| //===- Specialize.cpp - linalg generic ops to named ops ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a method to specialize generic operations to named |
| // operations. Conceptually it is the opposite of generalize.cpp. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Complex/IR/Complex.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h" |
| #include "mlir/Dialect/Linalg/Passes.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Math/IR/Math.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_LINALGSPECIALIZEGENERICOPSPASS |
| #include "mlir/Dialect/Linalg/Passes.h.inc" |
| } // namespace mlir |
| |
| #define DEBUG_TYPE "linalg-specialization" |
| |
| #define REPLACE_BINARY_OP(NEWOP, OPERANDS_SWAP) \ |
| (rewriter.replaceOpWithNewOp<NEWOP>( \ |
| genericOp, \ |
| ValueRange{genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 1 : 0], \ |
| genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 0 : 1]}, \ |
| ValueRange{genericOp.getDpsInits()[0]})) |
| |
| #define REPLACE_UNARY_OP(NEWOP) \ |
| (rewriter.replaceOpWithNewOp<NEWOP>(genericOp, \ |
| ValueRange{genericOp.getDpsInputs()[0]}, \ |
| ValueRange{genericOp.getDpsInits()[0]})) |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| // Given a elementwise single binary linalg generic op, checks whether the |
| // binary op accesses operands as swapped. e.g. |
| // this differentiates between a linalg-generic body that contains: |
| // ^bb0(%a: f32, %b: f32, %c : f32): |
| // %0 = arith.subf %a, %b : f32 |
| // linalg.yield %0: f32 |
| // against: |
| // ^bb0(%a: f32, %b: f32, %c : f32): |
| // %0 = arith.subf %b, %a : f32 |
| // linalg.yield %0: f32 |
| // Former is linalg.sub(a,b), latter is linalg.sub(b,a). |
| static bool areBinOpsSwapped(GenericOp genericOp) { |
| Block *body = genericOp.getBody(); |
| Operation *op = &body->front(); |
| bool swapped = false; |
| if (op->getOpOperand(0).get() != body->getArgument(0)) { |
| swapped = true; |
| assert(op->getOpOperand(0).get() == body->getArgument(1) && |
| op->getOpOperand(1).get() == body->getArgument(0) && |
| "binary op uses just one block arg"); |
| } |
| return swapped; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Specialize linalg generic to matmul variants. |
| //===----------------------------------------------------------------------===// |
| /// Identifies linalg.generic that is essentially named op of the form: |
| // ` linalg.{batch_}?matmul{_transpose_a | _transpose_b}? ` |
| // |
| // It is possible that a linalg.generic may be implementing a matmul but not |
| // in a straight-forward way e.g. below is matrix multiply over some slice |
| // ``` |
| // %0 = linalg.generic { |
| // indexing_maps = [affine_map<(d0, d1, d2) -> (3, d1, d0)>, |
| // affine_map<(d0, d1, d2) -> (d0, 5, d2)>, |
| // affine_map<(d0, d1, d2) -> (d2, d1, 13)>], |
| // iterator_types = ["parallel", "parallel", "parallel"]} |
| // ins(%A, %B : tensor<20x20x20xf32>, tensor<20x20x20xf32>) |
| // outs(%C : tensor<20x20x20xf32>) { |
| // ^bb0(%a: f32, %b: f32, %c : f32): |
| // %mul = arith.mulf %a, %b : f32 |
| // %add = arith.addf %mul, %c : f32 |
| // linalg.yield %add : f32 |
| // } -> tensor<20x20x20xf32> |
| // ``` |
| // It is not possible to represent above as named op. |
| // e.g. linalg.batch_matmul(%A, %B : tensor<20x20x20xf32>, ...) is |
| // not the same as linalg.generic above. |
| namespace { |
| enum class IndexMatchResult { |
| Match = 0, // identity map. |
| Transposed, // transposed map. |
| Mismatch // none of the above. |
| }; |
| |
| // Checks whether the input Affine `map` contains two consecutive dims that |
| // can be interpreted as accessing a 2D matrix. It is assumed that the row |
| // column dimension are adjacent axis (in this order) and start at |
| // `rowDimIdx` in the input map. |
| // |
| // e.g. consider A matrix in `C[M,N] = A[M,K] * B[K,N]`. We will check |
| // whether the map of A is identity (match), transposed, or something |
| // completely different (mis-match). Similar for B and C. |
| static IndexMatchResult matchOperandMap(AffineMap map, unsigned rowDimIdx, |
| unsigned expectedPosOfRowDim, |
| unsigned expectedPosOfColDim) { |
| // Get the matrix multiply indices. They are past the batch indices. |
| auto exprOfRowDim = map.getResults()[rowDimIdx]; |
| auto exprOfColDim = map.getResults()[rowDimIdx + 1]; |
| |
| // They should be pure dimension ids. |
| if (exprOfRowDim.getKind() != AffineExprKind::DimId || |
| exprOfColDim.getKind() != AffineExprKind::DimId) |
| return IndexMatchResult::Mismatch; |
| |
| auto posRowDim = cast<AffineDimExpr>(exprOfRowDim).getPosition(); |
| auto posColDim = cast<AffineDimExpr>(exprOfColDim).getPosition(); |
| |
| if (expectedPosOfRowDim == posRowDim && expectedPosOfColDim == posColDim) |
| return IndexMatchResult::Match; |
| |
| if (expectedPosOfRowDim == posColDim && expectedPosOfColDim == posRowDim) |
| return IndexMatchResult::Transposed; |
| |
| return IndexMatchResult::Mismatch; |
| } |
| |
| // Replaces genericOp with `NamedOpTy` op, supplied as a template arg. |
| // All the variants expressed as pseudo regular expression: |
| // `linalg.{batch_}?matmul{_transpose_a | _transpose_b}?` |
| // have same number of ins/out, so its easy to stamp different versions. |
| template <typename NamedOpTy> |
| static LinalgOp replaceWithMatmulVariant(RewriterBase &rewriter, GenericOp op) { |
| LinalgOp namedOp = rewriter.replaceOpWithNewOp<NamedOpTy>( |
| op, ValueRange{op.getDpsInputs()[0], op.getDpsInputs()[1]}, |
| ValueRange{op.getDpsInits()[0]}); |
| return namedOp; |
| } |
| |
| // Converts linalg.generic to named linalg.*matmul* where possible. |
| static FailureOr<LinalgOp> specializeLinalgContractions(RewriterBase &rewriter, |
| GenericOp genericOp) { |
| if (genericOp.getNumDpsInputs() != 2 || genericOp.getNumDpsInits() != 1) |
| return failure(); |
| |
| // Early exit if not projected permutations. |
| auto mapRange = genericOp.getIndexingMapsArray(); |
| if (llvm::any_of(mapRange, |
| [](AffineMap m) { return !m.isProjectedPermutation(); })) |
| return failure(); |
| |
| // Linalg generic contraction can be across multiple axis e.g. |
| // ``` |
| // linalg.generic |
| // {indexing_maps = [affine_map<(m, n, k1, k2) -> (m, k1, k2)>, |
| // affine_map<(m, n, k1, k2) -> (k2, k1, n)>, |
| // affine_map<(m, n, k1, k2) -> (m, n)>], |
| // iterator_types = ["parallel", "parallel", |
| // "reduction", "reduction"]} |
| // ins(%A, %B : tensor<10x20x30xf32>, tensor<30x20x40xf32>) |
| // outs(%C : tensor<10x40xf32>) { |
| // ^bb0(%a: f32, %b: f32, %c: f32): |
| // %1 = arith.mulf %a, %b : f32 |
| // %2 = arith.addf %c, %1 : f32 |
| // linalg.yield %2 : f32 |
| // } -> tensor<10x40xf32> |
| // ``` |
| // In above contraction, there are two reduction dimensions {k1, k2} |
| // and although a valid linalg contraction, it is not a named-op |
| // matrix multiply kind. Therefore, reject multi-dim reduction. |
| auto res = inferContractionDims(genericOp); |
| if (!succeeded(res)) |
| return failure(); |
| auto dims = *res; |
| if (dims.m.size() != 1 || dims.n.size() != 1 || dims.k.size() != 1) |
| return failure(); |
| |
| if (!mlir::linalg::detail::isContractionBody( |
| *genericOp.getBlock(), [](Operation *first, Operation *second) { |
| return (isa<arith::MulFOp>(first) && isa<arith::AddFOp>(second)) || |
| (isa<arith::MulIOp>(first) && isa<arith::AddIOp>(second)) || |
| (isa<complex::MulOp>(first) && isa<complex::AddOp>(second)); |
| })) |
| return failure(); |
| |
| // Check rank of operands |
| auto indexingMaps = genericOp.getIndexingMapsArray(); |
| if (llvm::any_of(indexingMaps, [&dims](AffineMap m) { |
| return m.getResults().size() != |
| dims.batch.size() + 2 /* any two of {m,n,k} */; |
| })) |
| return failure(); |
| |
| auto numOfBatchDims = dims.batch.size(); |
| if (indexingMaps[0].getNumDims() != numOfBatchDims + 3) |
| return failure(); |
| |
| if (numOfBatchDims) { |
| // Each operand in a linalg generic contraction could express different |
| // permutations for its batch dimension. But for named op it must be |
| // identity since separate maps are not specified. |
| if (llvm::any_of(indexingMaps, [numOfBatchDims](AffineMap m) { |
| for (unsigned i = 0; i < numOfBatchDims; ++i) { |
| auto expr = m.getResults()[i]; |
| if (expr.getKind() != AffineExprKind::DimId || |
| cast<AffineDimExpr>(expr).getPosition() != i) |
| return true; |
| } |
| return false; |
| })) |
| return failure(); |
| } |
| |
| auto a = |
| matchOperandMap(indexingMaps[0], numOfBatchDims, dims.m[0], dims.k[0]); |
| auto b = |
| matchOperandMap(indexingMaps[1], numOfBatchDims, dims.k[0], dims.n[0]); |
| auto c = |
| matchOperandMap(indexingMaps[2], numOfBatchDims, dims.m[0], dims.n[0]); |
| |
| if (llvm::is_contained({a, b, c}, IndexMatchResult::Mismatch)) |
| return failure(); |
| |
| if (c != IndexMatchResult::Match || |
| (a == IndexMatchResult::Transposed && b == IndexMatchResult::Transposed)) |
| return failure(); |
| |
| /// Codegen the different matmul variants. |
| if (numOfBatchDims) { |
| return replaceWithMatmulVariant<BatchMatmulOp>(rewriter, genericOp); |
| } |
| return replaceWithMatmulVariant<MatmulOp>(rewriter, genericOp); |
| } |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Categorize linalg generic to named op where possible. |
| //===----------------------------------------------------------------------===// |
| FailureOr<LinalgOp> mlir::linalg::specializeGenericOp(RewriterBase &rewriter, |
| GenericOp genericOp) { |
| // Copy |
| if (isaCopyOpInterface(genericOp)) { |
| LinalgOp namedOp = rewriter.replaceOpWithNewOp<CopyOp>( |
| genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0]); |
| return namedOp; |
| } |
| |
| // Fill |
| if (std::optional<Value> fillValue = isaFillOpInterface(genericOp)) { |
| // Always use the detected fill value, regardless of pattern |
| LinalgOp namedOp = rewriter.replaceOpWithNewOp<FillOp>( |
| genericOp, *fillValue, genericOp.getDpsInits()[0]); |
| return namedOp; |
| } |
| |
| // Broadcast |
| std::optional<SmallVector<int64_t>> equivalentToBroadcast = |
| isaBroadcastOpInterface(genericOp); |
| if (equivalentToBroadcast) { |
| auto dims = *equivalentToBroadcast; |
| LinalgOp namedOp = rewriter.replaceOpWithNewOp<BroadcastOp>( |
| genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0], |
| dims); |
| return namedOp; |
| } |
| |
| // Transpose |
| std::optional<SmallVector<int64_t>> equivalentToTranspose = |
| isaTransposeOpInterface(genericOp); |
| if (equivalentToTranspose) { |
| auto permutation = *equivalentToTranspose; |
| LinalgOp namedOp = rewriter.replaceOpWithNewOp<TransposeOp>( |
| genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0], |
| permutation); |
| return namedOp; |
| } |
| |
| // Elementwise Unary |
| if (isaElemwiseSingleUnaryOpInterface(genericOp)) { |
| Operation *op = &genericOp.getBody()->front(); |
| if (isa<math::ExpOp>(op)) { |
| LinalgOp namedOp = REPLACE_UNARY_OP(ExpOp); |
| return namedOp; |
| } |
| } |
| |
| // Elementwise Binary |
| if (isaElemwiseSingleBinaryOpInterface(genericOp)) { |
| bool swap = areBinOpsSwapped(genericOp); |
| Operation *op = &genericOp.getBody()->front(); |
| if (isa<arith::AddFOp>(op)) { |
| LinalgOp namedOp = REPLACE_BINARY_OP(AddOp, swap); |
| return namedOp; |
| } |
| if (isa<arith::SubFOp>(op)) { |
| LinalgOp namedOp = REPLACE_BINARY_OP(SubOp, swap); |
| return namedOp; |
| } |
| if (isa<arith::MulFOp>(op)) { |
| LinalgOp namedOp = REPLACE_BINARY_OP(MulOp, swap); |
| return namedOp; |
| } |
| if (isa<arith::DivFOp>(op)) { |
| LinalgOp namedOp = REPLACE_BINARY_OP(DivOp, swap); |
| return namedOp; |
| } |
| } |
| |
| // Contraction - e.g. matmul |
| if (isaContractionOpInterface(genericOp)) { |
| return specializeLinalgContractions(rewriter, genericOp); |
| } |
| return failure(); |
| } |
| |
| namespace { |
| struct LinalgSpecializeGenericOpsPass |
| : public impl::LinalgSpecializeGenericOpsPassBase< |
| LinalgSpecializeGenericOpsPass> { |
| |
| using impl::LinalgSpecializeGenericOpsPassBase< |
| LinalgSpecializeGenericOpsPass>::LinalgSpecializeGenericOpsPassBase; |
| void runOnOperation() override; |
| }; |
| } // namespace |
| |
| void LinalgSpecializeGenericOpsPass::runOnOperation() { |
| RewritePatternSet patterns(&getContext()); |
| populateLinalgGenericOpsSpecializationPatterns(patterns); |
| populateDecomposeProjectedPermutationPatterns(patterns); |
| |
| if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| signalPassFailure(); |
| } |
| |
| void mlir::linalg::populateLinalgGenericOpsSpecializationPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<LinalgSpecializationPattern>(patterns.getContext()); |
| } |