| //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements affine fusion. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Affine/Passes.h" |
| |
| #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" |
| #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
| #include "mlir/Dialect/Affine/Analysis/Utils.h" |
| #include "mlir/Dialect/Affine/LoopFusionUtils.h" |
| #include "mlir/Dialect/Affine/LoopUtils.h" |
| #include "mlir/Dialect/Affine/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Builders.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugLog.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <iomanip> |
| #include <optional> |
| #include <sstream> |
| |
| namespace mlir { |
| namespace affine { |
| #define GEN_PASS_DEF_AFFINELOOPFUSION |
| #include "mlir/Dialect/Affine/Passes.h.inc" |
| } // namespace affine |
| } // namespace mlir |
| |
| #define DEBUG_TYPE "affine-fusion" |
| |
| using namespace mlir; |
| using namespace mlir::affine; |
| |
| namespace { |
| /// Loop fusion pass. This pass currently supports a greedy fusion policy, |
| /// which fuses loop nests with single-writer/single-reader memref dependences |
| /// with the goal of improving locality. |
| // TODO: Support fusion of source loop nests which write to multiple |
| // memrefs, where each memref can have multiple users (if profitable). |
| struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> { |
| LoopFusion() = default; |
| LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, |
| bool maximalFusion, enum FusionMode affineFusionMode) { |
| this->fastMemorySpace = fastMemorySpace; |
| this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; |
| this->maximalFusion = maximalFusion; |
| this->affineFusionMode = affineFusionMode; |
| } |
| |
| void runOnBlock(Block *block); |
| void runOnOperation() override; |
| }; |
| |
| } // namespace |
| |
| /// Returns true if node 'srcId' can be removed after fusing it with node |
| /// 'dstId'. The node can be removed if any of the following conditions are met: |
| /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. |
| /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs |
| /// and the fusion slice is maximal. |
| /// 3. 'srcId' has output dependences after fusion, the fusion slice is |
| /// maximal and the fusion insertion point dominates all the dependences. |
| static bool canRemoveSrcNodeAfterFusion( |
| unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, |
| Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs, |
| const MemRefDependenceGraph &mdg) { |
| |
| Operation *dstNodeOp = mdg.getNode(dstId)->op; |
| bool hasOutDepsAfterFusion = false; |
| |
| for (auto &outEdge : mdg.outEdges.lookup(srcId)) { |
| Operation *depNodeOp = mdg.getNode(outEdge.id)->op; |
| // Skip dependence with dstOp since it will be removed after fusion. |
| if (depNodeOp == dstNodeOp) |
| continue; |
| |
| // Only fusion within the same block is supported. Use domination analysis |
| // when needed. |
| if (depNodeOp->getBlock() != dstNodeOp->getBlock()) |
| return false; |
| |
| // Check if the insertion point of the fused loop dominates the dependence. |
| // Otherwise, the src loop can't be removed. |
| if (fusedLoopInsPoint != depNodeOp && |
| !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) { |
| LDBG() << "Src loop can't be removed: dst loop doesn't " |
| << "dominate dependence"; |
| return false; |
| } |
| |
| hasOutDepsAfterFusion = true; |
| } |
| |
| // If src loop has dependences after fusion or it writes to an live-out or |
| // escaping memref, we can only remove it if the fusion slice is maximal so |
| // that all the dependences are preserved. |
| if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { |
| std::optional<bool> isMaximal = fusionSlice.isMaximal(); |
| if (!isMaximal) { |
| LDBG() << "Src loop can't be removed: can't determine " |
| << "if fusion is maximal"; |
| return false; |
| } |
| |
| if (!*isMaximal) { |
| LDBG() << "Src loop can't be removed: fusion is not maximal"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer |
| /// 'dstId'. Candidates are sorted by node id order. This order corresponds to |
| /// the program order when the 'mdg' is created. However, program order is not |
| /// guaranteed and must not be required by the client. Program order won't be |
| /// held if the 'mdg' is reused from a previous fusion step or if the node |
| /// creation order changes in the future to support more advance cases. |
| // TODO: Move this to a loop fusion utility once 'mdg' is also moved. |
| static void getProducerCandidates(unsigned dstId, |
| const MemRefDependenceGraph &mdg, |
| SmallVectorImpl<unsigned> &srcIdCandidates) { |
| // Skip if no input edges along which to fuse. |
| if (mdg.inEdges.count(dstId) == 0) |
| return; |
| |
| // Gather memrefs from loads in 'dstId'. |
| auto *dstNode = mdg.getNode(dstId); |
| DenseSet<Value> consumedMemrefs; |
| for (Operation *load : dstNode->loads) |
| consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef()); |
| |
| // Traverse 'dstId' incoming edges and gather the nodes that contain a store |
| // to one of the consumed memrefs. |
| for (const auto &srcEdge : mdg.inEdges.lookup(dstId)) { |
| const auto *srcNode = mdg.getNode(srcEdge.id); |
| // Skip if 'srcNode' is not a loop nest. |
| if (!isa<AffineForOp>(srcNode->op)) |
| continue; |
| |
| if (any_of(srcNode->stores, [&](Operation *op) { |
| auto storeOp = cast<AffineWriteOpInterface>(op); |
| return consumedMemrefs.count(storeOp.getMemRef()) > 0; |
| })) |
| srcIdCandidates.push_back(srcNode->id); |
| } |
| |
| llvm::sort(srcIdCandidates); |
| srcIdCandidates.erase(llvm::unique(srcIdCandidates), srcIdCandidates.end()); |
| } |
| |
| /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
| /// producer-consumer dependence between 'srcId' and 'dstId'. |
| static void |
| gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, |
| const MemRefDependenceGraph &mdg, |
| DenseSet<Value> &producerConsumerMemrefs) { |
| auto *dstNode = mdg.getNode(dstId); |
| auto *srcNode = mdg.getNode(srcId); |
| gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads, |
| producerConsumerMemrefs); |
| } |
| |
| /// A memref escapes in the context of the fusion pass if either: |
| /// 1. it (or its alias) is a block argument, or |
| /// 2. created by an op not known to guarantee alias freedom, |
| /// 3. it (or its alias) are used by ops other than affine dereferencing ops |
| /// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops, |
| /// terminator ops, etc.); such ops do not deference the memref in an affine |
| /// way. |
| static bool isEscapingMemref(Value memref, Block *block) { |
| Operation *defOp = memref.getDefiningOp(); |
| // Check if 'memref' is a block argument. |
| if (!defOp) |
| return true; |
| |
| // Check if this is defined to be an alias of another memref. |
| if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp)) |
| if (memref == viewOp.getViewDest() && |
| isEscapingMemref(viewOp.getViewSource(), block)) |
| return true; |
| |
| // Any op besides allocating ops wouldn't guarantee alias freedom |
| if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(defOp, memref)) |
| return true; |
| |
| // Check if 'memref' is used by a non-deferencing op (including unknown ones) |
| // (e.g., call ops, alias creating ops, etc.). |
| return llvm::any_of(memref.getUsers(), [&](Operation *user) { |
| // Ignore users outside of `block`. |
| Operation *ancestorOp = block->getParent()->findAncestorOpInRegion(*user); |
| if (!ancestorOp) |
| return true; |
| if (ancestorOp->getBlock() != block) |
| return false; |
| return !isa<AffineMapAccessInterface>(*user); |
| }); |
| } |
| |
| /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' |
| /// that escape the block or are accessed in a non-affine way. |
| static void gatherEscapingMemrefs(unsigned id, const MemRefDependenceGraph &mdg, |
| DenseSet<Value> &escapingMemRefs) { |
| auto *node = mdg.getNode(id); |
| for (Operation *storeOp : node->stores) { |
| auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef(); |
| if (escapingMemRefs.count(memref)) |
| continue; |
| if (isEscapingMemref(memref, &mdg.block)) |
| escapingMemRefs.insert(memref); |
| } |
| } |
| |
| // Sinks all sequential loops to the innermost levels (while preserving |
| // relative order among them) and moves all parallel loops to the |
| // outermost (while again preserving relative order among them). |
| // This can increase the loop depth at which we can fuse a slice, since we are |
| // pushing loop carried dependence to a greater depth in the loop nest. |
| static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { |
| assert(isa<AffineForOp>(node->op)); |
| AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); |
| node->op = newRootForOp; |
| } |
| |
| /// Get the operation that should act as a dominance filter while replacing |
| /// memref uses with a private memref for which `producerStores` and |
| /// `sliceInsertionBlock` are provided. This effectively determines in what |
| /// part of the IR we should be performing the replacement. |
| static Operation * |
| getDominanceFilterForPrivateMemRefRepl(Block *sliceInsertionBlock, |
| ArrayRef<Operation *> producerStores) { |
| assert(!producerStores.empty() && "expected producer store"); |
| |
| // We first find the common block that contains the producer stores and |
| // the slice computation. The first ancestor among the ancestors of the |
| // producer stores in that common block is the dominance filter to use for |
| // replacement. |
| Block *commonBlock = nullptr; |
| // Find the common block of all relevant operations. |
| for (Operation *store : producerStores) { |
| Operation *otherOp = |
| !commonBlock ? &*sliceInsertionBlock->begin() : &*commonBlock->begin(); |
| commonBlock = findInnermostCommonBlockInScope(store, otherOp); |
| } |
| assert(commonBlock && |
| "common block of producer stores and slice should exist"); |
| |
| // Find the first ancestor among the ancestors of `producerStores` in |
| // `commonBlock`. |
| Operation *firstAncestor = nullptr; |
| for (Operation *store : producerStores) { |
| Operation *ancestor = commonBlock->findAncestorOpInBlock(*store); |
| assert(ancestor && "producer store should be contained in common block"); |
| firstAncestor = !firstAncestor || ancestor->isBeforeInBlock(firstAncestor) |
| ? ancestor |
| : firstAncestor; |
| } |
| return firstAncestor; |
| } |
| |
| /// Returns the amount of additional (redundant) computation that will be done |
| /// as a fraction of the total computation if `srcForOp` is fused into |
| /// `dstForOp` at depth `depth`. The method returns the compute cost of the |
| /// slice and the fused nest's compute cost in the trailing output arguments. |
| static std::optional<double> getAdditionalComputeFraction( |
| AffineForOp srcForOp, AffineForOp dstForOp, unsigned depth, |
| ArrayRef<ComputationSliceState> depthSliceUnions, int64_t &sliceCost, |
| int64_t &fusedLoopNestComputeCost) { |
| LDBG() << "Determining additional compute fraction..."; |
| // Compute cost of sliced and unsliced src loop nest. |
| // Walk src loop nest and collect stats. |
| LoopNestStats srcLoopNestStats; |
| if (!getLoopNestStats(srcForOp, &srcLoopNestStats)) { |
| LDBG() << "Failed to get source loop nest stats."; |
| return std::nullopt; |
| } |
| |
| // Compute cost of dst loop nest. |
| LoopNestStats dstLoopNestStats; |
| if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) { |
| LDBG() << "Failed to get destination loop nest stats."; |
| return std::nullopt; |
| } |
| |
| // Compute op instance count for the src loop nest without iteration slicing. |
| uint64_t srcLoopNestCost = getComputeCost(srcForOp, srcLoopNestStats); |
| |
| // Compute op cost for the dst loop nest. |
| uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
| |
| const ComputationSliceState &slice = depthSliceUnions[depth - 1]; |
| // Skip slice union if it wasn't computed for this depth. |
| if (slice.isEmpty()) { |
| LDBG() << "Slice wasn't computed."; |
| return std::nullopt; |
| } |
| |
| if (!getFusionComputeCost(srcForOp, srcLoopNestStats, dstForOp, |
| dstLoopNestStats, slice, |
| &fusedLoopNestComputeCost)) { |
| LDBG() << "Unable to compute fusion compute cost"; |
| return std::nullopt; |
| } |
| |
| double additionalComputeFraction = |
| fusedLoopNestComputeCost / |
| (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
| 1; |
| |
| return additionalComputeFraction; |
| } |
| |
| // Creates and returns a private (single-user) memref for fused loop rooted at |
| // 'forOp', with (potentially reduced) memref size based on the memref region |
| // written to by `storeOps` at depth 'dstLoopDepth'. 'sliceInsertionBlock' |
| // specifies the block in which the slice was/will be inserted. The method |
| // expects that all stores ops to the memref have the same access function. |
| // Returns nullptr if the creation failed. |
| static Value createPrivateMemRef(AffineForOp forOp, |
| ArrayRef<Operation *> storeOps, |
| unsigned dstLoopDepth, |
| std::optional<unsigned> fastMemorySpace, |
| Block *sliceInsertionBlock, |
| uint64_t localBufSizeThreshold) { |
| assert(!storeOps.empty() && "no source stores supplied"); |
| |
| // Check if all stores have the same access function; we only support this |
| // case. |
| // TODO: Use union of memref write regions to compute private memref footprint |
| // for store ops with different access functions. |
| if (storeOps.size() > 1 && |
| !std::equal(std::next(storeOps.begin()), storeOps.end(), storeOps.begin(), |
| [](Operation *a, Operation *b) { |
| MemRefAccess aM(cast<AffineWriteOpInterface>(a)); |
| MemRefAccess bM(cast<AffineWriteOpInterface>(b)); |
| return aM == bM; |
| })) { |
| LDBG() << "Private memref creation unsupported for multiple producer " |
| << "stores with different access functions."; |
| return nullptr; |
| } |
| |
| Operation *srcStoreOp = storeOps[0]; |
| |
| // Create builder to insert alloc op just before 'forOp'. |
| OpBuilder b(forOp); |
| // Builder to create constants at the top level. |
| OpBuilder top(forOp->getParentRegion()); |
| // Create new memref type based on slice bounds. |
| auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOp).getMemRef(); |
| auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
| unsigned rank = oldMemRefType.getRank(); |
| |
| // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. |
| MemRefRegion region(srcStoreOp->getLoc()); |
| bool validRegion = succeeded( |
| region.compute(srcStoreOp, dstLoopDepth, /*sliceState=*/nullptr, |
| /*addMemRefDimBounds=*/true, /*dropLocalVars=*/false)); |
| |
| (void)validRegion; |
| assert(validRegion && "unexpected memref region failure"); |
| SmallVector<int64_t, 4> newShape; |
| SmallVector<AffineMap, 4> lbs; |
| lbs.reserve(rank); |
| // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed |
| // by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
| std::optional<int64_t> numElements = |
| region.getConstantBoundingSizeAndShape(&newShape, &lbs); |
| assert(numElements && "non-constant number of elts in local buffer"); |
| |
| const FlatAffineValueConstraints *cst = region.getConstraints(); |
| // 'outerIVs' holds the values that this memory region is symbolic/parametric |
| // on; this would correspond to loop IVs surrounding the level at which the |
| // slice is being materialized. |
| SmallVector<Value, 8> outerIVs; |
| cst->getValues(rank, cst->getNumDimAndSymbolVars(), &outerIVs); |
| |
| // Build 'rank' AffineExprs from MemRefRegion 'lbs' |
| SmallVector<AffineExpr, 4> offsets; |
| offsets.reserve(rank); |
| |
| // Outer IVs are considered symbols during memref region computation. Replace |
| // them uniformly with dims so that valid IR is guaranteed. |
| SmallVector<AffineExpr> replacements; |
| for (unsigned j = 0, e = lbs[0].getNumSymbols(); j < e; ++j) |
| replacements.push_back(mlir::getAffineDimExpr(j, forOp.getContext())); |
| for (unsigned d = 0; d < rank; ++d) { |
| assert(lbs[d].getNumResults() == 1 && |
| "invalid private memref bound calculation"); |
| offsets.push_back(lbs[d].getResult(0).replaceSymbols(replacements)); |
| } |
| |
| // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed |
| // by 'srcStoreOpInst'. |
| auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType); |
| assert(eltSize && "memrefs with size elt types expected"); |
| uint64_t bufSize = *eltSize * *numElements; |
| Attribute newMemSpace; |
| if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) { |
| newMemSpace = b.getI64IntegerAttr(*fastMemorySpace); |
| } else { |
| newMemSpace = oldMemRefType.getMemorySpace(); |
| } |
| auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), |
| /*map=*/AffineMap(), newMemSpace); |
| |
| // Create new private memref for fused loop 'forOp'. 'newShape' is always |
| // a constant shape. |
| // TODO: Create/move alloc ops for private memrefs closer to their |
| // consumer loop nests to reduce their live range. Currently they are added |
| // at the beginning of the block, because loop nests can be reordered |
| // during the fusion pass. |
| Value newMemRef = memref::AllocOp::create(top, forOp.getLoc(), newMemRefType); |
| |
| // Build an AffineMap to remap access functions based on lower bound offsets. |
| SmallVector<AffineExpr, 4> remapExprs; |
| remapExprs.reserve(rank); |
| for (unsigned i = 0; i < rank; i++) { |
| auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); |
| |
| auto remapExpr = |
| simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); |
| remapExprs.push_back(remapExpr); |
| } |
| |
| auto indexRemap = |
| AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); |
| |
| // Replace all users of 'oldMemRef' with 'newMemRef'. |
| Operation *domFilter = |
| getDominanceFilterForPrivateMemRefRepl(sliceInsertionBlock, storeOps); |
| auto userFilterFn = [&](Operation *user) { |
| auto domInfo = std::make_unique<DominanceInfo>( |
| domFilter->getParentOfType<FunctionOpInterface>()); |
| return domInfo->dominates(domFilter, user); |
| }; |
| LogicalResult res = replaceAllMemRefUsesWith( |
| oldMemRef, newMemRef, /*extraIndices=*/{}, indexRemap, |
| /*extraOperands=*/outerIVs, |
| /*symbolOperands=*/{}, userFilterFn); |
| assert(succeeded(res) && |
| "replaceAllMemrefUsesWith should always succeed here"); |
| (void)res; |
| LDBG() << "Created private memref of type: " << newMemRefType; |
| return newMemRef; |
| } |
| |
| // Checks the profitability of fusing a backwards slice of the loop nest |
| // `srcForOp` into the loop nest surrounding 'dstLoadOpInsts'. The argument |
| // 'srcStoreOpInst' is used to calculate the storage reduction on the memref |
| // being produced and consumed, which is an input to the cost model. For |
| // producer-consumer fusion, 'srcStoreOpInst' will be the same as 'srcOpInst', |
| // as we are slicing w.r.t to that producer. For input-reuse fusion, 'srcOpInst' |
| // will be the src loop nest LoadOp which reads from the same memref as dst loop |
| // nest load ops, and 'srcStoreOpInst' will be the unique store op in the src |
| // node, which will be used to check that the write region is the same after |
| // input-reuse fusion. Computation slices are provided in 'depthSliceUnions' for |
| // each legal fusion depth. The maximal depth at which fusion is legal is |
| // provided in 'maxLegalFusionDepth'. Returns true if it is profitable to fuse |
| // the candidate loop nests. Returns false otherwise. `dstLoopDepth` is set to |
| // the most profitable depth at which to materialize the source loop nest slice. |
| // The profitability model executes the following steps: |
| // *) Computes the backward computation slice at 'srcOpInst'. This |
| // computation slice of the loop nest surrounding 'srcOpInst' is |
| // represented by modified src loop bounds in 'sliceState', which are |
| // functions of loop IVs in the loop nest surrounding 'srcOpInst'. |
| // *) Computes the cost of unfused src/dst loop nests (currently the cost of a |
| // loop nest is the total number of dynamic operation instances in the loop |
| // nest). |
| // *) Computes the cost of fusing a slice of the src loop nest into the dst |
| // loop nest at various values of dst loop depth, attempting to fuse |
| // the largest computation slice at the maximal dst loop depth (closest to |
| // the load) to minimize reuse distance and potentially enable subsequent |
| // load/store forwarding. |
| // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop |
| // nest, at which the src computation slice is inserted/fused. |
| // NOTE: We attempt to maximize the dst loop depth, but there are cases |
| // where a particular setting for 'dstLoopNest' might fuse an unsliced |
| // loop (within the src computation slice) at a depth which results in |
| // excessive recomputation (see unit tests for examples). |
| // *) Compares the total cost of the unfused loop nests to the min cost fused |
| // loop nest computed in the previous step, and returns true if the latter |
| // is lower. |
| // TODO: Extend profitability analysis to support scenarios with multiple |
| // stores. |
| static bool isFusionProfitable(AffineForOp srcForOp, |
| ArrayRef<Operation *> producerStores, |
| AffineForOp dstForOp, |
| ArrayRef<ComputationSliceState> depthSliceUnions, |
| unsigned maxLegalFusionDepth, |
| unsigned *dstLoopDepth, |
| double computeToleranceThreshold) { |
| LDBG() << "Checking whether fusion is profitable between source nest:"; |
| LDBG() << ' ' << srcForOp << " and destination nest:"; |
| LDBG() << dstForOp; |
| |
| if (maxLegalFusionDepth == 0) { |
| LDBG() << "Can't fuse: maxLegalFusionDepth is 0"; |
| return false; |
| } |
| |
| // Compute cost of sliced and unsliced src loop nest. |
| |
| // Walk src loop nest and collect stats. |
| LoopNestStats srcLoopNestStats; |
| if (!getLoopNestStats(srcForOp, &srcLoopNestStats)) |
| return false; |
| |
| // Compute cost of dst loop nest. |
| LoopNestStats dstLoopNestStats; |
| if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) |
| return false; |
| |
| // We limit profitability analysis to only scenarios with |
| // a single producer store for now. Note that some multi-store |
| // producer scenarios will still go through profitability analysis |
| // if only one of the stores is involved in the producer-consumer |
| // relationship of the candidate loops. |
| // TODO: Suppport multiple producer stores in profitability |
| // analysis. |
| if (producerStores.size() > 1) { |
| LDBG() << "Limited profitability analysis. Not " |
| << "supported for multiple producer store case."; |
| int64_t sliceCost; |
| int64_t fusedLoopNestComputeCost; |
| // We will still fuse if fusion obeys the specified compute |
| // tolerance at the max legal depth. |
| auto fraction = getAdditionalComputeFraction( |
| srcForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, sliceCost, |
| fusedLoopNestComputeCost); |
| if (!fraction || fraction > computeToleranceThreshold) { |
| LDBG() << "Additional computation exceeds " |
| << "compute tolerance. Not fusing."; |
| return false; |
| } |
| LDBG() << "Considering fusion profitable at max legal depth."; |
| return true; |
| } |
| |
| Operation *srcStoreOp = producerStores.front(); |
| |
| // Search for min cost value for 'dstLoopDepth'. At each value of |
| // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice |
| // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union |
| // of these bounds). Next the union slice bounds are used to calculate |
| // the cost of the slice and the cost of the slice inserted into the dst |
| // loop nest at 'dstLoopDepth'. |
| uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); |
| double maxStorageReduction = 0.0; |
| std::optional<uint64_t> sliceMemEstimate; |
| |
| // The best loop depth at which to materialize the slice. |
| std::optional<unsigned> bestDstLoopDepth; |
| |
| // Compute src loop nest write region size. |
| MemRefRegion srcWriteRegion(srcStoreOp->getLoc()); |
| if (failed(srcWriteRegion.compute(srcStoreOp, /*loopDepth=*/0))) { |
| LDBG() << "Unable to compute MemRefRegion for source operation"; |
| return false; |
| } |
| |
| std::optional<int64_t> maybeSrcWriteRegionSizeBytes = |
| srcWriteRegion.getRegionSize(); |
| if (!maybeSrcWriteRegionSizeBytes.has_value()) |
| return false; |
| int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes; |
| |
| // Compute op instance count for the src loop nest without iteration slicing. |
| uint64_t srcLoopNestCost = getComputeCost(srcForOp, srcLoopNestStats); |
| |
| // Compute op instance count for the destination loop nest. |
| uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
| |
| // Evaluate all depth choices for materializing the slice in the destination |
| // loop nest. |
| for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { |
| const ComputationSliceState &slice = depthSliceUnions[i - 1]; |
| // Skip slice union if it wasn't computed for this depth. |
| if (slice.isEmpty()) |
| continue; |
| |
| // Compute cost of the slice separately, i.e, the compute cost of the slice |
| // if all outer trip counts are one. |
| int64_t sliceCost; |
| |
| int64_t fusedLoopNestComputeCost; |
| |
| auto mayAdditionalComputeFraction = |
| getAdditionalComputeFraction(srcForOp, dstForOp, i, depthSliceUnions, |
| sliceCost, fusedLoopNestComputeCost); |
| if (!mayAdditionalComputeFraction) { |
| LDBG() << "Can't determine additional compute fraction."; |
| continue; |
| } |
| double additionalComputeFraction = *mayAdditionalComputeFraction; |
| |
| // Determine what the slice write MemRefRegion would be, if the src loop |
| // nest slice 'slice' were to be inserted into the dst loop nest at loop |
| // depth 'i'. |
| MemRefRegion sliceWriteRegion(srcStoreOp->getLoc()); |
| if (failed(sliceWriteRegion.compute(srcStoreOp, /*loopDepth=*/0, &slice))) { |
| LDBG() << "Failed to compute slice write region at loopDepth: " << i; |
| continue; |
| } |
| |
| std::optional<int64_t> maybeSliceWriteRegionSizeBytes = |
| sliceWriteRegion.getRegionSize(); |
| if (!maybeSliceWriteRegionSizeBytes.has_value() || |
| *maybeSliceWriteRegionSizeBytes == 0) { |
| LDBG() << "Failed to get slice write region size at loopDepth: " << i; |
| continue; |
| } |
| int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes; |
| |
| double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / |
| static_cast<double>(sliceWriteRegionSizeBytes); |
| |
| LLVM_DEBUG({ |
| std::stringstream msg; |
| msg << " evaluating fusion profitability at depth : " << i << "\n" |
| << std::fixed << std::setprecision(2) |
| << " additional compute fraction: " |
| << 100.0 * additionalComputeFraction << "%\n" |
| << " storage reduction factor: " << storageReduction << "x\n" |
| << " fused nest cost: " << fusedLoopNestComputeCost << "\n" |
| << " src write region size: " << srcWriteRegionSizeBytes << "\n" |
| << " slice write region size: " << sliceWriteRegionSizeBytes; |
| LDBG() << msg.str(); |
| }); |
| |
| // TODO: This is a placeholder cost model. |
| // Among all choices that add an acceptable amount of redundant computation |
| // (as per computeToleranceThreshold), we will simply pick the one that |
| // reduces the intermediary size the most. |
| if ((storageReduction > maxStorageReduction) && |
| (additionalComputeFraction <= computeToleranceThreshold)) { |
| maxStorageReduction = storageReduction; |
| bestDstLoopDepth = i; |
| minFusedLoopNestComputeCost = fusedLoopNestComputeCost; |
| sliceMemEstimate = sliceWriteRegionSizeBytes; |
| } |
| } |
| |
| // A simple cost model: fuse if it reduces the memory footprint. |
| |
| if (!bestDstLoopDepth) { |
| LDBG() << "All fusion choices involve more than the threshold amount of " |
| << "redundant computation; NOT fusing."; |
| return false; |
| } |
| |
| if (!bestDstLoopDepth) { |
| LDBG() << "no fusion depth could be evaluated."; |
| return false; |
| } |
| |
| // Set dstLoopDepth based on best values from search. |
| *dstLoopDepth = *bestDstLoopDepth; |
| |
| LDBG() << " LoopFusion fusion stats:"; |
| LDBG() << " best loop depth: " << bestDstLoopDepth; |
| LDBG() << " src loop nest compute cost: " << srcLoopNestCost; |
| LDBG() << " dst loop nest compute cost: " << dstLoopNestCost; |
| LDBG() << " fused loop nest compute cost: " << minFusedLoopNestComputeCost; |
| |
| auto dstMemSize = getMemoryFootprintBytes(dstForOp); |
| auto srcMemSize = getMemoryFootprintBytes(srcForOp); |
| |
| std::optional<double> storageReduction; |
| |
| if (!dstMemSize || !srcMemSize) { |
| LDBG() << " fusion memory benefit cannot be evaluated; NOT fusing."; |
| return false; |
| } |
| |
| auto srcMemSizeVal = *srcMemSize; |
| auto dstMemSizeVal = *dstMemSize; |
| |
| assert(sliceMemEstimate && "expected value"); |
| auto fusedMem = dstMemSizeVal + *sliceMemEstimate; |
| |
| LDBG() << " src mem: " << srcMemSizeVal; |
| LDBG() << " dst mem: " << dstMemSizeVal; |
| LDBG() << " fused mem: " << fusedMem; |
| LDBG() << " slice mem: " << sliceMemEstimate; |
| |
| if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { |
| LDBG() << "Fusion is not profitable; NOT fusing."; |
| return false; |
| } |
| storageReduction = |
| 100.0 * |
| (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); |
| |
| double additionalComputeFraction = |
| 100.0 * (minFusedLoopNestComputeCost / |
| (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
| 1); |
| (void)additionalComputeFraction; |
| LLVM_DEBUG({ |
| std::stringstream msg; |
| msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " |
| << std::setprecision(2) << additionalComputeFraction |
| << "% redundant computation and a "; |
| msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>"); |
| msg << "% storage reduction."; |
| LDBG() << msg.str(); |
| }); |
| |
| return true; |
| } |
| |
| namespace { |
| |
| // GreedyFusion greedily fuses loop nests which have a producer/consumer or |
| // input-reuse relationship on a memref, with the goal of improving locality. |
| // |
| // The steps of the producer-consumer fusion algorithm are as follows: |
| // |
| // *) A worklist is initialized with node ids from the dependence graph. |
| // *) For each node id in the worklist: |
| // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a |
| // candidate destination AffineForOp into which fusion will be attempted. |
| // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. |
| // *) For each LoadOp in 'dstLoadOps' do: |
| // *) Look up dependent loop nests which have a single store op to the same |
| // memref. |
| // *) Check if dependences would be violated by the fusion. |
| // *) Get a computation slice of 'srcLoopNest', which adjusts its loop |
| // bounds to be functions of 'dstLoopNest' IVs and symbols. |
| // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', |
| // at a loop depth determined by the cost model in 'isFusionProfitable'. |
| // *) Add the newly fused load/store operations to the state, |
| // and also add newly fused load ops to 'dstLoopOps' to be considered |
| // as fusion dst load ops in another iteration. |
| // *) Remove old src loop nest and its associated state. |
| // |
| // The steps of the input-reuse fusion algorithm are as follows: |
| // |
| // *) Initialize 'worklist' with node ids from the dependence graph. |
| // *) For each 'dstNode' in the worklist: |
| // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which |
| // loads from the same memref, but which has no dependence paths to/from. |
| // *) Get a computation slice of 'sibLoopNest', which adjusts its loop |
| // bounds to be functions of 'dstLoopNest' IVs and symbols. |
| // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', |
| // at a loop depth determined by the cost model in 'isFusionProfitable'. |
| // This function also checks that the memref write region of 'sibLoopNest', |
| // is preserved in the fused loop nest. |
| // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. |
| // |
| // Given a graph where top-level operations are vertices in the set 'V' and |
| // edges in the set 'E' are dependences between vertices, this algorithm |
| // takes O(V) time for initialization, and has runtime O(V + E). |
| // |
| // This greedy algorithm is not 'maximal' due to the current restriction of |
| // fusing along single producer consumer edges, but there is a TODO: to fix |
| // this. |
| // |
| // TODO: Experiment with other fusion policies. |
| struct GreedyFusion { |
| public: |
| // The data dependence graph to traverse during fusion. |
| MemRefDependenceGraph *mdg; |
| // Worklist of graph nodes visited during the fusion pass. |
| SmallVector<unsigned, 8> worklist; |
| // Parameter for local buffer size threshold. |
| unsigned localBufSizeThreshold; |
| // Parameter for fast memory space. |
| std::optional<unsigned> fastMemorySpace; |
| // If true, ignore any additional (redundant) computation tolerance threshold |
| // that would have prevented fusion. |
| bool maximalFusion; |
| // The amount of additional computation that is tolerated while fusing |
| // pair-wise as a fraction of the total computation. |
| double computeToleranceThreshold; |
| |
| using Node = MemRefDependenceGraph::Node; |
| |
| GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, |
| std::optional<unsigned> fastMemorySpace, bool maximalFusion, |
| double computeToleranceThreshold) |
| : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), |
| fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), |
| computeToleranceThreshold(computeToleranceThreshold) {} |
| |
| /// Initializes 'worklist' with nodes from 'mdg'. |
| void init() { |
| // TODO: Add a priority queue for prioritizing nodes by different |
| // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). |
| worklist.clear(); |
| for (auto &idAndNode : mdg->nodes) { |
| const Node &node = idAndNode.second; |
| worklist.push_back(node.id); |
| } |
| } |
| /// Run only sibling fusion on the `mdg`. |
| void runSiblingFusionOnly() { |
| fuseSiblingNodes(); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| /// Run only producer/consumer fusion on the `mdg`. |
| void runProducerConsumerFusionOnly() { |
| fuseProducerConsumerNodes( |
| /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| // Run the GreedyFusion pass. |
| // *) First pass through the nodes fuses single-use producer nodes into their |
| // unique consumer. |
| // *) Second pass fuses sibling nodes which share no dependence edges. |
| // *) Third pass fuses any remaining producer nodes into their users. |
| void runGreedyFusion() { |
| // TODO: Run this repeatedly until a fixed-point is reached. |
| fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); |
| fuseSiblingNodes(); |
| fuseProducerConsumerNodes( |
| /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| /// Returns true if a private memref can be created for `memref` given |
| /// the fusion scenario reflected by the other arguments. |
| bool canCreatePrivateMemRef(Value memref, |
| const DenseSet<Value> &srcEscapingMemRefs, |
| unsigned producerId, unsigned consumerId, |
| bool removeSrcNode) { |
| // We can't generate private memrefs if their size can't be computed. |
| if (!getMemRefIntOrFloatEltSizeInBytes(cast<MemRefType>(memref.getType()))) |
| return false; |
| const Node *consumerNode = mdg->getNode(consumerId); |
| // If `memref` is an escaping one, do not create a private memref |
| // for the below scenarios, since doing so will leave the escaping |
| // memref unmodified as all the writes originally meant for the |
| // escaping memref would be performed on the private memref: |
| // 1. The source is to be removed after fusion, |
| // OR |
| // 2. The destination writes to `memref`. |
| if (srcEscapingMemRefs.count(memref) > 0 && |
| (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0)) |
| return false; |
| |
| // Don't create a private memref if 'srcNode' has in edges on |
| // 'memref' or 'dstNode' has out edges on 'memref'. |
| if (mdg->getIncomingMemRefAccesses(producerId, memref) > 0 || |
| mdg->getOutEdgeCount(consumerId, memref) > 0) |
| return false; |
| |
| // If 'srcNode' will be removed but it has out edges on 'memref' to |
| // nodes other than 'dstNode', we have to preserve dependences and |
| // cannot create a private memref. |
| if (removeSrcNode && |
| any_of(mdg->outEdges[producerId], [&](const auto &edge) { |
| return edge.value == memref && edge.id != consumerId; |
| })) |
| return false; |
| |
| return true; |
| } |
| |
| /// Perform fusions with node `dstId` as the destination of fusion, with |
| /// No fusion is performed when producers with a user count greater than |
| /// `maxSrcUserCount` for any of the memrefs involved. |
| void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) { |
| LDBG() << "Evaluating dst loop " << dstId; |
| // Skip if this node was removed (fused into another node). |
| if (mdg->nodes.count(dstId) == 0) |
| return; |
| // Get 'dstNode' into which to attempt fusion. |
| auto *dstNode = mdg->getNode(dstId); |
| // Skip if 'dstNode' is not a loop nest. |
| if (!isa<AffineForOp>(dstNode->op)) |
| return; |
| // Skip if 'dstNode' is a loop nest returning values. |
| // TODO: support loop nests that return values. |
| if (dstNode->op->getNumResults() > 0) |
| return; |
| |
| LDBG() << "Evaluating dst loop " << dstId; |
| |
| // Sink sequential loops in 'dstNode' (and thus raise parallel loops) |
| // while preserving relative order. This can increase the maximum loop |
| // depth at which we can fuse a slice of a producer loop nest into a |
| // consumer loop nest. |
| sinkSequentialLoops(dstNode); |
| auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
| |
| // Try to fuse 'dstNode' with candidate producer loops until a fixed point |
| // is reached. Fusing two loops may expose new fusion opportunities. |
| bool dstNodeChanged; |
| do { |
| // Gather src loop candidates for 'dstNode' and visit them in "quasi" |
| // reverse program order to minimize the number of iterations needed to |
| // reach the fixed point. Note that this is a best effort approach since |
| // 'getProducerCandidates' does not always guarantee that program order |
| // in 'srcIdCandidates'. |
| dstNodeChanged = false; |
| SmallVector<unsigned, 16> srcIdCandidates; |
| getProducerCandidates(dstId, *mdg, srcIdCandidates); |
| |
| for (unsigned srcId : llvm::reverse(srcIdCandidates)) { |
| // Get 'srcNode' from which to attempt fusion into 'dstNode'. |
| auto *srcNode = mdg->getNode(srcId); |
| auto srcAffineForOp = cast<AffineForOp>(srcNode->op); |
| |
| LDBG() << "Trying to fuse producer loop nest " << srcId |
| << " with consumer loop nest " << dstId; |
| LDBG() << "Compute tolerance threshold: " << computeToleranceThreshold; |
| LDBG() << "Producer loop nest:"; |
| LDBG() << *srcNode->op << " and consumer loop nest:"; |
| LDBG() << *dstNode->op; |
| |
| LDBG() << "Evaluating src loop " << srcId << " for dst loop " << dstId; |
| |
| // Skip if 'srcNode' is a loop nest returning values. |
| // TODO: support loop nests that return values. |
| if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0) |
| continue; |
| |
| DenseSet<Value> producerConsumerMemrefs; |
| gatherProducerConsumerMemrefs(srcId, dstId, *mdg, |
| producerConsumerMemrefs); |
| |
| // Skip if 'srcNode' out edge count on any memref is greater than |
| // 'maxSrcUserCount'. |
| if (any_of(producerConsumerMemrefs, [&](Value memref) { |
| return mdg->getOutEdgeCount(srcNode->id, memref) > |
| maxSrcUserCount; |
| })) |
| continue; |
| |
| // Gather memrefs in 'srcNode' that are written and escape out of the |
| // block (e.g., memref block arguments, returned memrefs, |
| // memrefs passed to function calls, etc.). |
| DenseSet<Value> srcEscapingMemRefs; |
| gatherEscapingMemrefs(srcNode->id, *mdg, srcEscapingMemRefs); |
| |
| // Compute an operation list insertion point for the fused loop |
| // nest which preserves dependences. |
| Operation *fusedLoopInsPoint = |
| mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); |
| if (fusedLoopInsPoint == nullptr) |
| continue; |
| |
| // It's possible this fusion is at an inner depth (i.e., there are |
| // common surrounding affine loops for the source and destination for |
| // ops). We need to get this number because the call to canFuseLoops |
| // needs to be passed the absolute depth. The max legal depth and the |
| // depths we try below are however *relative* and as such don't include |
| // the common depth. |
| SmallVector<AffineForOp, 4> surroundingLoops; |
| getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
| unsigned numSurroundingLoops = surroundingLoops.size(); |
| |
| // Compute the innermost common loop depth for dstNode |
| // producer-consumer loads/stores. |
| SmallVector<Operation *, 2> dstMemrefOps; |
| for (Operation *op : dstNode->loads) |
| if (producerConsumerMemrefs.count( |
| cast<AffineReadOpInterface>(op).getMemRef()) > 0) |
| dstMemrefOps.push_back(op); |
| for (Operation *op : dstNode->stores) |
| if (producerConsumerMemrefs.count( |
| cast<AffineWriteOpInterface>(op).getMemRef())) |
| dstMemrefOps.push_back(op); |
| if (dstMemrefOps.empty()) |
| continue; |
| unsigned dstLoopDepthTest = |
| getInnermostCommonLoopDepth(dstMemrefOps) - numSurroundingLoops; |
| |
| // Check the feasibility of fusing src loop nest into dst loop nest |
| // at loop depths in range [1, dstLoopDepthTest]. |
| unsigned maxLegalFusionDepth = 0; |
| SmallVector<ComputationSliceState, 8> depthSliceUnions; |
| depthSliceUnions.resize(dstLoopDepthTest); |
| FusionStrategy strategy(FusionStrategy::ProducerConsumer); |
| for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
| FusionResult result = |
| affine::canFuseLoops(srcAffineForOp, dstAffineForOp, |
| /*dstLoopDepth=*/i + numSurroundingLoops, |
| &depthSliceUnions[i - 1], strategy); |
| if (result.value == FusionResult::Success) { |
| maxLegalFusionDepth = i; |
| LDBG() << "Found valid slice for depth: " << i; |
| } |
| } |
| |
| if (maxLegalFusionDepth == 0) { |
| LDBG() << "Can't fuse: fusion is not legal at any depth"; |
| continue; |
| } |
| |
| LDBG() << "Max legal depth for fusion: " << maxLegalFusionDepth; |
| |
| double computeToleranceThresholdToUse = computeToleranceThreshold; |
| |
| // Cyclic dependences in the source nest may be violated when performing |
| // slicing-based fusion. They aren't actually violated in cases where no |
| // redundant execution of the source happens (1:1 pointwise dep on the |
| // producer-consumer memref access for example). Check this and allow |
| // fusion accordingly. |
| if (hasCyclicDependence(srcAffineForOp)) { |
| LDBG() << "Source nest has a cyclic dependence."; |
| // Maximal fusion does not check for compute tolerance threshold; so |
| // perform the maximal fusion only when the redundanation computation |
| // is zero. |
| if (maximalFusion) { |
| auto srcForOp = cast<AffineForOp>(srcNode->op); |
| auto dstForOp = cast<AffineForOp>(dstNode->op); |
| int64_t sliceCost; |
| int64_t fusedLoopNestComputeCost; |
| auto fraction = getAdditionalComputeFraction( |
| srcForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, |
| sliceCost, fusedLoopNestComputeCost); |
| if (!fraction || fraction > 0) { |
| LDBG() << "Can't perform maximal fusion with a cyclic dependence " |
| << "and non-zero additional compute."; |
| return; |
| } |
| } else { |
| // Set redundant computation tolerance to zero regardless of what |
| // the user specified. Without this, fusion would be invalid. |
| LDBG() << "Setting compute tolerance to zero since " |
| << "source has a cylic dependence."; |
| computeToleranceThresholdToUse = 0; |
| } |
| } |
| |
| // Check if fusion would be profitable. We skip profitability analysis |
| // for maximal fusion since we already know the maximal legal depth to |
| // fuse. |
| unsigned bestDstLoopDepth = maxLegalFusionDepth; |
| if (!maximalFusion) { |
| // Retrieve producer stores from the src loop. |
| SmallVector<Operation *, 2> producerStores; |
| for (Operation *op : srcNode->stores) |
| if (producerConsumerMemrefs.count( |
| cast<AffineWriteOpInterface>(op).getMemRef())) |
| producerStores.push_back(op); |
| |
| assert(!producerStores.empty() && "Expected producer store"); |
| if (!isFusionProfitable(srcAffineForOp, producerStores, |
| dstAffineForOp, depthSliceUnions, |
| maxLegalFusionDepth, &bestDstLoopDepth, |
| computeToleranceThresholdToUse)) { |
| continue; |
| } |
| } |
| |
| assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
| ComputationSliceState &bestSlice = |
| depthSliceUnions[bestDstLoopDepth - 1]; |
| assert(!bestSlice.isEmpty() && "Missing slice union for depth"); |
| |
| // Determine if 'srcId' can be removed after fusion, taking into |
| // account remaining dependences, escaping memrefs and the fusion |
| // insertion point. |
| bool removeSrcNode = canRemoveSrcNodeAfterFusion( |
| srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs, |
| *mdg); |
| |
| DenseSet<Value> privateMemrefs; |
| for (Value memref : producerConsumerMemrefs) { |
| if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, srcId, dstId, |
| removeSrcNode)) { |
| // Create a private version of this memref. |
| LDBG() << "Creating private memref for " << memref; |
| // Create a private version of this memref. |
| privateMemrefs.insert(memref); |
| } |
| } |
| |
| // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. |
| fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); |
| dstNodeChanged = true; |
| |
| LDBG() << "Fused src loop " << srcId << " into dst loop " << dstId |
| << " at depth " << bestDstLoopDepth << ":"; |
| LDBG() << dstAffineForOp; |
| |
| // Move 'dstAffineForOp' before 'insertPointInst' if needed. |
| if (fusedLoopInsPoint != dstAffineForOp) |
| dstAffineForOp->moveBefore(fusedLoopInsPoint); |
| |
| // Update edges between 'srcNode' and 'dstNode'. |
| mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs, |
| removeSrcNode); |
| |
| // Create private memrefs. |
| if (!privateMemrefs.empty()) { |
| // Note the block into which fusion was performed. This can be used to |
| // place `alloc`s that create private memrefs. |
| Block *sliceInsertionBlock = bestSlice.insertPoint->getBlock(); |
| |
| // Gather stores for all the private-to-be memrefs. |
| DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores; |
| dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { |
| Value storeMemRef = storeOp.getMemRef(); |
| if (privateMemrefs.count(storeMemRef) > 0) |
| privateMemRefToStores[storeMemRef].push_back(storeOp); |
| }); |
| |
| // Replace original memrefs with private memrefs. Note that all the |
| // loads and stores on these memrefs will be replaced with a new |
| // loads and stores. Any reference to the original ones becomes |
| // invalid after this point. |
| for (auto &memrefToStoresPair : privateMemRefToStores) { |
| ArrayRef<Operation *> storesForMemref = memrefToStoresPair.second; |
| Value newMemRef = createPrivateMemRef( |
| dstAffineForOp, storesForMemref, bestDstLoopDepth, |
| fastMemorySpace, sliceInsertionBlock, localBufSizeThreshold); |
| if (!newMemRef) |
| continue; |
| // Create new node in dependence graph for 'newMemRef' alloc op. |
| unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp()); |
| // Add edge from 'newMemRef' node to dstNode. |
| mdg->addEdge(newMemRefNodeId, dstId, newMemRef); |
| } |
| // One or more entries for 'newMemRef' alloc op are inserted into |
| // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to |
| // reallocate, update dstNode. |
| dstNode = mdg->getNode(dstId); |
| } |
| |
| // Collect dst loop stats after memref privatization transformation. |
| LoopNestStateCollector dstLoopCollector; |
| dstLoopCollector.collect(dstAffineForOp); |
| |
| // Clear and add back loads and stores. |
| mdg->clearNodeLoadAndStores(dstNode->id); |
| mdg->addToNode( |
| dstId, dstLoopCollector.loadOpInsts, dstLoopCollector.storeOpInsts, |
| dstLoopCollector.memrefLoads, dstLoopCollector.memrefStores, |
| dstLoopCollector.memrefFrees); |
| |
| if (removeSrcNode) { |
| LDBG() << "Removing src loop " << srcId << " after fusion"; |
| // srcNode is no longer valid after it is removed from mdg. |
| srcAffineForOp.erase(); |
| mdg->removeNode(srcId); |
| srcNode = nullptr; |
| } |
| } |
| } while (dstNodeChanged); |
| } |
| |
| /// Visit each node in the graph, and for each node, attempt to fuse it with |
| /// producer-consumer candidates. No fusion is performed when producers with a |
| /// user count greater than `maxSrcUserCount` for any of the memrefs involved |
| /// are encountered. |
| void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { |
| LDBG() << "--- Producer/Consumer Fusion ---"; |
| init(); |
| while (!worklist.empty()) { |
| unsigned dstId = worklist.back(); |
| worklist.pop_back(); |
| performFusionsIntoDest(dstId, maxSrcUserCount); |
| } |
| } |
| |
| // Visits each node in the graph, and for each node, attempts to fuse it with |
| // its sibling nodes (nodes which share a parent, but no dependence edges). |
| void fuseSiblingNodes() { |
| LDBG() << "--- Sibling Fusion ---"; |
| init(); |
| while (!worklist.empty()) { |
| unsigned dstId = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip if this node was removed (fused into another node). |
| if (mdg->nodes.count(dstId) == 0) |
| continue; |
| // Get 'dstNode' into which to attempt fusion. |
| auto *dstNode = mdg->getNode(dstId); |
| // Skip if 'dstNode' is not a loop nest. |
| if (!isa<AffineForOp>(dstNode->op)) |
| continue; |
| // Attempt to fuse 'dstNode' with its sibling nodes in the graph. |
| fuseWithSiblingNodes(dstNode); |
| } |
| } |
| |
| // Attempt to fuse 'dstNode' with sibling nodes in the graph. |
| void fuseWithSiblingNodes(Node *dstNode) { |
| DenseSet<unsigned> visitedSibNodeIds; |
| std::pair<unsigned, Value> idAndMemref; |
| auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
| |
| while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { |
| unsigned sibId = idAndMemref.first; |
| Value memref = idAndMemref.second; |
| // TODO: Check that 'sibStoreOpInst' post-dominates all other |
| // stores to the same memref in 'sibNode' loop nest. |
| auto *sibNode = mdg->getNode(sibId); |
| // Compute an operation list insertion point for the fused loop |
| // nest which preserves dependences. |
| assert(sibNode->op->getBlock() == dstNode->op->getBlock()); |
| Operation *insertPointInst = |
| sibNode->op->isBeforeInBlock(dstNode->op) |
| ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) |
| : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); |
| if (insertPointInst == nullptr) |
| continue; |
| |
| // Check if fusion would be profitable and at what depth. |
| |
| // Get unique 'sibNode' load op to 'memref'. |
| SmallVector<Operation *, 2> sibLoadOpInsts; |
| sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); |
| // Currently findSiblingNodeToFuse searches for siblings with one load. |
| Operation *sibLoadOpInst = llvm::getSingleElement(sibLoadOpInsts); |
| |
| // Gather 'dstNode' load ops to 'memref'. |
| SmallVector<Operation *, 2> dstLoadOpInsts; |
| dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); |
| |
| // It's possible this fusion is at an inner depth (i.e., there are common |
| // surrounding affine loops for the source and destination for ops). We |
| // need to get this number because the call to canFuseLoops needs to be |
| // passed the absolute depth. The max legal depth and the depths we try |
| // below are however *relative* and as such don't include the common |
| // depth. |
| SmallVector<AffineForOp, 4> surroundingLoops; |
| getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
| unsigned numSurroundingLoops = surroundingLoops.size(); |
| SmallVector<AffineForOp, 4> dstLoopIVs; |
| getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs); |
| unsigned dstLoopDepthTest = dstLoopIVs.size() - numSurroundingLoops; |
| auto sibAffineForOp = cast<AffineForOp>(sibNode->op); |
| |
| // Compute loop depth and slice union for fusion. |
| SmallVector<ComputationSliceState, 8> depthSliceUnions; |
| depthSliceUnions.resize(dstLoopDepthTest); |
| unsigned maxLegalFusionDepth = 0; |
| FusionStrategy strategy(memref); |
| for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
| FusionResult result = |
| affine::canFuseLoops(sibAffineForOp, dstAffineForOp, |
| /*dstLoopDepth=*/i + numSurroundingLoops, |
| &depthSliceUnions[i - 1], strategy); |
| |
| if (result.value == FusionResult::Success) |
| maxLegalFusionDepth = i; |
| } |
| |
| LDBG() << "Max legal depth for fusion: " << maxLegalFusionDepth; |
| |
| // Skip if fusion is not feasible at any loop depths. |
| if (maxLegalFusionDepth == 0) |
| continue; |
| |
| double computeToleranceThresholdToUse = computeToleranceThreshold; |
| |
| // Cyclic dependences in the source nest may be violated when performing |
| // slicing-based fusion. They aren't actually violated in cases where no |
| // redundant execution of the source happens (1:1 pointwise dep on the |
| // producer-consumer memref access for example). Check this and allow |
| // fusion accordingly. |
| if (hasCyclicDependence(sibAffineForOp)) { |
| LDBG() << "Source nest has a cyclic dependence."; |
| // Maximal fusion does not check for compute tolerance threshold; so |
| // perform the maximal fusion only when the redundanation computation is |
| // zero. |
| if (maximalFusion) { |
| auto dstForOp = cast<AffineForOp>(dstNode->op); |
| int64_t sliceCost; |
| int64_t fusedLoopNestComputeCost; |
| auto fraction = getAdditionalComputeFraction( |
| sibAffineForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, |
| sliceCost, fusedLoopNestComputeCost); |
| if (!fraction || fraction > 0) { |
| LDBG() << "Can't perform maximal fusion with a cyclic dependence " |
| << "and non-zero additional compute."; |
| return; |
| } |
| } else { |
| // Set redundant computation tolerance to zero regardless of what the |
| // user specified. Without this, fusion would be invalid. |
| LDBG() << "Setting compute tolerance to zero since " |
| << "source has a cyclic dependence."; |
| computeToleranceThresholdToUse = 0.0; |
| } |
| } |
| |
| unsigned bestDstLoopDepth = maxLegalFusionDepth; |
| if (!maximalFusion) { |
| // Check if fusion would be profitable. For sibling fusion, the sibling |
| // load op is treated as the src "store" op for fusion profitability |
| // purposes. The footprint of the load in the slice relative to the |
| // unfused source's determines reuse. |
| if (!isFusionProfitable(sibAffineForOp, sibLoadOpInst, dstAffineForOp, |
| depthSliceUnions, maxLegalFusionDepth, |
| &bestDstLoopDepth, |
| computeToleranceThresholdToUse)) |
| continue; |
| } |
| |
| assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
| |
| const ComputationSliceState &bestSlice = |
| depthSliceUnions[bestDstLoopDepth - 1]; |
| assert(!bestSlice.isEmpty() && |
| "Fusion depth has no computed slice union"); |
| |
| // Do not perform sibling fusion if it isn't maximal. We always remove the |
| // sibling node and as such fusion shouldn't be performed if a part of the |
| // slice is used in the destination. |
| auto isMaximal = bestSlice.isMaximal(); |
| if (!isMaximal.value_or(false)) { |
| LDBG() << "Slice isn't maximal; not performing sibling fusion."; |
| continue; |
| } |
| |
| // Check if source loop is being inserted in the innermost |
| // destination loop. Based on this, the fused loop may be optimized |
| // further inside `fuseLoops`. |
| bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); |
| // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. |
| affine::fuseLoops(sibAffineForOp, dstAffineForOp, bestSlice, |
| isInnermostInsertion); |
| |
| auto dstForInst = cast<AffineForOp>(dstNode->op); |
| // Update operation position of fused loop nest (if needed). |
| if (insertPointInst != dstForInst) |
| dstForInst->moveBefore(insertPointInst); |
| |
| LDBG() << "Fused sibling nest " << sibId << " into destination nest " |
| << dstNode->id << " at depth " << bestDstLoopDepth << ":"; |
| LDBG() << dstAffineForOp; |
| |
| // Update data dependence graph state post fusion. |
| updateStateAfterSiblingFusion(sibNode, dstNode); |
| |
| // Remove old sibling loop nest. |
| // Get op before we invalidate the MDG node. |
| Operation *op = sibNode->op; |
| mdg->removeNode(sibNode->id); |
| op->erase(); |
| } |
| } |
| |
| // Searches block argument uses and the graph from 'dstNode' looking for a |
| // fusion candidate sibling node which shares no dependences with 'dstNode' |
| // but which loads from the same memref. Returns true and sets |
| // 'idAndMemrefToFuse' on success. Returns false otherwise. |
| bool findSiblingNodeToFuse(Node *dstNode, |
| DenseSet<unsigned> *visitedSibNodeIds, |
| std::pair<unsigned, Value> *idAndMemrefToFuse) { |
| // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse |
| // on 'memref'. |
| auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { |
| // Skip if 'outEdge' is not a read-after-write dependence. |
| // TODO: Remove restrict to single load op restriction. |
| if (sibNode->getLoadOpCount(memref) != 1) |
| return false; |
| // Skip if there exists a path of dependent edges between |
| // 'sibNode' and 'dstNode'. |
| if (mdg->hasDependencePath(sibNode->id, dstNode->id) || |
| mdg->hasDependencePath(dstNode->id, sibNode->id)) |
| return false; |
| // Skip sib node if it loads to (and stores from) the same memref on |
| // which it also has an input dependence edge. |
| DenseSet<Value> loadAndStoreMemrefSet; |
| sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); |
| if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { |
| return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; |
| })) |
| return false; |
| |
| // Check that all stores are to the same memref if any. |
| DenseSet<Value> storeMemrefs; |
| for (auto *storeOpInst : sibNode->stores) { |
| storeMemrefs.insert( |
| cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); |
| } |
| return storeMemrefs.size() <= 1; |
| }; |
| |
| // Search for siblings which load the same memref block argument. |
| Block *block = dstNode->op->getBlock(); |
| for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) { |
| for (Operation *user : block->getArgument(i).getUsers()) { |
| auto loadOp = dyn_cast<AffineReadOpInterface>(user); |
| if (!loadOp) |
| continue; |
| // Gather loops surrounding 'use'. |
| SmallVector<AffineForOp, 4> loops; |
| getAffineForIVs(*user, &loops); |
| // Skip 'use' if it is not within a loop nest. |
| // Find the surrounding affine.for nested immediately within the |
| // block. |
| auto *it = llvm::find_if(loops, [&](AffineForOp loop) { |
| return loop->getBlock() == &mdg->block; |
| }); |
| // Skip 'use' if it is not within a loop nest in `block`. |
| if (it == loops.end()) |
| continue; |
| Node *sibNode = mdg->getForOpNode(*it); |
| assert(sibNode != nullptr); |
| // Skip 'use' if it not a sibling to 'dstNode'. |
| if (sibNode->id == dstNode->id) |
| continue; |
| // Skip 'use' if it has been visited. |
| if (visitedSibNodeIds->count(sibNode->id) > 0) |
| continue; |
| // Skip 'use' if it does not load from the same memref as 'dstNode'. |
| auto memref = loadOp.getMemRef(); |
| if (dstNode->getLoadOpCount(memref) == 0) |
| continue; |
| // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
| if (canFuseWithSibNode(sibNode, memref)) { |
| visitedSibNodeIds->insert(sibNode->id); |
| idAndMemrefToFuse->first = sibNode->id; |
| idAndMemrefToFuse->second = memref; |
| return true; |
| } |
| } |
| } |
| |
| // Search for siblings by following edges through an intermediate src node. |
| // Collect candidate 'dstNode' input edges in 'inEdges'. |
| SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; |
| mdg->forEachMemRefInputEdge( |
| dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { |
| // Add 'inEdge' if it is a read-after-write dependence or an edge |
| // from a memref defining op (e.g. view-like op or alloc op). |
| if (dstNode->getLoadOpCount(inEdge.value) > 0 && |
| (mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0 || |
| inEdge.value.getDefiningOp() == mdg->getNode(inEdge.id)->op)) |
| inEdges.push_back(inEdge); |
| }); |
| |
| // Search for sibling nodes to fuse by visiting output edges from each input |
| // edge in 'inEdges'. |
| for (auto &inEdge : inEdges) { |
| // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. |
| SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; |
| mdg->forEachMemRefOutputEdge( |
| inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { |
| unsigned sibNodeId = outEdge.id; |
| if (visitedSibNodeIds->count(sibNodeId) > 0) |
| return; |
| // Skip output edge if not a sibling using the same memref. |
| if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) |
| return; |
| auto *sibNode = mdg->getNode(sibNodeId); |
| if (!isa<AffineForOp>(sibNode->op)) |
| return; |
| // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
| if (canFuseWithSibNode(sibNode, outEdge.value)) { |
| // Add candidate 'outEdge' to sibling node. |
| outEdges.push_back(outEdge); |
| } |
| }); |
| |
| // Add first candidate if any were returned. |
| if (!outEdges.empty()) { |
| visitedSibNodeIds->insert(outEdges[0].id); |
| idAndMemrefToFuse->first = outEdges[0].id; |
| idAndMemrefToFuse->second = outEdges[0].value; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Update data dependence graph state to reflect sibling fusion of 'sibNode' |
| /// into 'dstNode'. |
| void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { |
| // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. |
| mdg->updateEdges(sibNode->id, dstNode->id); |
| |
| // Collect dst loop stats after memref privatization transformation. |
| auto dstForInst = cast<AffineForOp>(dstNode->op); |
| LoopNestStateCollector dstLoopCollector; |
| dstLoopCollector.collect(dstForInst); |
| // Clear and add back loads and stores |
| mdg->clearNodeLoadAndStores(dstNode->id); |
| mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, |
| dstLoopCollector.storeOpInsts, dstLoopCollector.memrefLoads, |
| dstLoopCollector.memrefStores, dstLoopCollector.memrefFrees); |
| } |
| |
| // Clean up any allocs with no users. |
| void eraseUnusedMemRefAllocations() { |
| for (auto &pair : mdg->memrefEdgeCount) { |
| if (pair.second > 0) |
| continue; |
| auto memref = pair.first; |
| // Skip if there exist other uses (return operation or function calls). |
| if (!memref.use_empty()) |
| continue; |
| // Use list expected to match the dep graph info. |
| auto *op = memref.getDefiningOp(); |
| if (isa_and_nonnull<memref::AllocOp>(op)) |
| op->erase(); |
| } |
| } |
| }; |
| |
| } // namespace |
| |
| /// Run fusion on `block`. |
| void LoopFusion::runOnBlock(Block *block) { |
| MemRefDependenceGraph g(*block); |
| if (!g.init()) { |
| LDBG() << "MDG init failed"; |
| return; |
| } |
| |
| std::optional<unsigned> fastMemorySpaceOpt; |
| if (fastMemorySpace.hasValue()) |
| fastMemorySpaceOpt = fastMemorySpace; |
| unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; |
| GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, |
| maximalFusion, computeToleranceThreshold); |
| |
| if (affineFusionMode == FusionMode::ProducerConsumer) |
| fusion.runProducerConsumerFusionOnly(); |
| else if (affineFusionMode == FusionMode::Sibling) |
| fusion.runSiblingFusionOnly(); |
| else |
| fusion.runGreedyFusion(); |
| } |
| |
| void LoopFusion::runOnOperation() { |
| // Call fusion on every op that has at least two affine.for nests (in post |
| // order). |
| getOperation()->walk([&](Operation *op) { |
| for (Region ®ion : op->getRegions()) { |
| for (Block &block : region.getBlocks()) { |
| auto affineFors = block.getOps<AffineForOp>(); |
| if (!affineFors.empty() && !llvm::hasSingleElement(affineFors)) |
| runOnBlock(&block); |
| } |
| } |
| }); |
| } |
| |
| std::unique_ptr<Pass> mlir::affine::createLoopFusionPass( |
| unsigned fastMemorySpace, uint64_t localBufSizeThreshold, |
| bool maximalFusion, enum FusionMode affineFusionMode) { |
| return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold, |
| maximalFusion, affineFusionMode); |
| } |