blob: 2017905587b2683bea8ac2e54e0d435b034bac87 [file] [log] [blame]
//===- IntRangeOptimizations.cpp - Optimizations based on integer ranges --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/IntegerRangeAnalysis.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir::arith {
#define GEN_PASS_DEF_ARITHINTRANGEOPTS
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
#define GEN_PASS_DEF_ARITHINTRANGENARROWING
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace mlir::arith
using namespace mlir;
using namespace mlir::arith;
using namespace mlir::dataflow;
static std::optional<APInt> getMaybeConstantValue(DataFlowSolver &solver,
Value value) {
auto *maybeInferredRange =
solver.lookupState<IntegerValueRangeLattice>(value);
if (!maybeInferredRange || maybeInferredRange->getValue().isUninitialized())
return std::nullopt;
const ConstantIntRanges &inferredRange =
maybeInferredRange->getValue().getValue();
return inferredRange.getConstantValue();
}
static void copyIntegerRange(DataFlowSolver &solver, Value oldVal,
Value newVal) {
assert(oldVal.getType() == newVal.getType() &&
"Can't copy integer ranges between different types");
auto *oldState = solver.lookupState<IntegerValueRangeLattice>(oldVal);
if (!oldState)
return;
(void)solver.getOrCreateState<IntegerValueRangeLattice>(newVal)->join(
*oldState);
}
namespace mlir::dataflow {
/// Patterned after SCCP
LogicalResult maybeReplaceWithConstant(DataFlowSolver &solver,
RewriterBase &rewriter, Value value) {
if (value.use_empty())
return failure();
std::optional<APInt> maybeConstValue = getMaybeConstantValue(solver, value);
if (!maybeConstValue.has_value())
return failure();
Type type = value.getType();
Location loc = value.getLoc();
Operation *maybeDefiningOp = value.getDefiningOp();
Dialect *valueDialect =
maybeDefiningOp ? maybeDefiningOp->getDialect()
: value.getParentRegion()->getParentOp()->getDialect();
Attribute constAttr;
if (auto shaped = dyn_cast<ShapedType>(type)) {
constAttr = mlir::DenseIntElementsAttr::get(shaped, *maybeConstValue);
} else {
constAttr = rewriter.getIntegerAttr(type, *maybeConstValue);
}
Operation *constOp =
valueDialect->materializeConstant(rewriter, constAttr, type, loc);
// Fall back to arith.constant if the dialect materializer doesn't know what
// to do with an integer constant.
if (!constOp)
constOp = rewriter.getContext()
->getLoadedDialect<ArithDialect>()
->materializeConstant(rewriter, constAttr, type, loc);
if (!constOp)
return failure();
OpResult res = constOp->getResult(0);
if (solver.lookupState<dataflow::IntegerValueRangeLattice>(res))
solver.eraseState(res);
copyIntegerRange(solver, value, res);
rewriter.replaceAllUsesWith(value, res);
return success();
}
} // namespace mlir::dataflow
namespace {
class DataFlowListener : public RewriterBase::Listener {
public:
DataFlowListener(DataFlowSolver &s) : s(s) {}
protected:
void notifyOperationErased(Operation *op) override {
s.eraseState(s.getProgramPointAfter(op));
for (Value res : op->getResults())
s.eraseState(res);
}
DataFlowSolver &s;
};
/// Rewrite any results of `op` that were inferred to be constant integers to
/// and replace their uses with that constant. Return success() if all results
/// where thus replaced and the operation is erased. Also replace any block
/// arguments with their constant values.
struct MaterializeKnownConstantValues : public RewritePattern {
MaterializeKnownConstantValues(MLIRContext *context, DataFlowSolver &s)
: RewritePattern::RewritePattern(Pattern::MatchAnyOpTypeTag(),
/*benefit=*/1, context),
solver(s) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (matchPattern(op, m_Constant()))
return failure();
auto needsReplacing = [&](Value v) {
return getMaybeConstantValue(solver, v).has_value() && !v.use_empty();
};
bool hasConstantResults = llvm::any_of(op->getResults(), needsReplacing);
if (op->getNumRegions() == 0)
if (!hasConstantResults)
return failure();
bool hasConstantRegionArgs = false;
for (Region &region : op->getRegions()) {
for (Block &block : region.getBlocks()) {
hasConstantRegionArgs |=
llvm::any_of(block.getArguments(), needsReplacing);
}
}
if (!hasConstantResults && !hasConstantRegionArgs)
return failure();
bool replacedAll = (op->getNumResults() != 0);
for (Value v : op->getResults())
replacedAll &=
(succeeded(maybeReplaceWithConstant(solver, rewriter, v)) ||
v.use_empty());
if (replacedAll && isOpTriviallyDead(op)) {
rewriter.eraseOp(op);
return success();
}
PatternRewriter::InsertionGuard guard(rewriter);
for (Region &region : op->getRegions()) {
for (Block &block : region.getBlocks()) {
rewriter.setInsertionPointToStart(&block);
for (BlockArgument &arg : block.getArguments()) {
(void)maybeReplaceWithConstant(solver, rewriter, arg);
}
}
}
return success();
}
private:
DataFlowSolver &solver;
};
template <typename RemOp>
struct DeleteTrivialRem : public OpRewritePattern<RemOp> {
DeleteTrivialRem(MLIRContext *context, DataFlowSolver &s)
: OpRewritePattern<RemOp>(context), solver(s) {}
LogicalResult matchAndRewrite(RemOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.getOperand(0);
Value rhs = op.getOperand(1);
auto maybeModulus = getConstantIntValue(rhs);
if (!maybeModulus.has_value())
return failure();
int64_t modulus = *maybeModulus;
if (modulus <= 0)
return failure();
auto *maybeLhsRange = solver.lookupState<IntegerValueRangeLattice>(lhs);
if (!maybeLhsRange || maybeLhsRange->getValue().isUninitialized())
return failure();
const ConstantIntRanges &lhsRange = maybeLhsRange->getValue().getValue();
const APInt &min = isa<RemUIOp>(op) ? lhsRange.umin() : lhsRange.smin();
const APInt &max = isa<RemUIOp>(op) ? lhsRange.umax() : lhsRange.smax();
// The minima and maxima here are given as closed ranges, we must be
// strictly less than the modulus.
if (min.isNegative() || min.uge(modulus))
return failure();
if (max.isNegative() || max.uge(modulus))
return failure();
if (!min.ule(max))
return failure();
// With all those conditions out of the way, we know thas this invocation of
// a remainder is a noop because the input is strictly within the range
// [0, modulus), so get rid of it.
rewriter.replaceOp(op, ValueRange{lhs});
return success();
}
private:
DataFlowSolver &solver;
};
/// Gather ranges for all the values in `values`. Appends to the existing
/// vector.
static LogicalResult collectRanges(DataFlowSolver &solver, ValueRange values,
SmallVectorImpl<ConstantIntRanges> &ranges) {
for (Value val : values) {
auto *maybeInferredRange =
solver.lookupState<IntegerValueRangeLattice>(val);
if (!maybeInferredRange || maybeInferredRange->getValue().isUninitialized())
return failure();
const ConstantIntRanges &inferredRange =
maybeInferredRange->getValue().getValue();
ranges.push_back(inferredRange);
}
return success();
}
/// Return int type truncated to `targetBitwidth`. If `srcType` is shaped,
/// return shaped type as well.
static Type getTargetType(Type srcType, unsigned targetBitwidth) {
auto dstType = IntegerType::get(srcType.getContext(), targetBitwidth);
if (auto shaped = dyn_cast<ShapedType>(srcType))
return shaped.clone(dstType);
assert(srcType.isIntOrIndex() && "Invalid src type");
return dstType;
}
namespace {
// Enum for tracking which type of truncation should be performed
// to narrow an operation, if any.
enum class CastKind : uint8_t { None, Signed, Unsigned, Both };
} // namespace
/// If the values within `range` can be represented using only `width` bits,
/// return the kind of truncation needed to preserve that property.
///
/// This check relies on the fact that the signed and unsigned ranges are both
/// always correct, but that one might be an approximation of the other,
/// so we want to use the correct truncation operation.
static CastKind checkTruncatability(const ConstantIntRanges &range,
unsigned targetWidth) {
unsigned srcWidth = range.smin().getBitWidth();
if (srcWidth <= targetWidth)
return CastKind::None;
unsigned removedWidth = srcWidth - targetWidth;
// The sign bits need to extend into the sign bit of the target width. For
// example, if we're truncating 64 bits to 32, we need 64 - 32 + 1 = 33 sign
// bits.
bool canTruncateSigned =
range.smin().getNumSignBits() >= (removedWidth + 1) &&
range.smax().getNumSignBits() >= (removedWidth + 1);
bool canTruncateUnsigned = range.umin().countLeadingZeros() >= removedWidth &&
range.umax().countLeadingZeros() >= removedWidth;
if (canTruncateSigned && canTruncateUnsigned)
return CastKind::Both;
if (canTruncateSigned)
return CastKind::Signed;
if (canTruncateUnsigned)
return CastKind::Unsigned;
return CastKind::None;
}
static CastKind mergeCastKinds(CastKind lhs, CastKind rhs) {
if (lhs == CastKind::None || rhs == CastKind::None)
return CastKind::None;
if (lhs == CastKind::Both)
return rhs;
if (rhs == CastKind::Both)
return lhs;
if (lhs == rhs)
return lhs;
return CastKind::None;
}
static Value doCast(OpBuilder &builder, Location loc, Value src, Type dstType,
CastKind castKind) {
Type srcType = src.getType();
assert(isa<VectorType>(srcType) == isa<VectorType>(dstType) &&
"Mixing vector and non-vector types");
assert(castKind != CastKind::None && "Can't cast when casting isn't allowed");
Type srcElemType = getElementTypeOrSelf(srcType);
Type dstElemType = getElementTypeOrSelf(dstType);
assert(srcElemType.isIntOrIndex() && "Invalid src type");
assert(dstElemType.isIntOrIndex() && "Invalid dst type");
if (srcType == dstType)
return src;
if (isa<IndexType>(srcElemType) || isa<IndexType>(dstElemType)) {
if (castKind == CastKind::Signed)
return arith::IndexCastOp::create(builder, loc, dstType, src);
return arith::IndexCastUIOp::create(builder, loc, dstType, src);
}
auto srcInt = cast<IntegerType>(srcElemType);
auto dstInt = cast<IntegerType>(dstElemType);
if (dstInt.getWidth() < srcInt.getWidth())
return arith::TruncIOp::create(builder, loc, dstType, src);
if (castKind == CastKind::Signed)
return arith::ExtSIOp::create(builder, loc, dstType, src);
return arith::ExtUIOp::create(builder, loc, dstType, src);
}
struct NarrowElementwise final : OpTraitRewritePattern<OpTrait::Elementwise> {
NarrowElementwise(MLIRContext *context, DataFlowSolver &s,
ArrayRef<unsigned> target)
: OpTraitRewritePattern(context), solver(s), targetBitwidths(target) {}
using OpTraitRewritePattern::OpTraitRewritePattern;
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumResults() == 0)
return rewriter.notifyMatchFailure(op, "can't narrow resultless op");
SmallVector<ConstantIntRanges> ranges;
if (failed(collectRanges(solver, op->getOperands(), ranges)))
return rewriter.notifyMatchFailure(op, "input without specified range");
if (failed(collectRanges(solver, op->getResults(), ranges)))
return rewriter.notifyMatchFailure(op, "output without specified range");
Type srcType = op->getResult(0).getType();
if (!llvm::all_equal(op->getResultTypes()))
return rewriter.notifyMatchFailure(op, "mismatched result types");
if (op->getNumOperands() == 0 ||
!llvm::all_of(op->getOperandTypes(),
[=](Type t) { return t == srcType; }))
return rewriter.notifyMatchFailure(
op, "no operands or operand types don't match result type");
for (unsigned targetBitwidth : targetBitwidths) {
CastKind castKind = CastKind::Both;
for (const ConstantIntRanges &range : ranges) {
castKind = mergeCastKinds(castKind,
checkTruncatability(range, targetBitwidth));
if (castKind == CastKind::None)
break;
}
if (castKind == CastKind::None)
continue;
Type targetType = getTargetType(srcType, targetBitwidth);
if (targetType == srcType)
continue;
Location loc = op->getLoc();
IRMapping mapping;
for (auto [arg, argRange] : llvm::zip_first(op->getOperands(), ranges)) {
CastKind argCastKind = castKind;
// When dealing with `index` values, preserve non-negativity in the
// index_casts since we can't recover this in unsigned when equivalent.
if (argCastKind == CastKind::Signed && argRange.smin().isNonNegative())
argCastKind = CastKind::Both;
Value newArg = doCast(rewriter, loc, arg, targetType, argCastKind);
mapping.map(arg, newArg);
}
Operation *newOp = rewriter.clone(*op, mapping);
rewriter.modifyOpInPlace(newOp, [&]() {
for (OpResult res : newOp->getResults()) {
res.setType(targetType);
}
});
SmallVector<Value> newResults;
for (auto [newRes, oldRes] :
llvm::zip_equal(newOp->getResults(), op->getResults())) {
Value castBack = doCast(rewriter, loc, newRes, srcType, castKind);
copyIntegerRange(solver, oldRes, castBack);
newResults.push_back(castBack);
}
rewriter.replaceOp(op, newResults);
return success();
}
return failure();
}
private:
DataFlowSolver &solver;
SmallVector<unsigned, 4> targetBitwidths;
};
struct NarrowCmpI final : OpRewritePattern<arith::CmpIOp> {
NarrowCmpI(MLIRContext *context, DataFlowSolver &s, ArrayRef<unsigned> target)
: OpRewritePattern(context), solver(s), targetBitwidths(target) {}
LogicalResult matchAndRewrite(arith::CmpIOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.getLhs();
Value rhs = op.getRhs();
SmallVector<ConstantIntRanges> ranges;
if (failed(collectRanges(solver, op.getOperands(), ranges)))
return failure();
const ConstantIntRanges &lhsRange = ranges[0];
const ConstantIntRanges &rhsRange = ranges[1];
Type srcType = lhs.getType();
for (unsigned targetBitwidth : targetBitwidths) {
CastKind lhsCastKind = checkTruncatability(lhsRange, targetBitwidth);
CastKind rhsCastKind = checkTruncatability(rhsRange, targetBitwidth);
CastKind castKind = mergeCastKinds(lhsCastKind, rhsCastKind);
// Note: this includes target width > src width.
if (castKind == CastKind::None)
continue;
Type targetType = getTargetType(srcType, targetBitwidth);
if (targetType == srcType)
continue;
Location loc = op->getLoc();
IRMapping mapping;
Value lhsCast = doCast(rewriter, loc, lhs, targetType, lhsCastKind);
Value rhsCast = doCast(rewriter, loc, rhs, targetType, rhsCastKind);
mapping.map(lhs, lhsCast);
mapping.map(rhs, rhsCast);
Operation *newOp = rewriter.clone(*op, mapping);
copyIntegerRange(solver, op.getResult(), newOp->getResult(0));
rewriter.replaceOp(op, newOp->getResults());
return success();
}
return failure();
}
private:
DataFlowSolver &solver;
SmallVector<unsigned, 4> targetBitwidths;
};
/// Fold index_cast(index_cast(%arg: i8, index), i8) -> %arg
/// This pattern assumes all passed `targetBitwidths` are not wider than index
/// type.
template <typename CastOp>
struct FoldIndexCastChain final : OpRewritePattern<CastOp> {
FoldIndexCastChain(MLIRContext *context, ArrayRef<unsigned> target)
: OpRewritePattern<CastOp>(context), targetBitwidths(target) {}
LogicalResult matchAndRewrite(CastOp op,
PatternRewriter &rewriter) const override {
auto srcOp = op.getIn().template getDefiningOp<CastOp>();
if (!srcOp)
return rewriter.notifyMatchFailure(op, "doesn't come from an index cast");
Value src = srcOp.getIn();
if (src.getType() != op.getType())
return rewriter.notifyMatchFailure(op, "outer types don't match");
if (!srcOp.getType().isIndex())
return rewriter.notifyMatchFailure(op, "intermediate type isn't index");
auto intType = dyn_cast<IntegerType>(op.getType());
if (!intType || !llvm::is_contained(targetBitwidths, intType.getWidth()))
return failure();
rewriter.replaceOp(op, src);
return success();
}
private:
SmallVector<unsigned, 4> targetBitwidths;
};
struct IntRangeOptimizationsPass final
: arith::impl::ArithIntRangeOptsBase<IntRangeOptimizationsPass> {
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
DataFlowSolver solver;
solver.load<DeadCodeAnalysis>();
solver.load<SparseConstantPropagation>();
solver.load<IntegerRangeAnalysis>();
if (failed(solver.initializeAndRun(op)))
return signalPassFailure();
DataFlowListener listener(solver);
RewritePatternSet patterns(ctx);
populateIntRangeOptimizationsPatterns(patterns, solver);
if (failed(applyPatternsGreedily(
op, std::move(patterns),
GreedyRewriteConfig().setListener(&listener))))
signalPassFailure();
}
};
struct IntRangeNarrowingPass final
: arith::impl::ArithIntRangeNarrowingBase<IntRangeNarrowingPass> {
using ArithIntRangeNarrowingBase::ArithIntRangeNarrowingBase;
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
DataFlowSolver solver;
solver.load<DeadCodeAnalysis>();
solver.load<IntegerRangeAnalysis>();
if (failed(solver.initializeAndRun(op)))
return signalPassFailure();
DataFlowListener listener(solver);
RewritePatternSet patterns(ctx);
populateIntRangeNarrowingPatterns(patterns, solver, bitwidthsSupported);
// We specifically need bottom-up traversal as cmpi pattern needs range
// data, attached to its original argument values.
if (failed(applyPatternsGreedily(
op, std::move(patterns),
GreedyRewriteConfig().setUseTopDownTraversal(false).setListener(
&listener))))
signalPassFailure();
}
};
} // namespace
void mlir::arith::populateIntRangeOptimizationsPatterns(
RewritePatternSet &patterns, DataFlowSolver &solver) {
patterns.add<MaterializeKnownConstantValues, DeleteTrivialRem<RemSIOp>,
DeleteTrivialRem<RemUIOp>>(patterns.getContext(), solver);
}
void mlir::arith::populateIntRangeNarrowingPatterns(
RewritePatternSet &patterns, DataFlowSolver &solver,
ArrayRef<unsigned> bitwidthsSupported) {
patterns.add<NarrowElementwise, NarrowCmpI>(patterns.getContext(), solver,
bitwidthsSupported);
patterns.add<FoldIndexCastChain<arith::IndexCastUIOp>,
FoldIndexCastChain<arith::IndexCastOp>>(patterns.getContext(),
bitwidthsSupported);
}
std::unique_ptr<Pass> mlir::arith::createIntRangeOptimizationsPass() {
return std::make_unique<IntRangeOptimizationsPass>();
}