| //===- TransposeMatmul.cpp - Convert Linalg matmul to transposed variants -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // This is intended to be a simple high-level (target-agnostic) matmul |
| // transposition transformation. |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/IR/PatternMatch.h" |
| |
| #define DEBUG_TYPE "linalg-transpose-matmul" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| /// Pattern to replace |
| /// |
| /// linalg.matmul(a, b) |
| /// |
| /// with |
| /// |
| /// linalg.matmul_transpose_a(linalg.transpose(a), b) |
| /// |
| /// By default the LHS is transposed. Set `transposeLHS=false` to |
| /// transpose RHS instead. |
| FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter, |
| linalg::MatmulOp matmulOp, |
| bool transposeLHS) { |
| // Check to not let go the matmul with extended semantic, through this |
| // transform. |
| if (matmulOp.hasUserDefinedMaps()) { |
| return rewriter.notifyMatchFailure( |
| matmulOp, "only matmul ops with non-extended semantics are supported"); |
| } |
| |
| if (!matmulOp.hasPureTensorSemantics()) |
| return rewriter.notifyMatchFailure( |
| matmulOp, "only matmul ops with tensors are supported"); |
| |
| Location loc = matmulOp.getLoc(); |
| Value input = matmulOp.getInputs()[transposeLHS ? 0 : 1]; |
| auto type = cast<ShapedType>(input.getType()); |
| |
| SmallVector<Value> dynamicDims; |
| if (type.isDynamicDim(1)) |
| dynamicDims.push_back(tensor::DimOp::create(rewriter, loc, input, 1)); |
| if (type.isDynamicDim(0)) |
| dynamicDims.push_back(tensor::DimOp::create(rewriter, loc, input, 0)); |
| |
| ArrayRef<int64_t> shape = type.getShape(); |
| Value empty = tensor::EmptyOp::create(rewriter, loc, |
| ArrayRef<int64_t>{shape[1], shape[0]}, |
| type.getElementType(), dynamicDims); |
| auto transposeOp = linalg::TransposeOp::create(rewriter, loc, input, empty, |
| ArrayRef<int64_t>{1, 0}); |
| Operation *newMatmulOp; |
| if (transposeLHS) { |
| newMatmulOp = MatmulTransposeAOp::create( |
| rewriter, loc, matmulOp.getResultTypes(), |
| ValueRange{transposeOp->getResult(0), matmulOp.getInputs()[1]}, |
| matmulOp.getOutputs()); |
| } else { |
| newMatmulOp = MatmulTransposeBOp::create( |
| rewriter, loc, matmulOp.getResultTypes(), |
| ValueRange{matmulOp.getInputs()[0], transposeOp->getResult(0)}, |
| matmulOp.getOutputs()); |
| } |
| rewriter.replaceOp(matmulOp, newMatmulOp); |
| return newMatmulOp; |
| } |
| |
| /// Pattern to replace |
| /// |
| /// linalg.batch_matmul(a, b) |
| /// |
| /// with |
| /// |
| /// linalg.batch_matmul_transpose_a(linalg.transpose(a), b) |
| /// |
| /// Only the non-batch dimensions are transposed. By default the LHS is |
| /// transposed. Set `transposeLHS=false` to transpose RHS instead. |
| FailureOr<Operation *> |
| mlir::linalg::transposeBatchMatmul(RewriterBase &rewriter, |
| linalg::BatchMatmulOp batchMatmulOp, |
| bool transposeLHS) { |
| if (batchMatmulOp.hasUserDefinedMaps()) { |
| return rewriter.notifyMatchFailure( |
| batchMatmulOp, "ops with user-defined maps are not supported"); |
| } |
| |
| if (!batchMatmulOp.hasPureTensorSemantics()) |
| return rewriter.notifyMatchFailure( |
| batchMatmulOp, "only matmul ops with tensors are supported"); |
| |
| Location loc = batchMatmulOp.getLoc(); |
| Value input = batchMatmulOp.getInputs()[transposeLHS ? 0 : 1]; |
| auto type = cast<ShapedType>(input.getType()); |
| |
| SmallVector<Value> dynamicDims; |
| if (type.isDynamicDim(0)) |
| dynamicDims.push_back(tensor::DimOp::create(rewriter, loc, input, 0)); |
| if (type.isDynamicDim(2)) |
| dynamicDims.push_back(tensor::DimOp::create(rewriter, loc, input, 2)); |
| if (type.isDynamicDim(1)) |
| dynamicDims.push_back(tensor::DimOp::create(rewriter, loc, input, 1)); |
| |
| ArrayRef<int64_t> shape = type.getShape(); |
| Value empty = tensor::EmptyOp::create( |
| rewriter, loc, ArrayRef<int64_t>{shape[0], shape[2], shape[1]}, |
| type.getElementType(), dynamicDims); |
| auto transposeOp = linalg::TransposeOp::create(rewriter, loc, input, empty, |
| ArrayRef<int64_t>{0, 2, 1}); |
| Operation *newMatmulOp; |
| if (transposeLHS) { |
| newMatmulOp = BatchMatmulTransposeAOp::create( |
| rewriter, loc, batchMatmulOp.getResultTypes(), |
| ValueRange{transposeOp->getResult(0), batchMatmulOp.getInputs()[1]}, |
| batchMatmulOp.getOutputs()); |
| } else { |
| newMatmulOp = BatchMatmulTransposeBOp::create( |
| rewriter, loc, batchMatmulOp.getResultTypes(), |
| ValueRange{batchMatmulOp.getInputs()[0], transposeOp->getResult(0)}, |
| batchMatmulOp.getOutputs()); |
| } |
| rewriter.replaceOp(batchMatmulOp, newMatmulOp); |
| return newMatmulOp; |
| } |
| |
| namespace { |
| struct TransposeMatmul final : public OpRewritePattern<linalg::MatmulOp> { |
| TransposeMatmul(MLIRContext *ctx, bool transposeLHS) |
| : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
| |
| LogicalResult matchAndRewrite(linalg::MatmulOp op, |
| PatternRewriter &rewriter) const override { |
| if (failed(transposeMatmul(rewriter, op, transposeLHS))) { |
| return failure(); |
| } |
| return success(); |
| } |
| |
| private: |
| bool transposeLHS; |
| }; |
| |
| struct TransposeBatchMatmul final |
| : public OpRewritePattern<linalg::BatchMatmulOp> { |
| TransposeBatchMatmul(MLIRContext *ctx, bool transposeLHS) |
| : OpRewritePattern(ctx), transposeLHS(transposeLHS) {} |
| |
| LogicalResult matchAndRewrite(linalg::BatchMatmulOp op, |
| PatternRewriter &rewriter) const override { |
| if (failed(transposeBatchMatmul(rewriter, op, transposeLHS))) { |
| return failure(); |
| } |
| return success(); |
| } |
| |
| private: |
| bool transposeLHS; |
| }; |
| } // namespace |
| |
| void mlir::linalg::populateTransposeMatmulPatterns(RewritePatternSet &patterns, |
| bool transposeLHS) { |
| patterns.add<TransposeMatmul, TransposeBatchMatmul>(patterns.getContext(), |
| transposeLHS); |
| } |