Pivot> maybePivot = findPivot(row, direction)) { |
| // If findPivot returns a pivot involving the row itself, then the optimum |
| // is unbounded, so we return None. |
| if (maybePivot->row == row) |
| return OptimumKind::Unbounded; |
| pivot(*maybePivot); |
| } |
| |
| // The row has reached its optimal sample value, which we return. |
| // The sample value is the entry in the constant column divided by the common |
| // denominator for this row. |
| return Fraction(tableau(row, 1), tableau(row, 0)); |
| } |
| |
| /// Compute the optimum of the specified expression in the specified direction, |
| /// or None if it is unbounded. |
| MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, |
| ArrayRef<MPInt> coeffs) { |
| if (empty) |
| return OptimumKind::Empty; |
| |
| SimplexRollbackScopeExit scopeExit(*this); |
| unsigned conIndex = addRow(coeffs); |
| unsigned row = con[conIndex].pos; |
| return computeRowOptimum(direction, row); |
| } |
| |
| MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, |
| Unknown &u) { |
| if (empty) |
| return OptimumKind::Empty; |
| if (u.orientation == Orientation::Column) { |
| unsigned column = u.pos; |
| Optional<unsigned> pivotRow = findPivotRow({}, direction, column); |
| // If no pivot is returned, the constraint is unbounded in the specified |
| // direction. |
| if (!pivotRow) |
| return OptimumKind::Unbounded; |
| pivot(*pivotRow, column); |
| } |
| |
| unsigned row = u.pos; |
| MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); |
| if (u.restricted && direction == Direction::Down && |
| (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { |
| if (failed(restoreRow(u))) |
| llvm_unreachable("Could not restore row!"); |
| } |
| return optimum; |
| } |
| |
| bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { |
| assert(!empty && "It is not meaningful to ask whether a direction is bounded " |
| "in an empty set."); |
| // The constraint's perpendicular is already bounded below, since it is a |
| // constraint. If it is also bounded above, we can return true. |
| return computeOptimum(Direction::Up, con[constraintIndex]).isBounded(); |
| } |
| |
| /// Redundant constraints are those that are in row orientation and lie in |
| /// rows 0 to nRedundant - 1. |
| bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { |
| const Unknown &u = con[constraintIndex]; |
| return u.orientation == Orientation::Row && u.pos < nRedundant; |
| } |
| |
| /// Mark the specified row redundant. |
| /// |
| /// This is done by moving the unknown to the end of the block of redundant |
| /// rows (namely, to row nRedundant) and incrementing nRedundant to |
| /// accomodate the new redundant row. |
| void Simplex::markRowRedundant(Unknown &u) { |
| assert(u.orientation == Orientation::Row && |
| "Unknown should be in row position!"); |
| assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); |
| swapRows(u.pos, nRedundant); |
| ++nRedundant; |
| undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); |
| } |
| |
| /// Find a subset of constraints that is redundant and mark them redundant. |
| void Simplex::detectRedundant(unsigned offset, unsigned count) { |
| assert(offset + count <= con.size() && "invalid range!"); |
| // It is not meaningful to talk about redundancy for empty sets. |
| if (empty) |
| return; |
| |
| // Iterate through the constraints and check for each one if it can attain |
| // negative sample values. If it can, it's not redundant. Otherwise, it is. |
| // We mark redundant constraints redundant. |
| // |
| // Constraints that get marked redundant in one iteration are not respected |
| // when checking constraints in later iterations. This prevents, for example, |
| // two identical constraints both being marked redundant since each is |
| // redundant given the other one. In this example, only the first of the |
| // constraints that is processed will get marked redundant, as it should be. |
| for (unsigned i = 0; i < count; ++i) { |
| Unknown &u = con[offset + i]; |
| if (u.orientation == Orientation::Column) { |
| unsigned column = u.pos; |
| Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); |
| // If no downward pivot is returned, the constraint is unbounded below |
| // and hence not redundant. |
| if (!pivotRow) |
| continue; |
| pivot(*pivotRow, column); |
| } |
| |
| unsigned row = u.pos; |
| MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row); |
| if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { |
| // Constraint is unbounded below or can attain negative sample values and |
| // hence is not redundant. |
| if (failed(restoreRow(u))) |
| llvm_unreachable("Could not restore non-redundant row!"); |
| continue; |
| } |
| |
| markRowRedundant(u); |
| } |
| } |
| |
| bool Simplex::isUnbounded() { |
| if (empty) |
| return false; |
| |
| SmallVector<MPInt, 8> dir(var.size() + 1); |
| for (unsigned i = 0; i < var.size(); ++i) { |
| dir[i] = 1; |
| |
| if (computeOptimum(Direction::Up, dir).isUnbounded()) |
| return true; |
| |
| if (computeOptimum(Direction::Down, dir).isUnbounded()) |
| return true; |
| |
| dir[i] = 0; |
| } |
| return false; |
| } |
| |
| /// Make a tableau to represent a pair of points in the original tableau. |
| /// |
| /// The product constraints and variables are stored as: first A's, then B's. |
| /// |
| /// The product tableau has row layout: |
| /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. |
| /// |
| /// It has column layout: |
| /// denominator, constant, A's columns, B's columns. |
| Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { |
| unsigned numVar = a.getNumVariables() + b.getNumVariables(); |
| unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); |
| Simplex result(numVar); |
| |
| result.tableau.reserveRows(numCon); |
| result.empty = a.empty || b.empty; |
| |
| auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { |
| SmallVector<Unknown, 8> result; |
| result.reserve(v.size() + w.size()); |
| result.insert(result.end(), v.begin(), v.end()); |
| result.insert(result.end(), w.begin(), w.end()); |
| return result; |
| }; |
| result.con = concat(a.con, b.con); |
| result.var = concat(a.var, b.var); |
| |
| auto indexFromBIndex = [&](int index) { |
| return index >= 0 ? a.getNumVariables() + index |
| : ~(a.getNumConstraints() + ~index); |
| }; |
| |
| result.colUnknown.assign(2, nullIndex); |
| for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) { |
| result.colUnknown.push_back(a.colUnknown[i]); |
| result.unknownFromIndex(result.colUnknown.back()).pos = |
| result.colUnknown.size() - 1; |
| } |
| for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) { |
| result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); |
| result.unknownFromIndex(result.colUnknown.back()).pos = |
| result.colUnknown.size() - 1; |
| } |
| |
| auto appendRowFromA = [&](unsigned row) { |
| unsigned resultRow = result.tableau.appendExtraRow(); |
| for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col) |
| result.tableau(resultRow, col) = a.tableau(row, col); |
| result.rowUnknown.push_back(a.rowUnknown[row]); |
| result.unknownFromIndex(result.rowUnknown.back()).pos = |
| result.rowUnknown.size() - 1; |
| }; |
| |
| // Also fixes the corresponding entry in rowUnknown and var/con (as the case |
| // may be). |
| auto appendRowFromB = [&](unsigned row) { |
| unsigned resultRow = result.tableau.appendExtraRow(); |
| result.tableau(resultRow, 0) = b.tableau(row, 0); |
| result.tableau(resultRow, 1) = b.tableau(row, 1); |
| |
| unsigned offset = a.getNumColumns() - 2; |
| for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col) |
| result.tableau(resultRow, offset + col) = b.tableau(row, col); |
| result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); |
| result.unknownFromIndex(result.rowUnknown.back()).pos = |
| result.rowUnknown.size() - 1; |
| }; |
| |
| result.nRedundant = a.nRedundant + b.nRedundant; |
| for (unsigned row = 0; row < a.nRedundant; ++row) |
| appendRowFromA(row); |
| for (unsigned row = 0; row < b.nRedundant; ++row) |
| appendRowFromB(row); |
| for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row) |
| appendRowFromA(row); |
| for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row) |
| appendRowFromB(row); |
| |
| return result; |
| } |
| |
| Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const { |
| if (empty) |
| return {}; |
| |
| SmallVector<Fraction, 8> sample; |
| sample.reserve(var.size()); |
| // Push the sample value for each variable into the vector. |
| for (const Unknown &u : var) { |
| if (u.orientation == Orientation::Column) { |
| // If the variable is in column position, its sample value is zero. |
| sample.emplace_back(0, 1); |
| } else { |
| // If the variable is in row position, its sample value is the |
| // entry in the constant column divided by the denominator. |
| MPInt denom = tableau(u.pos, 0); |
| sample.emplace_back(tableau(u.pos, 1), denom); |
| } |
| } |
| return sample; |
| } |
| |
| void LexSimplexBase::addInequality(ArrayRef<MPInt> coeffs) { |
| addRow(coeffs, /*makeRestricted=*/true); |
| } |
| |
| MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const { |
| if (empty) |
| return OptimumKind::Empty; |
| |
| SmallVector<Fraction, 8> sample; |
| sample.reserve(var.size()); |
| // Push the sample value for each variable into the vector. |
| for (const Unknown &u : var) { |
| // When the big M parameter is being used, each variable x is represented |
| // as M + x, so its sample value is finite if and only if it is of the |
| // form 1*M + c. If the coefficient of M is not one then the sample value |
| // is infinite, and we return an empty optional. |
| |
| if (u.orientation == Orientation::Column) { |
| // If the variable is in column position, the sample value of M + x is |
| // zero, so x = -M which is unbounded. |
| return OptimumKind::Unbounded; |
| } |
| |
| // If the variable is in row position, its sample value is the |
| // entry in the constant column divided by the denominator. |
| MPInt denom = tableau(u.pos, 0); |
| if (usingBigM) |
| if (tableau(u.pos, 2) != denom) |
| return OptimumKind::Unbounded; |
| sample.emplace_back(tableau(u.pos, 1), denom); |
| } |
| return sample; |
| } |
| |
| Optional<SmallVector<MPInt, 8>> Simplex::getSamplePointIfIntegral() const { |
| // If the tableau is empty, no sample point exists. |
| if (empty) |
| return {}; |
| |
| // The value will always exist since the Simplex is non-empty. |
| SmallVector<Fraction, 8> rationalSample = *getRationalSample(); |
| SmallVector<MPInt, 8> integerSample; |
| integerSample.reserve(var.size()); |
| for (const Fraction &coord : rationalSample) { |
| // If the sample is non-integral, return None. |
| if (coord.num % coord.den != 0) |
| return {}; |
| integerSample.push_back(coord.num / coord.den); |
| } |
| return integerSample; |
| } |
| |
| /// Given a simplex for a polytope, construct a new simplex whose variables are |
| /// identified with a pair of points (x, y) in the original polytope. Supports |
| /// some operations needed for generalized basis reduction. In what follows, |
| /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the |
| /// dimension of the original polytope. |
| /// |
| /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It |
| /// also supports rolling back this addition, by maintaining a snapshot stack |
| /// that contains a snapshot of the Simplex's state for each equality, just |
| /// before that equality was added. |
| class presburger::GBRSimplex { |
| using Orientation = Simplex::Orientation; |
| |
| public: |
| GBRSimplex(const Simplex &originalSimplex) |
| : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), |
| simplexConstraintOffset(simplex.getNumConstraints()) {} |
| |
| /// Add an equality dotProduct(dir, x - y) == 0. |
| /// First pushes a snapshot for the current simplex state to the stack so |
| /// that this can be rolled back later. |
| void addEqualityForDirection(ArrayRef<MPInt> dir) { |
| assert(llvm::any_of(dir, [](const MPInt &x) { return x != 0; }) && |
| "Direction passed is the zero vector!"); |
| snapshotStack.push_back(simplex.getSnapshot()); |
| simplex.addEquality(getCoeffsForDirection(dir)); |
| } |
| /// Compute max(dotProduct(dir, x - y)). |
| Fraction computeWidth(ArrayRef<MPInt> dir) { |
| MaybeOptimum<Fraction> maybeWidth = |
| simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); |
| assert(maybeWidth.isBounded() && "Width should be bounded!"); |
| return *maybeWidth; |
| } |
| |
| /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only |
| /// the direction equalities to `dual`. |
| Fraction computeWidthAndDuals(ArrayRef<MPInt> dir, |
| SmallVectorImpl<MPInt> &dual, |
| MPInt &dualDenom) { |
| // We can't just call into computeWidth or computeOptimum since we need to |
| // access the state of the tableau after computing the optimum, and these |
| // functions rollback the insertion of the objective function into the |
| // tableau before returning. We instead add a row for the objective function |
| // ourselves, call into computeOptimum, compute the duals from the tableau |
| // state, and finally rollback the addition of the row before returning. |
| SimplexRollbackScopeExit scopeExit(simplex); |
| unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); |
| unsigned row = simplex.con[conIndex].pos; |
| MaybeOptimum<Fraction> maybeWidth = |
| simplex.computeRowOptimum(Simplex::Direction::Up, row); |
| assert(maybeWidth.isBounded() && "Width should be bounded!"); |
| dualDenom = simplex.tableau(row, 0); |
| dual.clear(); |
| |
| // The increment is i += 2 because equalities are added as two inequalities, |
| // one positive and one negative. Each iteration processes one equality. |
| for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { |
| // The dual variable for an inequality in column orientation is the |
| // negative of its coefficient at the objective row. If the inequality is |
| // in row orientation, the corresponding dual variable is zero. |
| // |
| // We want the dual for the original equality, which corresponds to two |
| // inequalities: a positive inequality, which has the same coefficients as |
| // the equality, and a negative equality, which has negated coefficients. |
| // |
| // Note that at most one of these inequalities can be in column |
| // orientation because the column unknowns should form a basis and hence |
| // must be linearly independent. If the positive inequality is in column |
| // position, its dual is the dual corresponding to the equality. If the |
| // negative inequality is in column position, the negation of its dual is |
| // the dual corresponding to the equality. If neither is in column |
| // position, then that means that this equality is redundant, and its dual |
| // is zero. |
| // |
| // Note that it is NOT valid to perform pivots during the computation of |
| // the duals. This entire dual computation must be performed on the same |
| // tableau configuration. |
| assert(!(simplex.con[i].orientation == Orientation::Column && |
| simplex.con[i + 1].orientation == Orientation::Column) && |
| "Both inequalities for the equality cannot be in column " |
| "orientation!"); |
| if (simplex.con[i].orientation == Orientation::Column) |
| dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); |
| else if (simplex.con[i + 1].orientation == Orientation::Column) |
| dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); |
| else |
| dual.emplace_back(0); |
| } |
| return *maybeWidth; |
| } |
| |
| /// Remove the last equality that was added through addEqualityForDirection. |
| /// |
| /// We do this by rolling back to the snapshot at the top of the stack, which |
| /// should be a snapshot taken just before the last equality was added. |
| void removeLastEquality() { |
| assert(!snapshotStack.empty() && "Snapshot stack is empty!"); |
| simplex.rollback(snapshotStack.back()); |
| snapshotStack.pop_back(); |
| } |
| |
| private: |
| /// Returns coefficients of the expression 'dot_product(dir, x - y)', |
| /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n |
| /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, |
| /// where n is the dimension of the original polytope. |
| SmallVector<MPInt, 8> getCoeffsForDirection(ArrayRef<MPInt> dir) { |
| assert(2 * dir.size() == simplex.getNumVariables() && |
| "Direction vector has wrong dimensionality"); |
| SmallVector<MPInt, 8> coeffs(dir.begin(), dir.end()); |
| coeffs.reserve(2 * dir.size()); |
| for (const MPInt &coeff : dir) |
| coeffs.push_back(-coeff); |
| coeffs.emplace_back(0); // constant term |
| return coeffs; |
| } |
| |
| Simplex simplex; |
| /// The first index of the equality constraints, the index immediately after |
| /// the last constraint in the initial product simplex. |
| unsigned simplexConstraintOffset; |
| /// A stack of snapshots, used for rolling back. |
| SmallVector<unsigned, 8> snapshotStack; |
| }; |
| |
| /// Reduce the basis to try and find a direction in which the polytope is |
| /// "thin". This only works for bounded polytopes. |
| /// |
| /// This is an implementation of the algorithm described in the paper |
| /// "An Implementation of Generalized Basis Reduction for Integer Programming" |
| /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. |
| /// |
| /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. |
| /// Let width_i(v) = max <v, x - y> where x and y are points in the original |
| /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. |
| /// |
| /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u |
| /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i |
| /// be the dual variable associated with the constraint <b_i, x - y> = 0 when |
| /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the |
| /// minimizing value of u, if it were allowed to be fractional. Due to |
| /// convexity, the minimizing integer value is either floor(dual_i) or |
| /// ceil(dual_i), so we just need to check which of these gives a lower |
| /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. |
| /// |
| /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) |
| /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the |
| /// same i). Otherwise, we increment i. |
| /// |
| /// We keep f values and duals cached and invalidate them when necessary. |
| /// Whenever possible, we use them instead of recomputing them. We implement the |
| /// algorithm as follows. |
| /// |
| /// In an iteration at i we need to compute: |
| /// a) width_i(b_{i + 1}) |
| /// b) width_i(b_i) |
| /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) |
| /// |
| /// If width_i(b_i) is not already cached, we compute it. |
| /// |
| /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and |
| /// store the duals from this computation. |
| /// |
| /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value |
| /// of u as explained before, caches the duals from this computation, sets |
| /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). |
| /// |
| /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and |
| /// decrement i, resulting in the basis |
| /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... |
| /// with corresponding f values |
| /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... |
| /// The values up to i - 1 remain unchanged. We have just gotten the middle |
| /// value from updateBasisWithUAndGetFCandidate, so we can update that in the |
| /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from |
| /// the cache. The iteration after decrementing needs exactly the duals from the |
| /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. |
| /// |
| /// When incrementing i, no cached f values get invalidated. However, the cached |
| /// duals do get invalidated as the duals for the higher levels are different. |
| void Simplex::reduceBasis(Matrix &basis, unsigned level) { |
| const Fraction epsilon(3, 4); |
| |
| if (level == basis.getNumRows() - 1) |
| return; |
| |
| GBRSimplex gbrSimplex(*this); |
| SmallVector<Fraction, 8> width; |
| SmallVector<MPInt, 8> dual; |
| MPInt dualDenom; |
| |
| // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the |
| // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns |
| // the new value of width_i(b_{i+1}). |
| // |
| // If dual_i is not an integer, the minimizing value must be either |
| // floor(dual_i) or ceil(dual_i). We compute the expression for both and |
| // choose the minimizing value. |
| // |
| // If dual_i is an integer, we don't need to perform these computations. We |
| // know that in this case, |
| // a) u = dual_i. |
| // b) one can show that dual_j for j < i are the same duals we would have |
| // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals |
| // are the ones already in the cache. |
| // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), |
| // which |
| // one can show is equal to width_{i+1}(b_{i+1}). The latter value must |
| // be in the cache, so we get it from there and return it. |
| auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { |
| assert(i < level + dual.size() && "dual_i is not known!"); |
| |
| MPInt u = floorDiv(dual[i - level], dualDenom); |
| basis.addToRow(i, i + 1, u); |
| if (dual[i - level] % dualDenom != 0) { |
| SmallVector<MPInt, 8> candidateDual[2]; |
| MPInt candidateDualDenom[2]; |
| Fraction widthI[2]; |
| |
| // Initially u is floor(dual) and basis reflects this. |
| widthI[0] = gbrSimplex.computeWidthAndDuals( |
| basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); |
| |
| // Now try ceil(dual), i.e. floor(dual) + 1. |
| ++u; |
| basis.addToRow(i, i + 1, 1); |
| widthI[1] = gbrSimplex.computeWidthAndDuals( |
| basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); |
| |
| unsigned j = widthI[0] < widthI[1] ? 0 : 1; |
| if (j == 0) |
| // Subtract 1 to go from u = ceil(dual) back to floor(dual). |
| basis.addToRow(i, i + 1, -1); |
| |
| // width_i(b{i+1} + u*b_i) should be minimized at our value of u. |
| // We assert that this holds by checking that the values of width_i at |
| // u - 1 and u + 1 are greater than or equal to the value at u. If the |
| // width is lesser at either of the adjacent values, then our computed |
| // value of u is clearly not the minimizer. Otherwise by convexity the |
| // computed value of u is really the minimizer. |
| |
| // Check the value at u - 1. |
| assert(gbrSimplex.computeWidth(scaleAndAddForAssert( |
| basis.getRow(i + 1), MPInt(-1), basis.getRow(i))) >= |
| widthI[j] && |
| "Computed u value does not minimize the width!"); |
| // Check the value at u + 1. |
| assert(gbrSimplex.computeWidth(scaleAndAddForAssert( |
| basis.getRow(i + 1), MPInt(+1), basis.getRow(i))) >= |
| widthI[j] && |
| "Computed u value does not minimize the width!"); |
| |
| dual = std::move(candidateDual[j]); |
| dualDenom = candidateDualDenom[j]; |
| return widthI[j]; |
| } |
| |
| assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); |
| // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the |
| // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in |
| // the above expression is equal to basis.getRow(i+1) below.) |
| assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == |
| width[i + 1 - level]); |
| return width[i + 1 - level]; |
| }; |
| |
| // In the ith iteration of the loop, gbrSimplex has constraints for directions |
| // from `level` to i - 1. |
| unsigned i = level; |
| while (i < basis.getNumRows() - 1) { |
| if (i >= level + width.size()) { |
| // We don't even know the value of f_i(b_i), so let's find that first. |
| // We have to do this first since later we assume that width already |
| // contains values up to and including i. |
| |
| assert((i == 0 || i - 1 < level + width.size()) && |
| "We are at level i but we don't know the value of width_{i-1}"); |
| |
| // We don't actually use these duals at all, but it doesn't matter |
| // because this case should only occur when i is level, and there are no |
| // duals in that case anyway. |
| assert(i == level && "This case should only occur when i == level"); |
| width.push_back( |
| gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); |
| } |
| |
| if (i >= level + dual.size()) { |
| assert(i + 1 >= level + width.size() && |
| "We don't know dual_i but we know width_{i+1}"); |
| // We don't know dual for our level, so let's find it. |
| gbrSimplex.addEqualityForDirection(basis.getRow(i)); |
| width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, |
| dualDenom)); |
| gbrSimplex.removeLastEquality(); |
| } |
| |
| // This variable stores width_i(b_{i+1} + u*b_i). |
| Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); |
| if (widthICandidate < epsilon * width[i - level]) { |
| basis.swapRows(i, i + 1); |
| width[i - level] = widthICandidate; |
| // The values of width_{i+1}(b_{i+1}) and higher may change after the |
| // swap, so we remove the cached values here. |
| width.resize(i - level + 1); |
| if (i == level) { |
| dual.clear(); |
| continue; |
| } |
| |
| gbrSimplex.removeLastEquality(); |
| i--; |
| continue; |
| } |
| |
| // Invalidate duals since the higher level needs to recompute its own duals. |
| dual.clear(); |
| gbrSimplex.addEqualityForDirection(basis.getRow(i)); |
| i++; |
| } |
| } |
| |
| /// Search for an integer sample point using a branch and bound algorithm. |
| /// |
| /// Each row in the basis matrix is a vector, and the set of basis vectors |
| /// should span the space. Initially this is the identity matrix, |
| /// i.e., the basis vectors are just the variables. |
| /// |
| /// In every level, a value is assigned to the level-th basis vector, as |
| /// follows. Compute the minimum and maximum rational values of this direction. |
| /// If only one integer point lies in this range, constrain the variable to |
| /// have this value and recurse to the next variable. |
| /// |
| /// If the range has multiple values, perform generalized basis reduction via |
| /// reduceBasis and then compute the bounds again. Now we try constraining |
| /// this direction in the first value in this range and "recurse" to the next |
| /// level. If we fail to find a sample, we try assigning the direction the next |
| /// value in this range, and so on. |
| /// |
| /// If no integer sample is found from any of the assignments, or if the range |
| /// contains no integer value, then of course the polytope is empty for the |
| /// current assignment of the values in previous levels, so we return to |
| /// the previous level. |
| /// |
| /// If we reach the last level where all the variables have been assigned values |
| /// already, then we simply return the current sample point if it is integral, |
| /// and go back to the previous level otherwise. |
| /// |
| /// To avoid potentially arbitrarily large recursion depths leading to stack |
| /// overflows, this algorithm is implemented iteratively. |
| Optional<SmallVector<MPInt, 8>> Simplex::findIntegerSample() { |
| if (empty) |
| return {}; |
| |
| unsigned nDims = var.size(); |
| Matrix basis = Matrix::identity(nDims); |
| |
| unsigned level = 0; |
| // The snapshot just before constraining a direction to a value at each level. |
| SmallVector<unsigned, 8> snapshotStack; |
| // The maximum value in the range of the direction for each level. |
| SmallVector<MPInt, 8> upperBoundStack; |
| // The next value to try constraining the basis vector to at each level. |
| SmallVector<MPInt, 8> nextValueStack; |
| |
| snapshotStack.reserve(basis.getNumRows()); |
| upperBoundStack.reserve(basis.getNumRows()); |
| nextValueStack.reserve(basis.getNumRows()); |
| while (level != -1u) { |
| if (level == basis.getNumRows()) { |
| // We've assigned values to all variables. Return if we have a sample, |
| // or go back up to the previous level otherwise. |
| if (auto maybeSample = getSamplePointIfIntegral()) |
| return maybeSample; |
| level--; |
| continue; |
| } |
| |
| if (level >= upperBoundStack.size()) { |
| // We haven't populated the stack values for this level yet, so we have |
| // just come down a level ("recursed"). Find the lower and upper bounds. |
| // If there is more than one integer point in the range, perform |
| // generalized basis reduction. |
| SmallVector<MPInt, 8> basisCoeffs = |
| llvm::to_vector<8>(basis.getRow(level)); |
| basisCoeffs.emplace_back(0); |
| |
| auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(basisCoeffs); |
| |
| // We don't have any integer values in the range. |
| // Pop the stack and return up a level. |
| if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { |
| assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && |
| "If one bound is empty, both should be."); |
| snapshotStack.pop_back(); |
| nextValueStack.pop_back(); |
| upperBoundStack.pop_back(); |
| level--; |
| continue; |
| } |
| |
| // We already checked the empty case above. |
| assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && |
| "Polyhedron should be bounded!"); |
| |
| // Heuristic: if the sample point is integral at this point, just return |
| // it. |
| if (auto maybeSample = getSamplePointIfIntegral()) |
| return *maybeSample; |
| |
| if (*minRoundedUp < *maxRoundedDown) { |
| reduceBasis(basis, level); |
| basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); |
| basisCoeffs.emplace_back(0); |
| std::tie(minRoundedUp, maxRoundedDown) = |
| computeIntegerBounds(basisCoeffs); |
| } |
| |
| snapshotStack.push_back(getSnapshot()); |
| // The smallest value in the range is the next value to try. |
| // The values in the optionals are guaranteed to exist since we know the |
| // polytope is bounded. |
| nextValueStack.push_back(*minRoundedUp); |
| upperBoundStack.push_back(*maxRoundedDown); |
| } |
| |
| assert((snapshotStack.size() - 1 == level && |
| nextValueStack.size() - 1 == level && |
| upperBoundStack.size() - 1 == level) && |
| "Mismatched variable stack sizes!"); |
| |
| // Whether we "recursed" or "returned" from a lower level, we rollback |
| // to the snapshot of the starting state at this level. (in the "recursed" |
| // case this has no effect) |
| rollback(snapshotStack.back()); |
| MPInt nextValue = nextValueStack.back(); |
| ++nextValueStack.back(); |
| if (nextValue > upperBoundStack.back()) { |
| // We have exhausted the range and found no solution. Pop the stack and |
| // return up a level. |
| snapshotStack.pop_back(); |
| nextValueStack.pop_back(); |
| upperBoundStack.pop_back(); |
| level--; |
| continue; |
| } |
| |
| // Try the next value in the range and "recurse" into the next level. |
| SmallVector<MPInt, 8> basisCoeffs(basis.getRow(level).begin(), |
| basis.getRow(level).end()); |
| basisCoeffs.push_back(-nextValue); |
| addEquality(basisCoeffs); |
| level++; |
| } |
| |
| return {}; |
| } |
| |
| /// Compute the minimum and maximum integer values the expression can take. We |
| /// compute each separately. |
| std::pair<MaybeOptimum<MPInt>, MaybeOptimum<MPInt>> |
| Simplex::computeIntegerBounds(ArrayRef<MPInt> coeffs) { |
| MaybeOptimum<MPInt> minRoundedUp( |
| computeOptimum(Simplex::Direction::Down, coeffs).map(ceil)); |
| MaybeOptimum<MPInt> maxRoundedDown( |
| computeOptimum(Simplex::Direction::Up, coeffs).map(floor)); |
| return {minRoundedUp, maxRoundedDown}; |
| } |
| |
| void SimplexBase::print(raw_ostream &os) const { |
| os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n"; |
| if (empty) |
| os << "Simplex marked empty!\n"; |
| os << "var: "; |
| for (unsigned i = 0; i < var.size(); ++i) { |
| if (i > 0) |
| os << ", "; |
| var[i].print(os); |
| } |
| os << "\ncon: "; |
| for (unsigned i = 0; i < con.size(); ++i) { |
| if (i > 0) |
| os << ", "; |
| con[i].print(os); |
| } |
| os << '\n'; |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) { |
| if (row > 0) |
| os << ", "; |
| os << "r" << row << ": " << rowUnknown[row]; |
| } |
| os << '\n'; |
| os << "c0: denom, c1: const"; |
| for (unsigned col = 2, e = getNumColumns(); col < e; ++col) |
| os << ", c" << col << ": " << colUnknown[col]; |
| os << '\n'; |
| for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { |
| for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) |
| os << tableau(row, col) << '\t'; |
| os << '\n'; |
| } |
| os << '\n'; |
| } |
| |
| void SimplexBase::dump() const { print(llvm::errs()); } |
| |
| bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { |
| if (isEmpty()) |
| return true; |
| |
| for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) |
| if (findIneqType(rel.getInequality(i)) != IneqType::Redundant) |
| return false; |
| |
| for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) |
| if (!isRedundantEquality(rel.getEquality(i))) |
| return false; |
| |
| return true; |
| } |
| |
| /// Returns the type of the inequality with coefficients `coeffs`. |
| /// Possible types are: |
| /// Redundant The inequality is satisfied by all points in the polytope |
| /// Cut The inequality is satisfied by some points, but not by others |
| /// Separate The inequality is not satisfied by any point |
| /// |
| /// Internally, this computes the minimum and the maximum the inequality with |
| /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds |
| /// for all points in the polytope, so it is redundant. If the minimum is <= 0 |
| /// and the maximum is >= 0, the points in between the minimum and the |
| /// inequality do not satisfy it, the points in between the inequality and the |
| /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no |
| /// points of the polytope satisfy the inequality, which means it is a separate |
| /// inequality. |
| Simplex::IneqType Simplex::findIneqType(ArrayRef<MPInt> coeffs) { |
| MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); |
| if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { |
| return IneqType::Redundant; |
| } |
| MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); |
| if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && |
| (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { |
| return IneqType::Cut; |
| } |
| return IneqType::Separate; |
| } |
| |
| /// Checks whether the type of the inequality with coefficients `coeffs` |
| /// is Redundant. |
| bool Simplex::isRedundantInequality(ArrayRef<MPInt> coeffs) { |
| assert(!empty && |
| "It is not meaningful to ask about redundancy in an empty set!"); |
| return findIneqType(coeffs) == IneqType::Redundant; |
| } |
| |
| /// Check whether the equality given by `coeffs == 0` is redundant given |
| /// the existing constraints. This is redundant when `coeffs` is already |
| /// always zero under the existing constraints. `coeffs` is always zero |
| /// when the minimum and maximum value that `coeffs` can take are both zero. |
| bool Simplex::isRedundantEquality(ArrayRef<MPInt> coeffs) { |
| assert(!empty && |
| "It is not meaningful to ask about redundancy in an empty set!"); |
| MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); |
| MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); |
| assert((!minimum.isEmpty() && !maximum.isEmpty()) && |
| "Optima should be non-empty for a non-empty set"); |
| return minimum.isBounded() && maximum.isBounded() && |
| *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); |
| } |