blob: 40fc0d68e358f4ccd62ace144d7fb0e68b6d8a6c [file] [log] [blame]
//===- Specialize.cpp - linalg generic ops to named ops ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a method to specialize generic operations to named
// operations. Conceptually it is the opposite of generalize.cpp.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGSPECIALIZEGENERICOPSPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "linalg-specialization"
#define REPLACE_BINARY_OP(NEWOP, OPERANDS_SWAP) \
(rewriter.replaceOpWithNewOp<NEWOP>( \
genericOp, \
ValueRange{genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 1 : 0], \
genericOp.getDpsInputs()[(OPERANDS_SWAP) ? 0 : 1]}, \
ValueRange{genericOp.getDpsInits()[0]}))
#define REPLACE_UNARY_OP(NEWOP) \
(rewriter.replaceOpWithNewOp<NEWOP>(genericOp, \
ValueRange{genericOp.getDpsInputs()[0]}, \
ValueRange{genericOp.getDpsInits()[0]}))
using namespace mlir;
using namespace mlir::linalg;
// Given a elementwise single binary linalg generic op, checks whether the
// binary op accesses operands as swapped. e.g.
// this differentiates between a linalg-generic body that contains:
// ^bb0(%a: f32, %b: f32, %c : f32):
// %0 = arith.subf %a, %b : f32
// linalg.yield %0: f32
// against:
// ^bb0(%a: f32, %b: f32, %c : f32):
// %0 = arith.subf %b, %a : f32
// linalg.yield %0: f32
// Former is linalg.sub(a,b), latter is linalg.sub(b,a).
static bool areBinOpsSwapped(GenericOp genericOp) {
Block *body = genericOp.getBody();
Operation *op = &body->front();
bool swapped = false;
if (op->getOpOperand(0).get() != body->getArgument(0)) {
swapped = true;
assert(op->getOpOperand(0).get() == body->getArgument(1) &&
op->getOpOperand(1).get() == body->getArgument(0) &&
"binary op uses just one block arg");
}
return swapped;
}
//===----------------------------------------------------------------------===//
// Specialize linalg generic to matmul variants.
//===----------------------------------------------------------------------===//
/// Identifies linalg.generic that is essentially named op of the form:
// ` linalg.{batch_}?matmul{_transpose_a | _transpose_b}? `
//
// It is possible that a linalg.generic may be implementing a matmul but not
// in a straight-forward way e.g. below is matrix multiply over some slice
// ```
// %0 = linalg.generic {
// indexing_maps = [affine_map<(d0, d1, d2) -> (3, d1, d0)>,
// affine_map<(d0, d1, d2) -> (d0, 5, d2)>,
// affine_map<(d0, d1, d2) -> (d2, d1, 13)>],
// iterator_types = ["parallel", "parallel", "parallel"]}
// ins(%A, %B : tensor<20x20x20xf32>, tensor<20x20x20xf32>)
// outs(%C : tensor<20x20x20xf32>) {
// ^bb0(%a: f32, %b: f32, %c : f32):
// %mul = arith.mulf %a, %b : f32
// %add = arith.addf %mul, %c : f32
// linalg.yield %add : f32
// } -> tensor<20x20x20xf32>
// ```
// It is not possible to represent above as named op.
// e.g. linalg.batch_matmul(%A, %B : tensor<20x20x20xf32>, ...) is
// not the same as linalg.generic above.
namespace {
enum class IndexMatchResult {
Match = 0, // identity map.
Transposed, // transposed map.
Mismatch // none of the above.
};
// Checks whether the input Affine `map` contains two consecutive dims that
// can be interpreted as accessing a 2D matrix. It is assumed that the row
// column dimension are adjacent axis (in this order) and start at
// `rowDimIdx` in the input map.
//
// e.g. consider A matrix in `C[M,N] = A[M,K] * B[K,N]`. We will check
// whether the map of A is identity (match), transposed, or something
// completely different (mis-match). Similar for B and C.
static IndexMatchResult matchOperandMap(AffineMap map, unsigned rowDimIdx,
unsigned expectedPosOfRowDim,
unsigned expectedPosOfColDim) {
// Get the matrix multiply indices. They are past the batch indices.
auto exprOfRowDim = map.getResults()[rowDimIdx];
auto exprOfColDim = map.getResults()[rowDimIdx + 1];
// They should be pure dimension ids.
if (exprOfRowDim.getKind() != AffineExprKind::DimId ||
exprOfColDim.getKind() != AffineExprKind::DimId)
return IndexMatchResult::Mismatch;
auto posRowDim = cast<AffineDimExpr>(exprOfRowDim).getPosition();
auto posColDim = cast<AffineDimExpr>(exprOfColDim).getPosition();
if (expectedPosOfRowDim == posRowDim && expectedPosOfColDim == posColDim)
return IndexMatchResult::Match;
if (expectedPosOfRowDim == posColDim && expectedPosOfColDim == posRowDim)
return IndexMatchResult::Transposed;
return IndexMatchResult::Mismatch;
}
// Replaces genericOp with `NamedOpTy` op, supplied as a template arg.
// All the variants expressed as pseudo regular expression:
// `linalg.{batch_}?matmul{_transpose_a | _transpose_b}?`
// have same number of ins/out, so its easy to stamp different versions.
template <typename NamedOpTy>
static LinalgOp replaceWithMatmulVariant(RewriterBase &rewriter, GenericOp op) {
LinalgOp namedOp = rewriter.replaceOpWithNewOp<NamedOpTy>(
op, ValueRange{op.getDpsInputs()[0], op.getDpsInputs()[1]},
ValueRange{op.getDpsInits()[0]});
return namedOp;
}
// Converts linalg.generic to named linalg.*matmul* where possible.
static FailureOr<LinalgOp> specializeLinalgContractions(RewriterBase &rewriter,
GenericOp genericOp) {
if (genericOp.getNumDpsInputs() != 2 || genericOp.getNumDpsInits() != 1)
return failure();
// Early exit if not projected permutations.
auto mapRange = genericOp.getIndexingMapsArray();
if (llvm::any_of(mapRange,
[](AffineMap m) { return !m.isProjectedPermutation(); }))
return failure();
// Linalg generic contraction can be across multiple axis e.g.
// ```
// linalg.generic
// {indexing_maps = [affine_map<(m, n, k1, k2) -> (m, k1, k2)>,
// affine_map<(m, n, k1, k2) -> (k2, k1, n)>,
// affine_map<(m, n, k1, k2) -> (m, n)>],
// iterator_types = ["parallel", "parallel",
// "reduction", "reduction"]}
// ins(%A, %B : tensor<10x20x30xf32>, tensor<30x20x40xf32>)
// outs(%C : tensor<10x40xf32>) {
// ^bb0(%a: f32, %b: f32, %c: f32):
// %1 = arith.mulf %a, %b : f32
// %2 = arith.addf %c, %1 : f32
// linalg.yield %2 : f32
// } -> tensor<10x40xf32>
// ```
// In above contraction, there are two reduction dimensions {k1, k2}
// and although a valid linalg contraction, it is not a named-op
// matrix multiply kind. Therefore, reject multi-dim reduction.
auto res = inferContractionDims(genericOp);
if (!succeeded(res))
return failure();
auto dims = *res;
if (dims.m.size() != 1 || dims.n.size() != 1 || dims.k.size() != 1)
return failure();
if (!mlir::linalg::detail::isContractionBody(
*genericOp.getBlock(), [](Operation *first, Operation *second) {
return (isa<arith::MulFOp>(first) && isa<arith::AddFOp>(second)) ||
(isa<arith::MulIOp>(first) && isa<arith::AddIOp>(second)) ||
(isa<complex::MulOp>(first) && isa<complex::AddOp>(second));
}))
return failure();
// Check rank of operands
auto indexingMaps = genericOp.getIndexingMapsArray();
if (llvm::any_of(indexingMaps, [&dims](AffineMap m) {
return m.getResults().size() !=
dims.batch.size() + 2 /* any two of {m,n,k} */;
}))
return failure();
auto numOfBatchDims = dims.batch.size();
if (indexingMaps[0].getNumDims() != numOfBatchDims + 3)
return failure();
if (numOfBatchDims) {
// Each operand in a linalg generic contraction could express different
// permutations for its batch dimension. But for named op it must be
// identity since separate maps are not specified.
if (llvm::any_of(indexingMaps, [numOfBatchDims](AffineMap m) {
for (unsigned i = 0; i < numOfBatchDims; ++i) {
auto expr = m.getResults()[i];
if (expr.getKind() != AffineExprKind::DimId ||
cast<AffineDimExpr>(expr).getPosition() != i)
return true;
}
return false;
}))
return failure();
}
auto a =
matchOperandMap(indexingMaps[0], numOfBatchDims, dims.m[0], dims.k[0]);
auto b =
matchOperandMap(indexingMaps[1], numOfBatchDims, dims.k[0], dims.n[0]);
auto c =
matchOperandMap(indexingMaps[2], numOfBatchDims, dims.m[0], dims.n[0]);
if (llvm::is_contained({a, b, c}, IndexMatchResult::Mismatch))
return failure();
if (c != IndexMatchResult::Match ||
(a == IndexMatchResult::Transposed && b == IndexMatchResult::Transposed))
return failure();
/// Codegen the different matmul variants.
if (numOfBatchDims) {
return replaceWithMatmulVariant<BatchMatmulOp>(rewriter, genericOp);
}
return replaceWithMatmulVariant<MatmulOp>(rewriter, genericOp);
}
} // namespace
//===----------------------------------------------------------------------===//
// Categorize linalg generic to named op where possible.
//===----------------------------------------------------------------------===//
FailureOr<LinalgOp> mlir::linalg::specializeGenericOp(RewriterBase &rewriter,
GenericOp genericOp) {
// Copy
if (isaCopyOpInterface(genericOp)) {
LinalgOp namedOp = rewriter.replaceOpWithNewOp<CopyOp>(
genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0]);
return namedOp;
}
// Fill
if (std::optional<Value> fillValue = isaFillOpInterface(genericOp)) {
// Always use the detected fill value, regardless of pattern
LinalgOp namedOp = rewriter.replaceOpWithNewOp<FillOp>(
genericOp, *fillValue, genericOp.getDpsInits()[0]);
return namedOp;
}
// Broadcast
std::optional<SmallVector<int64_t>> equivalentToBroadcast =
isaBroadcastOpInterface(genericOp);
if (equivalentToBroadcast) {
auto dims = *equivalentToBroadcast;
LinalgOp namedOp = rewriter.replaceOpWithNewOp<BroadcastOp>(
genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0],
dims);
return namedOp;
}
// Transpose
std::optional<SmallVector<int64_t>> equivalentToTranspose =
isaTransposeOpInterface(genericOp);
if (equivalentToTranspose) {
auto permutation = *equivalentToTranspose;
LinalgOp namedOp = rewriter.replaceOpWithNewOp<TransposeOp>(
genericOp, genericOp.getDpsInputs()[0], genericOp.getDpsInits()[0],
permutation);
return namedOp;
}
// Elementwise Unary
if (isaElemwiseSingleUnaryOpInterface(genericOp)) {
Operation *op = &genericOp.getBody()->front();
if (isa<math::ExpOp>(op)) {
LinalgOp namedOp = REPLACE_UNARY_OP(ExpOp);
return namedOp;
}
}
// Elementwise Binary
if (isaElemwiseSingleBinaryOpInterface(genericOp)) {
bool swap = areBinOpsSwapped(genericOp);
Operation *op = &genericOp.getBody()->front();
if (isa<arith::AddFOp>(op)) {
LinalgOp namedOp = REPLACE_BINARY_OP(AddOp, swap);
return namedOp;
}
if (isa<arith::SubFOp>(op)) {
LinalgOp namedOp = REPLACE_BINARY_OP(SubOp, swap);
return namedOp;
}
if (isa<arith::MulFOp>(op)) {
LinalgOp namedOp = REPLACE_BINARY_OP(MulOp, swap);
return namedOp;
}
if (isa<arith::DivFOp>(op)) {
LinalgOp namedOp = REPLACE_BINARY_OP(DivOp, swap);
return namedOp;
}
}
// Contraction - e.g. matmul
if (isaContractionOpInterface(genericOp)) {
return specializeLinalgContractions(rewriter, genericOp);
}
return failure();
}
namespace {
struct LinalgSpecializeGenericOpsPass
: public impl::LinalgSpecializeGenericOpsPassBase<
LinalgSpecializeGenericOpsPass> {
using impl::LinalgSpecializeGenericOpsPassBase<
LinalgSpecializeGenericOpsPass>::LinalgSpecializeGenericOpsPassBase;
void runOnOperation() override;
};
} // namespace
void LinalgSpecializeGenericOpsPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
populateLinalgGenericOpsSpecializationPatterns(patterns);
populateDecomposeProjectedPermutationPatterns(patterns);
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
signalPassFailure();
}
void mlir::linalg::populateLinalgGenericOpsSpecializationPatterns(
RewritePatternSet &patterns) {
patterns.add<LinalgSpecializationPattern>(patterns.getContext());
}