| // RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(cse))' -split-input-file | FileCheck %s |
| |
| // CHECK-LABEL: @simple_constant |
| func.func @simple_constant() -> (i32, i32) { |
| // CHECK-NEXT: %[[VAR_c1_i32:.*]] = arith.constant 1 : i32 |
| %0 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: return %[[VAR_c1_i32]], %[[VAR_c1_i32]] : i32, i32 |
| %1 = arith.constant 1 : i32 |
| return %0, %1 : i32, i32 |
| } |
| |
| // ----- |
| |
| // CHECK: #[[$MAP:.*]] = affine_map<(d0) -> (d0 mod 2)> |
| #map0 = affine_map<(d0) -> (d0 mod 2)> |
| |
| // CHECK-LABEL: @basic |
| func.func @basic() -> (index, index) { |
| // CHECK: %[[VAR_c0:[0-9a-zA-Z_]+]] = arith.constant 0 : index |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 0 : index |
| |
| // CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = affine.apply #[[$MAP]](%[[VAR_c0]]) |
| %0 = affine.apply #map0(%c0) |
| %1 = affine.apply #map0(%c1) |
| |
| // CHECK-NEXT: return %[[VAR_0]], %[[VAR_0]] : index, index |
| return %0, %1 : index, index |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: @many |
| func.func @many(f32, f32) -> (f32) { |
| ^bb0(%a : f32, %b : f32): |
| // CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.addf %{{.*}}, %{{.*}} : f32 |
| %c = arith.addf %a, %b : f32 |
| %d = arith.addf %a, %b : f32 |
| %e = arith.addf %a, %b : f32 |
| %f = arith.addf %a, %b : f32 |
| |
| // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_0]], %[[VAR_0]] : f32 |
| %g = arith.addf %c, %d : f32 |
| %h = arith.addf %e, %f : f32 |
| %i = arith.addf %c, %e : f32 |
| |
| // CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_1]], %[[VAR_1]] : f32 |
| %j = arith.addf %g, %h : f32 |
| %k = arith.addf %h, %i : f32 |
| |
| // CHECK-NEXT: %[[VAR_3:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_2]], %[[VAR_2]] : f32 |
| %l = arith.addf %j, %k : f32 |
| |
| // CHECK-NEXT: return %[[VAR_3]] : f32 |
| return %l : f32 |
| } |
| |
| // ----- |
| |
| /// Check that operations are not eliminated if they have different operands. |
| // CHECK-LABEL: @different_ops |
| func.func @different_ops() -> (i32, i32) { |
| // CHECK: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 |
| // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| %0 = arith.constant 0 : i32 |
| %1 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: return %[[VAR_c0_i32]], %[[VAR_c1_i32]] : i32, i32 |
| return %0, %1 : i32, i32 |
| } |
| |
| // ----- |
| |
| /// Check that operations are not eliminated if they have different result |
| /// types. |
| // CHECK-LABEL: @different_results |
| func.func @different_results(%arg0: tensor<*xf32>) -> (tensor<?x?xf32>, tensor<4x?xf32>) { |
| // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<?x?xf32> |
| // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<4x?xf32> |
| %0 = tensor.cast %arg0 : tensor<*xf32> to tensor<?x?xf32> |
| %1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32> |
| |
| // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : tensor<?x?xf32>, tensor<4x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<4x?xf32> |
| } |
| |
| // ----- |
| |
| /// Check that operations are not eliminated if they have different attributes. |
| // CHECK-LABEL: @different_attributes |
| func.func @different_attributes(index, index) -> (i1, i1, i1) { |
| ^bb0(%a : index, %b : index): |
| // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.cmpi slt, %{{.*}}, %{{.*}} : index |
| %0 = arith.cmpi slt, %a, %b : index |
| |
| // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.cmpi ne, %{{.*}}, %{{.*}} : index |
| /// Predicate 1 means inequality comparison. |
| %1 = arith.cmpi ne, %a, %b : index |
| %2 = "arith.cmpi"(%a, %b) {predicate = 1} : (index, index) -> i1 |
| |
| // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]], %[[VAR_1]] : i1, i1, i1 |
| return %0, %1, %2 : i1, i1, i1 |
| } |
| |
| // ----- |
| |
| /// Check that operations with side effects are not eliminated. |
| // CHECK-LABEL: @side_effect |
| func.func @side_effect() -> (memref<2x1xf32>, memref<2x1xf32>) { |
| // CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32> |
| %0 = memref.alloc() : memref<2x1xf32> |
| |
| // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32> |
| %1 = memref.alloc() : memref<2x1xf32> |
| |
| // CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : memref<2x1xf32>, memref<2x1xf32> |
| return %0, %1 : memref<2x1xf32>, memref<2x1xf32> |
| } |
| |
| // ----- |
| |
| /// Check that operation definitions are properly propagated down the dominance |
| /// tree. |
| // CHECK-LABEL: @down_propagate_for |
| func.func @down_propagate_for() { |
| // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| %0 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: affine.for {{.*}} = 0 to 4 { |
| affine.for %i = 0 to 4 { |
| // CHECK-NEXT: "foo"(%[[VAR_c1_i32]], %[[VAR_c1_i32]]) : (i32, i32) -> () |
| %1 = arith.constant 1 : i32 |
| "foo"(%0, %1) : (i32, i32) -> () |
| } |
| return |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: @down_propagate |
| func.func @down_propagate() -> i32 { |
| // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| %0 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true |
| %cond = arith.constant true |
| |
| // CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c1_i32]] : i32) |
| cf.cond_br %cond, ^bb1, ^bb2(%0 : i32) |
| |
| ^bb1: // CHECK: ^bb1: |
| // CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32) |
| %1 = arith.constant 1 : i32 |
| cf.br ^bb2(%1 : i32) |
| |
| ^bb2(%arg : i32): |
| return %arg : i32 |
| } |
| |
| // ----- |
| |
| /// Check that operation definitions are NOT propagated up the dominance tree. |
| // CHECK-LABEL: @up_propagate_for |
| func.func @up_propagate_for() -> i32 { |
| // CHECK: affine.for {{.*}} = 0 to 4 { |
| affine.for %i = 0 to 4 { |
| // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| // CHECK-NEXT: "foo"(%[[VAR_c1_i32_0]]) : (i32) -> () |
| %0 = arith.constant 1 : i32 |
| "foo"(%0) : (i32) -> () |
| } |
| |
| // CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| // CHECK-NEXT: return %[[VAR_c1_i32]] : i32 |
| %1 = arith.constant 1 : i32 |
| return %1 : i32 |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @up_propagate |
| func.func @up_propagate() -> i32 { |
| // CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 |
| %0 = arith.constant 0 : i32 |
| |
| // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true |
| %cond = arith.constant true |
| |
| // CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c0_i32]] : i32) |
| cf.cond_br %cond, ^bb1, ^bb2(%0 : i32) |
| |
| ^bb1: // CHECK: ^bb1: |
| // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| %1 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32) |
| cf.br ^bb2(%1 : i32) |
| |
| ^bb2(%arg : i32): // CHECK: ^bb2 |
| // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| %2 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addi %{{.*}}, %[[VAR_c1_i32_0]] : i32 |
| %add = arith.addi %arg, %2 : i32 |
| |
| // CHECK-NEXT: return %[[VAR_1]] : i32 |
| return %add : i32 |
| } |
| |
| // ----- |
| |
| /// The same test as above except that we are testing on a cfg embedded within |
| /// an operation region. |
| // CHECK-LABEL: func @up_propagate_region |
| func.func @up_propagate_region() -> i32 { |
| // CHECK-NEXT: {{.*}} "foo.region" |
| %0 = "foo.region"() ({ |
| // CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32 |
| // CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true |
| // CHECK-NEXT: cf.cond_br |
| |
| %1 = arith.constant 0 : i32 |
| %true = arith.constant true |
| cf.cond_br %true, ^bb1, ^bb2(%1 : i32) |
| |
| ^bb1: // CHECK: ^bb1: |
| // CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| // CHECK-NEXT: cf.br |
| |
| %c1_i32 = arith.constant 1 : i32 |
| cf.br ^bb2(%c1_i32 : i32) |
| |
| ^bb2(%arg : i32): // CHECK: ^bb2(%[[VAR_1:.*]]: i32): |
| // CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32 |
| // CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addi %[[VAR_1]], %[[VAR_c1_i32_0]] : i32 |
| // CHECK-NEXT: "foo.yield"(%[[VAR_2]]) : (i32) -> () |
| |
| %c1_i32_0 = arith.constant 1 : i32 |
| %2 = arith.addi %arg, %c1_i32_0 : i32 |
| "foo.yield" (%2) : (i32) -> () |
| }) : () -> (i32) |
| return %0 : i32 |
| } |
| |
| // ----- |
| |
| /// This test checks that nested regions that are isolated from above are |
| /// properly handled. |
| // CHECK-LABEL: @nested_isolated |
| func.func @nested_isolated() -> i32 { |
| // CHECK-NEXT: arith.constant 1 |
| %0 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: builtin.module |
| // CHECK-NEXT: @nested_func |
| builtin.module { |
| func.func @nested_func() { |
| // CHECK-NEXT: arith.constant 1 |
| %foo = arith.constant 1 : i32 |
| "foo.yield"(%foo) : (i32) -> () |
| } |
| } |
| |
| // CHECK: "foo.region" |
| "foo.region"() ({ |
| // CHECK-NEXT: arith.constant 1 |
| %foo = arith.constant 1 : i32 |
| "foo.yield"(%foo) : (i32) -> () |
| }) : () -> () |
| |
| return %0 : i32 |
| } |
| |
| // ----- |
| |
| /// This test is checking that CSE gracefully handles values in graph regions |
| /// where the use occurs before the def, and one of the defs could be CSE'd with |
| /// the other. |
| // CHECK-LABEL: @use_before_def |
| func.func @use_before_def() { |
| // CHECK-NEXT: test.graph_region |
| test.graph_region { |
| // CHECK-NEXT: arith.addi |
| %0 = arith.addi %1, %2 : i32 |
| |
| // CHECK-NEXT: arith.constant 1 |
| // CHECK-NEXT: arith.constant 1 |
| %1 = arith.constant 1 : i32 |
| %2 = arith.constant 1 : i32 |
| |
| // CHECK-NEXT: "foo.yield"(%{{.*}}) : (i32) -> () |
| "foo.yield"(%0) : (i32) -> () |
| } |
| return |
| } |
| |
| // ----- |
| |
| /// This test is checking that CSE is removing duplicated read op that follow |
| /// other. |
| // CHECK-LABEL: @remove_direct_duplicated_read_op |
| func.func @remove_direct_duplicated_read_op() -> i32 { |
| // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 |
| %0 = "test.op_with_memread"() : () -> (i32) |
| %1 = "test.op_with_memread"() : () -> (i32) |
| // CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE]], %[[READ_VALUE]] : i32 |
| %2 = arith.addi %0, %1 : i32 |
| return %2 : i32 |
| } |
| |
| // ----- |
| |
| /// This test is checking that CSE is removing duplicated read op that follow |
| /// other. |
| // CHECK-LABEL: @remove_multiple_duplicated_read_op |
| func.func @remove_multiple_duplicated_read_op() -> i64 { |
| // CHECK: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i64 |
| %0 = "test.op_with_memread"() : () -> (i64) |
| %1 = "test.op_with_memread"() : () -> (i64) |
| // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %[[READ_VALUE]] : i64 |
| %2 = arith.addi %0, %1 : i64 |
| %3 = "test.op_with_memread"() : () -> (i64) |
| // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64 |
| %4 = arith.addi %2, %3 : i64 |
| %5 = "test.op_with_memread"() : () -> (i64) |
| // CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64 |
| %6 = arith.addi %4, %5 : i64 |
| // CHECK-NEXT: return %{{.*}} : i64 |
| return %6 : i64 |
| } |
| |
| // ----- |
| |
| /// This test is checking that CSE is not removing duplicated read op that |
| /// have write op in between. |
| // CHECK-LABEL: @dont_remove_duplicated_read_op_with_sideeffecting |
| func.func @dont_remove_duplicated_read_op_with_sideeffecting() -> i32 { |
| // CHECK-NEXT: %[[READ_VALUE0:.*]] = "test.op_with_memread"() : () -> i32 |
| %0 = "test.op_with_memread"() : () -> (i32) |
| "test.op_with_memwrite"() : () -> () |
| // CHECK: %[[READ_VALUE1:.*]] = "test.op_with_memread"() : () -> i32 |
| %1 = "test.op_with_memread"() : () -> (i32) |
| // CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE0]], %[[READ_VALUE1]] : i32 |
| %2 = arith.addi %0, %1 : i32 |
| return %2 : i32 |
| } |
| |
| // ----- |
| |
| // Check that an operation with a single region can CSE. |
| func.func @cse_single_block_ops(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>) { |
| %0 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32): |
| test.region_yield %arg0 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| %1 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32): |
| test.region_yield %arg0 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| // CHECK-LABEL: func @cse_single_block_ops |
| // CHECK: %[[OP:.+]] = test.cse_of_single_block_op |
| // CHECK-NOT: test.cse_of_single_block_op |
| // CHECK: return %[[OP]], %[[OP]] |
| |
| // ----- |
| |
| // Operations with different number of bbArgs dont CSE. |
| func.func @no_cse_varied_bbargs(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>) { |
| %0 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| test.region_yield %arg0 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| %1 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32): |
| test.region_yield %arg0 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| // CHECK-LABEL: func @no_cse_varied_bbargs |
| // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op |
| // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op |
| // CHECK: return %[[OP0]], %[[OP1]] |
| |
| // ----- |
| |
| // Operations with different regions dont CSE |
| func.func @no_cse_region_difference_simple(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>) { |
| %0 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| test.region_yield %arg0 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| %1 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| test.region_yield %arg1 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| // CHECK-LABEL: func @no_cse_region_difference_simple |
| // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op |
| // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op |
| // CHECK: return %[[OP0]], %[[OP1]] |
| |
| // ----- |
| |
| // Operation with identical region with multiple statements CSE. |
| func.func @cse_single_block_ops_identical_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>) { |
| %0 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| %1 = arith.divf %arg0, %arg1 : f32 |
| %2 = arith.remf %arg0, %c : f32 |
| %3 = arith.select %d, %1, %2 : f32 |
| test.region_yield %3 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| %1 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| %1 = arith.divf %arg0, %arg1 : f32 |
| %2 = arith.remf %arg0, %c : f32 |
| %3 = arith.select %d, %1, %2 : f32 |
| test.region_yield %3 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| // CHECK-LABEL: func @cse_single_block_ops_identical_bodies |
| // CHECK: %[[OP:.+]] = test.cse_of_single_block_op |
| // CHECK-NOT: test.cse_of_single_block_op |
| // CHECK: return %[[OP]], %[[OP]] |
| |
| // ----- |
| |
| // Operation with non-identical regions dont CSE. |
| func.func @no_cse_single_block_ops_different_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>) { |
| %0 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| %1 = arith.divf %arg0, %arg1 : f32 |
| %2 = arith.remf %arg0, %c : f32 |
| %3 = arith.select %d, %1, %2 : f32 |
| test.region_yield %3 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| %1 = test.cse_of_single_block_op inputs(%a, %b) { |
| ^bb0(%arg0 : f32, %arg1 : f32): |
| %1 = arith.divf %arg0, %arg1 : f32 |
| %2 = arith.remf %arg0, %c : f32 |
| %3 = arith.select %d, %2, %1 : f32 |
| test.region_yield %3 : f32 |
| } : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32> |
| return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| // CHECK-LABEL: func @no_cse_single_block_ops_different_bodies |
| // CHECK: %[[OP0:.+]] = test.cse_of_single_block_op |
| // CHECK: %[[OP1:.+]] = test.cse_of_single_block_op |
| // CHECK: return %[[OP0]], %[[OP1]] |
| |
| // ----- |
| |
| func.func @failing_issue_59135(%arg0: tensor<2x2xi1>, %arg1: f32, %arg2 : tensor<2xi1>) -> (tensor<2xi1>, tensor<2xi1>) { |
| %false_2 = arith.constant false |
| %true_5 = arith.constant true |
| %9 = test.cse_of_single_block_op inputs(%arg2) { |
| ^bb0(%out: i1): |
| %true_144 = arith.constant true |
| test.region_yield %true_144 : i1 |
| } : tensor<2xi1> -> tensor<2xi1> |
| %15 = test.cse_of_single_block_op inputs(%arg2) { |
| ^bb0(%out: i1): |
| %true_144 = arith.constant true |
| test.region_yield %true_144 : i1 |
| } : tensor<2xi1> -> tensor<2xi1> |
| %93 = arith.maxsi %false_2, %true_5 : i1 |
| return %9, %15 : tensor<2xi1>, tensor<2xi1> |
| } |
| // CHECK-LABEL: func @failing_issue_59135 |
| // CHECK: %[[TRUE:.+]] = arith.constant true |
| // CHECK: %[[OP:.+]] = test.cse_of_single_block_op |
| // CHECK: test.region_yield %[[TRUE]] |
| // CHECK: return %[[OP]], %[[OP]] |
| |
| // ----- |
| |
| func.func @cse_multiple_regions(%c: i1, %t: tensor<5xf32>) -> (tensor<5xf32>, tensor<5xf32>) { |
| %r1 = scf.if %c -> (tensor<5xf32>) { |
| %0 = tensor.empty() : tensor<5xf32> |
| scf.yield %0 : tensor<5xf32> |
| } else { |
| scf.yield %t : tensor<5xf32> |
| } |
| %r2 = scf.if %c -> (tensor<5xf32>) { |
| %0 = tensor.empty() : tensor<5xf32> |
| scf.yield %0 : tensor<5xf32> |
| } else { |
| scf.yield %t : tensor<5xf32> |
| } |
| return %r1, %r2 : tensor<5xf32>, tensor<5xf32> |
| } |
| // CHECK-LABEL: func @cse_multiple_regions |
| // CHECK: %[[if:.*]] = scf.if {{.*}} { |
| // CHECK: tensor.empty |
| // CHECK: scf.yield |
| // CHECK: } else { |
| // CHECK: scf.yield |
| // CHECK: } |
| // CHECK-NOT: scf.if |
| // CHECK: return %[[if]], %[[if]] |
| |
| // ----- |
| |
| // CHECK-LABEL: @cse_recursive_effects_success |
| func.func @cse_recursive_effects_success() -> (i32, i32, i32) { |
| // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 |
| %0 = "test.op_with_memread"() : () -> (i32) |
| |
| // do something with recursive effects, containing no side effects |
| %true = arith.constant true |
| // CHECK-NEXT: %[[TRUE:.+]] = arith.constant true |
| // CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) { |
| %1 = scf.if %true -> (i32) { |
| %c42 = arith.constant 42 : i32 |
| scf.yield %c42 : i32 |
| // CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32 |
| // CHECK-NEXT: scf.yield %[[C42]] |
| // CHECK-NEXT: } else { |
| } else { |
| %c24 = arith.constant 24 : i32 |
| scf.yield %c24 : i32 |
| // CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32 |
| // CHECK-NEXT: scf.yield %[[C24]] |
| // CHECK-NEXT: } |
| } |
| |
| // %2 can be removed |
| // CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE]], %[[IF]] : i32, i32, i32 |
| %2 = "test.op_with_memread"() : () -> (i32) |
| return %0, %2, %1 : i32, i32, i32 |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: @cse_recursive_effects_failure |
| func.func @cse_recursive_effects_failure() -> (i32, i32, i32) { |
| // CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32 |
| %0 = "test.op_with_memread"() : () -> (i32) |
| |
| // do something with recursive effects, containing a write effect |
| %true = arith.constant true |
| // CHECK-NEXT: %[[TRUE:.+]] = arith.constant true |
| // CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) { |
| %1 = scf.if %true -> (i32) { |
| "test.op_with_memwrite"() : () -> () |
| // CHECK-NEXT: "test.op_with_memwrite"() : () -> () |
| %c42 = arith.constant 42 : i32 |
| scf.yield %c42 : i32 |
| // CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32 |
| // CHECK-NEXT: scf.yield %[[C42]] |
| // CHECK-NEXT: } else { |
| } else { |
| %c24 = arith.constant 24 : i32 |
| scf.yield %c24 : i32 |
| // CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32 |
| // CHECK-NEXT: scf.yield %[[C24]] |
| // CHECK-NEXT: } |
| } |
| |
| // %2 can not be be removed because of the write |
| // CHECK-NEXT: %[[READ_VALUE2:.*]] = "test.op_with_memread"() : () -> i32 |
| // CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE2]], %[[IF]] : i32, i32, i32 |
| %2 = "test.op_with_memread"() : () -> (i32) |
| return %0, %2, %1 : i32, i32, i32 |
| } |