| //===- Matrix.cpp - MLIR Matrix Class -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/Presburger/Matrix.h" |
| #include "mlir/Analysis/Presburger/Utils.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| using namespace mlir; |
| using namespace presburger; |
| |
| Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows, |
| unsigned reservedColumns) |
| : nRows(rows), nColumns(columns), |
| nReservedColumns(std::max(nColumns, reservedColumns)), |
| data(nRows * nReservedColumns) { |
| data.reserve(std::max(nRows, reservedRows) * nReservedColumns); |
| } |
| |
| Matrix Matrix::identity(unsigned dimension) { |
| Matrix matrix(dimension, dimension); |
| for (unsigned i = 0; i < dimension; ++i) |
| matrix(i, i) = 1; |
| return matrix; |
| } |
| |
| unsigned Matrix::getNumReservedRows() const { |
| return data.capacity() / nReservedColumns; |
| } |
| |
| void Matrix::reserveRows(unsigned rows) { |
| data.reserve(rows * nReservedColumns); |
| } |
| |
| unsigned Matrix::appendExtraRow() { |
| resizeVertically(nRows + 1); |
| return nRows - 1; |
| } |
| |
| unsigned Matrix::appendExtraRow(ArrayRef<MPInt> elems) { |
| assert(elems.size() == nColumns && "elems must match row length!"); |
| unsigned row = appendExtraRow(); |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) = elems[col]; |
| return row; |
| } |
| |
| void Matrix::resizeHorizontally(unsigned newNColumns) { |
| if (newNColumns < nColumns) |
| removeColumns(newNColumns, nColumns - newNColumns); |
| if (newNColumns > nColumns) |
| insertColumns(nColumns, newNColumns - nColumns); |
| } |
| |
| void Matrix::resize(unsigned newNRows, unsigned newNColumns) { |
| resizeHorizontally(newNColumns); |
| resizeVertically(newNRows); |
| } |
| |
| void Matrix::resizeVertically(unsigned newNRows) { |
| nRows = newNRows; |
| data.resize(nRows * nReservedColumns); |
| } |
| |
| void Matrix::swapRows(unsigned row, unsigned otherRow) { |
| assert((row < getNumRows() && otherRow < getNumRows()) && |
| "Given row out of bounds"); |
| if (row == otherRow) |
| return; |
| for (unsigned col = 0; col < nColumns; col++) |
| std::swap(at(row, col), at(otherRow, col)); |
| } |
| |
| void Matrix::swapColumns(unsigned column, unsigned otherColumn) { |
| assert((column < getNumColumns() && otherColumn < getNumColumns()) && |
| "Given column out of bounds"); |
| if (column == otherColumn) |
| return; |
| for (unsigned row = 0; row < nRows; row++) |
| std::swap(at(row, column), at(row, otherColumn)); |
| } |
| |
| MutableArrayRef<MPInt> Matrix::getRow(unsigned row) { |
| return {&data[row * nReservedColumns], nColumns}; |
| } |
| |
| ArrayRef<MPInt> Matrix::getRow(unsigned row) const { |
| return {&data[row * nReservedColumns], nColumns}; |
| } |
| |
| void Matrix::setRow(unsigned row, ArrayRef<MPInt> elems) { |
| assert(elems.size() == getNumColumns() && |
| "elems size must match row length!"); |
| for (unsigned i = 0, e = getNumColumns(); i < e; ++i) |
| at(row, i) = elems[i]; |
| } |
| |
| void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); } |
| void Matrix::insertColumns(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos <= nColumns); |
| unsigned oldNReservedColumns = nReservedColumns; |
| if (nColumns + count > nReservedColumns) { |
| nReservedColumns = llvm::NextPowerOf2(nColumns + count); |
| data.resize(nRows * nReservedColumns); |
| } |
| nColumns += count; |
| |
| for (int ri = nRows - 1; ri >= 0; --ri) { |
| for (int ci = nReservedColumns - 1; ci >= 0; --ci) { |
| unsigned r = ri; |
| unsigned c = ci; |
| MPInt &dest = data[r * nReservedColumns + c]; |
| if (c >= nColumns) { // NOLINT |
| // Out of bounds columns are zero-initialized. NOLINT because clang-tidy |
| // complains about this branch being the same as the c >= pos one. |
| // |
| // TODO: this case can be skipped if the number of reserved columns |
| // didn't change. |
| dest = 0; |
| } else if (c >= pos + count) { |
| // Shift the data occuring after the inserted columns. |
| dest = data[r * oldNReservedColumns + c - count]; |
| } else if (c >= pos) { |
| // The inserted columns are also zero-initialized. |
| dest = 0; |
| } else { |
| // The columns before the inserted columns stay at the same (row, col) |
| // but this corresponds to a different location in the linearized array |
| // if the number of reserved columns changed. |
| if (nReservedColumns == oldNReservedColumns) |
| break; |
| dest = data[r * oldNReservedColumns + c]; |
| } |
| } |
| } |
| } |
| |
| void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); } |
| void Matrix::removeColumns(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos + count - 1 < nColumns); |
| for (unsigned r = 0; r < nRows; ++r) { |
| for (unsigned c = pos; c < nColumns - count; ++c) |
| at(r, c) = at(r, c + count); |
| for (unsigned c = nColumns - count; c < nColumns; ++c) |
| at(r, c) = 0; |
| } |
| nColumns -= count; |
| } |
| |
| void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); } |
| void Matrix::insertRows(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| |
| assert(pos <= nRows); |
| resizeVertically(nRows + count); |
| for (int r = nRows - 1; r >= int(pos + count); --r) |
| copyRow(r - count, r); |
| for (int r = pos + count - 1; r >= int(pos); --r) |
| for (unsigned c = 0; c < nColumns; ++c) |
| at(r, c) = 0; |
| } |
| |
| void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); } |
| void Matrix::removeRows(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos + count - 1 <= nRows); |
| for (unsigned r = pos; r + count < nRows; ++r) |
| copyRow(r + count, r); |
| resizeVertically(nRows - count); |
| } |
| |
| void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) { |
| if (sourceRow == targetRow) |
| return; |
| for (unsigned c = 0; c < nColumns; ++c) |
| at(targetRow, c) = at(sourceRow, c); |
| } |
| |
| void Matrix::fillRow(unsigned row, const MPInt &value) { |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) = value; |
| } |
| |
| void Matrix::addToRow(unsigned sourceRow, unsigned targetRow, |
| const MPInt &scale) { |
| addToRow(targetRow, getRow(sourceRow), scale); |
| } |
| |
| void Matrix::addToRow(unsigned row, ArrayRef<MPInt> rowVec, |
| const MPInt &scale) { |
| if (scale == 0) |
| return; |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) += scale * rowVec[col]; |
| } |
| |
| void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn, |
| const MPInt &scale) { |
| if (scale == 0) |
| return; |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| at(row, targetColumn) += scale * at(row, sourceColumn); |
| } |
| |
| void Matrix::negateColumn(unsigned column) { |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| at(row, column) = -at(row, column); |
| } |
| |
| void Matrix::negateRow(unsigned row) { |
| for (unsigned column = 0, e = getNumColumns(); column < e; ++column) |
| at(row, column) = -at(row, column); |
| } |
| |
| MPInt Matrix::normalizeRow(unsigned row, unsigned cols) { |
| return normalizeRange(getRow(row).slice(0, cols)); |
| } |
| |
| MPInt Matrix::normalizeRow(unsigned row) { |
| return normalizeRow(row, getNumColumns()); |
| } |
| |
| SmallVector<MPInt, 8> Matrix::preMultiplyWithRow(ArrayRef<MPInt> rowVec) const { |
| assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!"); |
| |
| SmallVector<MPInt, 8> result(getNumColumns(), MPInt(0)); |
| for (unsigned col = 0, e = getNumColumns(); col < e; ++col) |
| for (unsigned i = 0, e = getNumRows(); i < e; ++i) |
| result[col] += rowVec[i] * at(i, col); |
| return result; |
| } |
| |
| SmallVector<MPInt, 8> |
| Matrix::postMultiplyWithColumn(ArrayRef<MPInt> colVec) const { |
| assert(getNumColumns() == colVec.size() && |
| "Invalid column vector dimension!"); |
| |
| SmallVector<MPInt, 8> result(getNumRows(), MPInt(0)); |
| for (unsigned row = 0, e = getNumRows(); row < e; row++) |
| for (unsigned i = 0, e = getNumColumns(); i < e; i++) |
| result[row] += at(row, i) * colVec[i]; |
| return result; |
| } |
| |
| /// Set M(row, targetCol) to its remainder on division by M(row, sourceCol) |
| /// by subtracting from column targetCol an appropriate integer multiple of |
| /// sourceCol. This brings M(row, targetCol) to the range [0, M(row, |
| /// sourceCol)). Apply the same column operation to otherMatrix, with the same |
| /// integer multiple. |
| static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol, |
| unsigned targetCol, Matrix &otherMatrix) { |
| assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); |
| assert(m(row, sourceCol) > 0 && "Source must be positive!"); |
| MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol)); |
| m.addToColumn(sourceCol, targetCol, ratio); |
| otherMatrix.addToColumn(sourceCol, targetCol, ratio); |
| } |
| |
| std::pair<Matrix, Matrix> Matrix::computeHermiteNormalForm() const { |
| // We start with u as an identity matrix and perform operations on h until h |
| // is in hermite normal form. We apply the same sequence of operations on u to |
| // obtain a transform that takes h to hermite normal form. |
| Matrix h = *this; |
| Matrix u = Matrix::identity(h.getNumColumns()); |
| |
| unsigned echelonCol = 0; |
| // Invariant: in all rows above row, all columns from echelonCol onwards |
| // are all zero elements. In an iteration, if the curent row has any non-zero |
| // elements echelonCol onwards, we bring one to echelonCol and use it to |
| // make all elements echelonCol + 1 onwards zero. |
| for (unsigned row = 0; row < h.getNumRows(); ++row) { |
| // Search row for a non-empty entry, starting at echelonCol. |
| unsigned nonZeroCol = echelonCol; |
| for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { |
| if (h(row, nonZeroCol) == 0) |
| continue; |
| break; |
| } |
| |
| // Continue to the next row with the same echelonCol if this row is all |
| // zeros from echelonCol onwards. |
| if (nonZeroCol == h.getNumColumns()) |
| continue; |
| |
| // Bring the non-zero column to echelonCol. This doesn't affect rows |
| // above since they are all zero at these columns. |
| if (nonZeroCol != echelonCol) { |
| h.swapColumns(nonZeroCol, echelonCol); |
| u.swapColumns(nonZeroCol, echelonCol); |
| } |
| |
| // Make h(row, echelonCol) non-negative. |
| if (h(row, echelonCol) < 0) { |
| h.negateColumn(echelonCol); |
| u.negateColumn(echelonCol); |
| } |
| |
| // Make all the entries in row after echelonCol zero. |
| for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) { |
| // We make h(row, i) non-negative, and then apply the Euclidean GCD |
| // algorithm to (row, i) and (row, echelonCol). At the end, one of them |
| // has value equal to the gcd of the two entries, and the other is zero. |
| |
| if (h(row, i) < 0) { |
| h.negateColumn(i); |
| u.negateColumn(i); |
| } |
| |
| unsigned targetCol = i, sourceCol = echelonCol; |
| // At every step, we set h(row, targetCol) %= h(row, sourceCol), and |
| // swap the indices sourceCol and targetCol. (not the columns themselves) |
| // This modulo is implemented as a subtraction |
| // h(row, targetCol) -= quotient * h(row, sourceCol), |
| // where quotient = floor(h(row, targetCol) / h(row, sourceCol)), |
| // which brings h(row, targetCol) to the range [0, h(row, sourceCol)). |
| // |
| // We are only allowed column operations; we perform the above |
| // for every row, i.e., the above subtraction is done as a column |
| // operation. This does not affect any rows above us since they are |
| // guaranteed to be zero at these columns. |
| while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) { |
| modEntryColumnOperation(h, row, sourceCol, targetCol, u); |
| std::swap(targetCol, sourceCol); |
| } |
| |
| // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. |
| // Make it so that (row, echelonCol) holds the non-zero value. |
| if (h(row, echelonCol) == 0) { |
| h.swapColumns(i, echelonCol); |
| u.swapColumns(i, echelonCol); |
| } |
| } |
| |
| // Make all entries before echelonCol non-negative and strictly smaller |
| // than the pivot entry. |
| for (unsigned i = 0; i < echelonCol; ++i) |
| modEntryColumnOperation(h, row, echelonCol, i, u); |
| |
| ++echelonCol; |
| } |
| |
| return {h, u}; |
| } |
| |
| void Matrix::print(raw_ostream &os) const { |
| for (unsigned row = 0; row < nRows; ++row) { |
| for (unsigned column = 0; column < nColumns; ++column) |
| os << at(row, column) << ' '; |
| os << '\n'; |
| } |
| } |
| |
| void Matrix::dump() const { print(llvm::errs()); } |
| |
| bool Matrix::hasConsistentState() const { |
| if (data.size() != nRows * nReservedColumns) |
| return false; |
| if (nColumns > nReservedColumns) |
| return false; |
| for (unsigned r = 0; r < nRows; ++r) |
| for (unsigned c = nColumns; c < nReservedColumns; ++c) |
| if (data[r * nReservedColumns + c] != 0) |
| return false; |
| return true; |
| } |