blob: c7d04b2d0aa429d11c85271b72a86cf8596fe17b [file] [log] [blame]
//===- Utils.cpp - Utilities to support the Tensor dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Tensor dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
using namespace mlir;
using namespace mlir::tensor;
PadOp mlir::tensor::createPadScalarOp(Type type, Value source, Value pad,
ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high, bool nofold,
Location loc, OpBuilder &builder) {
auto padTensorOp =
builder.create<PadOp>(loc, type, source, low, high, nofold);
int rank = padTensorOp.getResultType().getRank();
SmallVector<Type> blockArgTypes(rank, builder.getIndexType());
SmallVector<Location> blockArgLocs(rank, loc);
auto &region = padTensorOp.getRegion();
// `builder.createBlock` changes the insertion point within the block. Create
// a guard to reset the insertion point of the builder after it is destroyed.
OpBuilder::InsertionGuard guard(builder);
builder.createBlock(&region, region.end(), blockArgTypes, blockArgLocs);
builder.create<YieldOp>(loc, pad);
return padTensorOp;
}
PadOp mlir::tensor::createPadHighOp(RankedTensorType type, Value source,
Value pad, bool nofold, Location loc,
OpBuilder &b) {
auto zero = b.createOrFold<arith::ConstantIndexOp>(loc, 0);
SmallVector<OpFoldResult> low(type.getRank(), zero);
SmallVector<OpFoldResult> high(type.getRank(), zero);
for (const auto &en : enumerate(type.getShape())) {
// Pad only the static dimensions of the result tensor type.
if (ShapedType::isDynamic(en.value()))
continue;
// Compute the padding width.
AffineExpr d0;
bindDims(b.getContext(), d0);
auto dimOp = b.createOrFold<tensor::DimOp>(loc, source, en.index());
high[en.index()] =
makeComposedAffineApply(b, loc, en.value() - d0, {dimOp}).getResult();
}
return createPadScalarOp(type, source, pad, low, high, nofold, loc, b);
}
SmallVector<Value> mlir::tensor::createDynamicDimValues(OpBuilder &b,
Location loc,
Value rankedTensor) {
auto tensorTy = rankedTensor.getType().cast<RankedTensorType>();
SmallVector<Value> dynamicDims;
for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
if (en.value() == ShapedType::kDynamicSize)
dynamicDims.push_back(
b.create<tensor::DimOp>(loc, rankedTensor, en.index()));
}
return dynamicDims;
}
SmallVector<Value> mlir::tensor::createDimValues(OpBuilder &b, Location loc,
Value rankedTensor) {
auto tensorTy = rankedTensor.getType().cast<RankedTensorType>();
SmallVector<Value> dims;
for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
dims.push_back(
b.createOrFold<tensor::DimOp>(loc, rankedTensor, en.index()));
}
return dims;
}