| //===- ElementwiseOpFusion.cpp - Implementation of linalg Fusion ---------===/// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the linalg dialect Fusion on tensors operations pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Passes.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include <optional> |
| #include <utility> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_LINALGELEMENTWISEOPFUSIONPASS |
| #include "mlir/Dialect/Linalg/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| //===---------------------------------------------------------------------===// |
| // Methods and patterns that fuse elementwise `linalg.generic` operations. |
| //===---------------------------------------------------------------------===// |
| |
| /// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of |
| /// the `producer` to use in the fused operation given the indexing map of the |
| /// result of the producer in the consumer. |
| static AffineMap getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| OpOperand *producerOpOperand, AffineMap producerResultIndexMap, |
| AffineMap fusedConsumerArgIndexMap) { |
| // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map |
| // from consumer loop -> consumer arg tensor index/producer result tensor |
| // index. The fused loop is same as the consumer loop. For each producer arg |
| // the indexing map to be computed is a map from consumer loop -> producer |
| // arg tensor index. |
| // producerResultIndexMap is a map from producer loop -> tensor index. |
| // Compute the inverse to get map from tensor index -> producer loop. |
| // The inverse is a map from producer result tensor index -> producer loop. |
| AffineMap invProducerResultIndexMap = |
| inversePermutation(producerResultIndexMap); |
| assert(invProducerResultIndexMap && |
| "expected producer result indexing map to be invertible"); |
| |
| LinalgOp producer = cast<LinalgOp>(producerOpOperand->getOwner()); |
| // argMap is a map from producer loop -> producer arg tensor index. |
| AffineMap argMap = producer.getMatchingIndexingMap(producerOpOperand); |
| |
| // Compose argMap with invProducerResultIndexMap to get a map from |
| // producer result tensor index -> producer arg tensor index. |
| AffineMap t1 = argMap.compose(invProducerResultIndexMap); |
| |
| // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from |
| // consumer loop/ fused loop -> producer arg tensor index. |
| return t1.compose(fusedConsumerArgIndexMap); |
| } |
| |
| // Checks if the given operand can be dropped, and the remaining operands |
| // of the fused producer & consumer after the fusion can still compute the |
| // bounds of the op. |
| static bool isOpOperandCanBeDroppedAfterFusedLinalgs( |
| GenericOp producer, GenericOp consumer, |
| ArrayRef<OpOperand *> opOperandsToIgnore) { |
| SmallVector<AffineMap> indexingMaps; |
| |
| SmallVector<GenericOp> ops = {producer, consumer}; |
| for (auto &op : ops) { |
| for (auto &opOperand : op->getOpOperands()) { |
| if (llvm::is_contained(opOperandsToIgnore, &opOperand)) { |
| continue; |
| } |
| indexingMaps.push_back(op.getMatchingIndexingMap(&opOperand)); |
| } |
| } |
| if (indexingMaps.empty()) { |
| // If there are no indexing maps, the operand can only be dropped |
| // if neither op has loops. |
| return producer.getNumLoops() == 0 && consumer.getNumLoops() == 0; |
| } |
| |
| // The concatanation of the remained indexing maps must be invertible, so |
| // the bounds of the op can be still computed after dropping the selected |
| // operand. inversePermutation returns an empty AffineMap in case the |
| // concatanated indexing maps are not invertible. |
| return inversePermutation(concatAffineMaps( |
| indexingMaps, producer.getContext())) != AffineMap(); |
| } |
| |
| /// Returns a set of indices of the producer's results which would |
| /// be preserved after the fusion. |
| /// * There is a chance that the implementation of the transformation does not |
| /// agree with the result of this method. This function gives a prediction based |
| /// on an optimized fusion. |
| llvm::SmallDenseSet<int> mlir::linalg::getPreservedProducerResults( |
| GenericOp producer, GenericOp consumer, OpOperand *fusedOperand) { |
| llvm::SmallDenseSet<int> preservedProducerResults; |
| llvm::SmallVector<OpOperand *> opOperandsToIgnore; |
| |
| // The fusedOperand will be removed during the fusion |
| opOperandsToIgnore.emplace_back(fusedOperand); |
| |
| for (const auto &producerResult : llvm::enumerate(producer->getResults())) { |
| auto *outputOperand = producer.getDpsInitOperand(producerResult.index()); |
| opOperandsToIgnore.emplace_back(outputOperand); |
| if (producer.payloadUsesValueFromOperand(outputOperand) || |
| !isOpOperandCanBeDroppedAfterFusedLinalgs(producer, consumer, |
| opOperandsToIgnore) || |
| llvm::any_of(producerResult.value().getUsers(), [&](Operation *user) { |
| return user != consumer.getOperation(); |
| })) { |
| preservedProducerResults.insert(producerResult.index()); |
| |
| // In case the operand can't be dropped |
| (void)opOperandsToIgnore.pop_back_val(); |
| } |
| } |
| return preservedProducerResults; |
| } |
| |
| /// Conditions for elementwise fusion of generic operations. |
| bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) { |
| if (!fusedOperand) |
| return false; |
| |
| auto producer = fusedOperand->get().getDefiningOp<GenericOp>(); |
| auto consumer = dyn_cast<GenericOp>(fusedOperand->getOwner()); |
| |
| // Check producer and consumer are generic ops. |
| if (!producer || !consumer) |
| return false; |
| |
| // Consumer can have mixed semantics, just check operand itself has tensor |
| // type. Producer must have full tensor semantics to avoid potential |
| // aliasing between producer and consumer memrefs. |
| if (!producer.hasPureTensorSemantics() || |
| !isa<RankedTensorType>(fusedOperand->get().getType())) |
| return false; |
| |
| // Verify that |
| // - the producer has all "parallel" iterator type. |
| if (producer.getNumParallelLoops() != producer.getNumLoops()) |
| return false; |
| |
| // Only allow fusing the producer of an input operand for now. |
| // TODO: allow fusing the producer of an output operand. |
| if (!consumer.isDpsInput(fusedOperand)) |
| return false; |
| |
| // Get the consumer index map. The number of results of the consumer index |
| // map must match the number of loops of the producer. |
| AffineMap consumerIndexMap = consumer.getMatchingIndexingMap(fusedOperand); |
| if (consumerIndexMap.getNumResults() != producer.getNumLoops()) |
| return false; |
| |
| // Finally the index_map for the result must be invertible. For now just |
| // verify it is a permutation. |
| auto producerResult = cast<OpResult>(fusedOperand->get()); |
| AffineMap producerResultIndexMap = |
| producer.getIndexingMapMatchingResult(producerResult); |
| if (!producerResultIndexMap.isPermutation()) |
| return false; |
| |
| // Ensure that the fusion does not remove size information required to |
| // get the loop bounds. For non-reduction generics, this is trivially the |
| // case due to the output operand. For reductions, we need to check that after |
| // the fusion, each loop dimension has at least one input that defines it. |
| if ((consumer.getNumReductionLoops())) { |
| BitVector coveredDims(consumer.getNumLoops(), false); |
| |
| auto addToCoveredDims = [&](AffineMap map) { |
| for (auto result : map.getResults()) |
| if (auto dimExpr = dyn_cast<AffineDimExpr>(result)) |
| coveredDims[dimExpr.getPosition()] = true; |
| }; |
| |
| for (auto pair : |
| llvm::zip(consumer->getOperands(), consumer.getIndexingMapsArray())) { |
| Value operand = std::get<0>(pair); |
| if (operand == fusedOperand->get()) |
| continue; |
| AffineMap operandMap = std::get<1>(pair); |
| addToCoveredDims(operandMap); |
| } |
| |
| for (OpOperand *operand : producer.getDpsInputOperands()) { |
| AffineMap newIndexingMap = |
| getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| operand, producerResultIndexMap, consumerIndexMap); |
| addToCoveredDims(newIndexingMap); |
| } |
| if (!coveredDims.all()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Generate the region of the fused tensor operation. The region of the fused |
| /// op must be empty. |
| static void generateFusedElementwiseOpRegion( |
| RewriterBase &rewriter, GenericOp fusedOp, |
| AffineMap consumerToProducerLoopsMap, OpOperand *fusedOperand, |
| unsigned nloops, llvm::SmallDenseSet<int> &preservedProducerResults) { |
| auto producer = cast<GenericOp>(fusedOperand->get().getDefiningOp()); |
| auto consumer = cast<GenericOp>(fusedOperand->getOwner()); |
| // Build the region of the fused op. |
| Block &producerBlock = producer->getRegion(0).front(); |
| Block &consumerBlock = consumer->getRegion(0).front(); |
| OpBuilder::InsertionGuard guard(rewriter); |
| Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion()); |
| IRMapping mapper; |
| |
| // 2. Add an index operation for every fused loop dimension and use the |
| // `consumerToProducerLoopsMap` to map the producer indices. |
| if (producer.hasIndexSemantics()) { |
| // Add an index operation for every fused loop dimension. |
| unsigned numFusedOpLoops = fusedOp.getNumLoops(); |
| SmallVector<Value> fusedIndices; |
| fusedIndices.reserve(numFusedOpLoops); |
| llvm::transform(llvm::seq<uint64_t>(0, numFusedOpLoops), |
| std::back_inserter(fusedIndices), [&](uint64_t dim) { |
| return IndexOp::create(rewriter, producer.getLoc(), dim); |
| }); |
| for (IndexOp indexOp : |
| llvm::make_early_inc_range(producerBlock.getOps<IndexOp>())) { |
| Value newIndex = affine::AffineApplyOp::create( |
| rewriter, producer.getLoc(), |
| consumerToProducerLoopsMap.getSubMap(indexOp.getDim()), fusedIndices); |
| mapper.map(indexOp.getResult(), newIndex); |
| } |
| } |
| // TODO: allow fusing the producer of an output operand. |
| assert(consumer.isDpsInput(fusedOperand) && |
| "expected producer of input operand"); |
| // 3. Consumer input operands up to consumerIdx (exclusive). |
| for (BlockArgument bbArg : consumerBlock.getArguments().take_front( |
| fusedOperand->getOperandNumber())) // input assumption. |
| mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| |
| // Replacing consumerIdx requires getting the cloned, yielded, value from |
| // the (cloned) producer block. This happens in step 9. |
| |
| // 4. Splice in producer's input operands. |
| for (BlockArgument bbArg : |
| producerBlock.getArguments().take_front(producer.getNumDpsInputs())) |
| mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| |
| // 5. Remaining consumer's input operands (drop past index `consumerIdx`). |
| for (BlockArgument bbArg : |
| consumerBlock.getArguments() |
| .take_front(consumer.getNumDpsInputs()) |
| .drop_front(fusedOperand->getOperandNumber() + 1)) |
| mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| |
| // 6. All of the producer's output operands |
| for (const auto &bbArg : llvm::enumerate( |
| producerBlock.getArguments().take_back(producer.getNumDpsInits()))) { |
| if (!preservedProducerResults.count(bbArg.index())) |
| continue; |
| mapper.map(bbArg.value(), fusedBlock->addArgument(bbArg.value().getType(), |
| bbArg.value().getLoc())); |
| } |
| |
| // 7. All of consumer's output operands. |
| for (BlockArgument bbArg : |
| consumerBlock.getArguments().take_back(consumer.getNumDpsInits())) |
| mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc())); |
| |
| // 8. Clone all producer operations except for the yield and index operations |
| // to the fused operation. |
| for (auto &op : producerBlock.without_terminator()) { |
| if (!isa<IndexOp>(op)) |
| rewriter.clone(op, mapper); |
| } |
| // 9. Now we can map the consumerBlock's `consumerIdx` block argument. Just |
| // forward the yield operand. |
| auto producerYieldOp = cast<linalg::YieldOp>(producerBlock.getTerminator()); |
| unsigned producerResultNumber = |
| cast<OpResult>(fusedOperand->get()).getResultNumber(); |
| Value replacement = |
| mapper.lookupOrDefault(producerYieldOp.getOperand(producerResultNumber)); |
| |
| // Sanity checks, if replacement is not already in the mapper then it must be |
| // produced outside. |
| if (replacement == producerYieldOp.getOperand(producerResultNumber)) { |
| if (auto bb = dyn_cast<BlockArgument>(replacement)) |
| assert(bb.getOwner() != &producerBlock && |
| "yielded block argument must have been mapped"); |
| else |
| assert(!producer->isAncestor(replacement.getDefiningOp()) && |
| "yielded value must have been mapped"); |
| } |
| mapper.map(consumerBlock.getArgument(fusedOperand->getOperandNumber()), |
| replacement); |
| // 10. Clone operations from the consumer to the fused op. |
| for (auto &op : consumerBlock.without_terminator()) |
| rewriter.clone(op, mapper); |
| |
| // 11. Include the final yield (which is the remapped values for all the |
| // yield) |
| auto consumerYieldOp = cast<linalg::YieldOp>(consumerBlock.getTerminator()); |
| SmallVector<Value> fusedYieldValues; |
| fusedYieldValues.reserve(producerYieldOp.getNumOperands() + |
| consumerYieldOp.getNumOperands()); |
| for (const auto &producerYieldVal : |
| llvm::enumerate(producerYieldOp.getOperands())) { |
| if (preservedProducerResults.count(producerYieldVal.index())) |
| fusedYieldValues.push_back( |
| mapper.lookupOrDefault(producerYieldVal.value())); |
| } |
| for (auto consumerYieldVal : consumerYieldOp.getOperands()) |
| fusedYieldValues.push_back(mapper.lookupOrDefault(consumerYieldVal)); |
| YieldOp::create(rewriter, fusedOp.getLoc(), fusedYieldValues); |
| |
| // Sanity checks. |
| assert(fusedBlock->getNumArguments() == fusedOp.getNumOperands() && |
| "Ill-formed GenericOp region"); |
| } |
| |
| FailureOr<mlir::linalg::ElementwiseOpFusionResult> |
| mlir::linalg::fuseElementwiseOps(RewriterBase &rewriter, |
| OpOperand *fusedOperand) { |
| assert(areElementwiseOpsFusable(fusedOperand) && |
| "expected elementwise operation pre-conditions to pass"); |
| auto producerResult = cast<OpResult>(fusedOperand->get()); |
| auto producer = cast<GenericOp>(producerResult.getOwner()); |
| auto consumer = cast<GenericOp>(fusedOperand->getOwner()); |
| // TODO: allow fusing the producer of an output operand. |
| assert(consumer.isDpsInput(fusedOperand) && |
| "expected producer of input operand"); |
| /// Find the results of the producer that have uses outside of the consumer, |
| /// after the fusion. |
| llvm::SmallDenseSet<int> preservedProducerResults = |
| mlir::linalg::getPreservedProducerResults(producer, consumer, |
| fusedOperand); |
| |
| // Compute the fused operands list and indexing maps. |
| SmallVector<Value> fusedInputOperands, fusedOutputOperands; |
| SmallVector<Type> fusedResultTypes; |
| SmallVector<AffineMap> fusedIndexMaps; |
| fusedInputOperands.reserve(producer.getNumDpsInputs() + |
| consumer.getNumDpsInputs()); |
| fusedOutputOperands.reserve(preservedProducerResults.size() + |
| consumer.getNumDpsInits()); |
| fusedResultTypes.reserve(preservedProducerResults.size() + |
| consumer.getNumDpsInits()); |
| fusedIndexMaps.reserve(producer->getNumOperands() + |
| consumer->getNumOperands()); |
| // In the following, numbering matches that of `generateFusedTensorOpRegion`. |
| // 3. Consumer input operands/maps up to consumerIdx (exclusive). |
| auto consumerInputs = consumer.getDpsInputOperands(); |
| auto *it = llvm::find_if(consumerInputs, [&](OpOperand *operand) { |
| return operand == fusedOperand; |
| }); |
| assert(it != consumerInputs.end() && "expected to find the consumer operand"); |
| for (OpOperand *opOperand : llvm::make_range(consumerInputs.begin(), it)) { |
| fusedInputOperands.push_back(opOperand->get()); |
| fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand)); |
| } |
| // 4. Splice in producer's input operands/maps. |
| AffineMap producerResultIndexMap = |
| producer.getIndexingMapMatchingResult(producerResult); |
| for (OpOperand *opOperand : producer.getDpsInputOperands()) { |
| fusedInputOperands.push_back(opOperand->get()); |
| // Compute indexing maps for the producer args in the fused operation. |
| AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| opOperand, producerResultIndexMap, |
| consumer.getMatchingIndexingMap(fusedOperand)); |
| fusedIndexMaps.push_back(map); |
| } |
| // 5. Remaining consumer's input operands/maps (drop past index |
| // `consumerIdx`). |
| for (OpOperand *opOperand : |
| llvm::make_range(std::next(it), consumerInputs.end())) { |
| fusedInputOperands.push_back(opOperand->get()); |
| fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand)); |
| } |
| |
| // 6. Collect all of the producer outputs. |
| for (const auto &opOperand : llvm::enumerate(producer.getDpsInitsMutable())) { |
| if (!preservedProducerResults.count(opOperand.index())) |
| continue; |
| |
| fusedOutputOperands.push_back(opOperand.value().get()); |
| AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( |
| &opOperand.value(), producerResultIndexMap, |
| consumer.getMatchingIndexingMap(fusedOperand)); |
| fusedIndexMaps.push_back(map); |
| fusedResultTypes.push_back(opOperand.value().get().getType()); |
| } |
| |
| // 7. All of consumer's output operands (skip operands: added by the builder). |
| for (OpOperand &opOperand : consumer.getDpsInitsMutable()) { |
| fusedOutputOperands.push_back(opOperand.get()); |
| fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(&opOperand)); |
| Type resultType = opOperand.get().getType(); |
| if (!isa<MemRefType>(resultType)) |
| fusedResultTypes.push_back(resultType); |
| } |
| |
| // Generate the fused op. |
| auto fusedOp = GenericOp::create( |
| rewriter, consumer.getLoc(), fusedResultTypes, fusedInputOperands, |
| fusedOutputOperands, rewriter.getAffineMapArrayAttr(fusedIndexMaps), |
| consumer.getIteratorTypes(), |
| /*doc=*/nullptr, |
| /*library_call=*/nullptr); |
| if (!fusedOp.getShapesToLoopsMap()) { |
| // Fused op has invalid indexing maps. Typically this means something is off |
| // in the input, but going ahead here would result in verification errors. |
| // So cleanup and abort. |
| rewriter.eraseOp(fusedOp); |
| return rewriter.notifyMatchFailure( |
| fusedOp, "fused op failed loop bound computation check"); |
| } |
| |
| // Construct an AffineMap from consumer loops to producer loops. |
| // consumer loop -> tensor index |
| AffineMap consumerResultIndexMap = |
| consumer.getMatchingIndexingMap(fusedOperand); |
| // tensor index -> producer loop |
| AffineMap invProducerResultIndexMap = |
| inversePermutation(producerResultIndexMap); |
| assert(invProducerResultIndexMap && |
| "expected producer result indexig map to be invertible"); |
| // consumer loop -> producer loop |
| AffineMap consumerToProducerLoopsMap = |
| invProducerResultIndexMap.compose(consumerResultIndexMap); |
| |
| generateFusedElementwiseOpRegion( |
| rewriter, fusedOp, consumerToProducerLoopsMap, fusedOperand, |
| consumer.getNumLoops(), preservedProducerResults); |
| ElementwiseOpFusionResult result; |
| result.fusedOp = fusedOp; |
| int resultNum = 0; |
| for (auto [index, producerResult] : llvm::enumerate(producer->getResults())) |
| if (preservedProducerResults.count(index)) |
| result.replacements[producerResult] = fusedOp->getResult(resultNum++); |
| for (auto consumerResult : consumer->getResults()) |
| result.replacements[consumerResult] = fusedOp->getResult(resultNum++); |
| return result; |
| } |
| |
| namespace { |
| /// Patterns to fuse a generic op, with the producer of its operands. |
| class FuseElementwiseOps : public OpRewritePattern<GenericOp> { |
| public: |
| FuseElementwiseOps(MLIRContext *context, ControlFusionFn fun, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<GenericOp>(context, benefit), |
| controlFn(std::move(fun)) {} |
| |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| // Find the first operand that is defined by another generic op on tensors. |
| for (OpOperand &opOperand : genericOp->getOpOperands()) { |
| if (!areElementwiseOpsFusable(&opOperand)) |
| continue; |
| if (!controlFn(&opOperand)) |
| continue; |
| |
| Operation *producer = opOperand.get().getDefiningOp(); |
| |
| // Find the producer of the operand. |
| FailureOr<ElementwiseOpFusionResult> fusionResult = |
| fuseElementwiseOps(rewriter, &opOperand); |
| if (failed(fusionResult)) |
| return rewriter.notifyMatchFailure(genericOp, "fusion failed"); |
| |
| // Perform the fusion. |
| for (auto [origVal, replacement] : fusionResult->replacements) { |
| rewriter.replaceUsesWithIf(origVal, replacement, [&](OpOperand &use) { |
| // Only replace consumer uses. |
| return use.get().getDefiningOp() != producer; |
| }); |
| } |
| rewriter.eraseOp(genericOp); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| private: |
| ControlFusionFn controlFn; |
| }; |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Methods and patterns that fuse reshape ops with elementwise operations by |
| // expanding the dimensionality of the elementwise operations. |
| //===---------------------------------------------------------------------===// |
| |
| /// Conditions for folding a structured linalg operation with a reshape op by |
| /// expanding the iteration space dimensionality for tensor operations. These |
| /// are preconditions assumed by `foldReshapeByDimExpansion` which implements |
| /// the following fusion pattern. |
| /// |
| /// Consider |
| /// |
| /// %c = linalg.generic ins(%a, %b : memref<?x?x?xf32>, memref<?x?xf32>) |
| /// indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d2, d1)>] |
| /// %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]] |
| /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> |
| /// |
| /// The reshape can be folded into the `linalgOp` if its loop dimensionality |
| /// is increased to match the result (operand) of the tensor.expand_shape. |
| /// The indexing_map of the fused tensor in the `linalgOp` and the |
| /// reassociation map helps compute the indexing maps of the modified op. |
| /// For the above example, based on the reassociation map it |
| /// can be concluded that |
| /// |
| /// - The loop used to access the first dimension of the fused tensor is split |
| /// into two. |
| /// - The loop used to access the second dimension of the fused tensor is kept |
| /// as is. |
| /// - The loop used to access the third dimension of the fused tensor is split |
| /// into three. |
| /// |
| /// i.e. (e0, e1, e2, e3, e4) is the domain of the indexing map of the modified |
| /// op, then |
| /// |
| /// d0 -> e0, e1 |
| /// d1 -> e2, e3, e4 |
| /// d2 -> e5 |
| /// |
| /// substituting this, the structured op can be rewritten as |
| /// |
| /// %d = linalg.generic ins(%0, %1 : ) |
| /// indexing_maps = |
| /// [affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e0, e1, e5)>, |
| /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e5)>, |
| /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e0, e1, e5, e2, e3, e4)>] |
| /// |
| /// Since operands to the linalg generic are now 5D, reshapes can be introduced |
| /// to make it consistent |
| /// |
| /// %0 = tensor.expand_shape %a [[0, 1, 2], [3, 4], [5]] |
| /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> |
| /// %1 = tensor.expand_shape %b [[0, 1, 2], [3]] |
| /// : tensor<?x?x?xf32> into tensor<?x?x?x?xf32> |
| /// |
| /// The added reshapes are again expanding patterns, so they will get fused |
| /// with its producers if possible. |
| static bool isFusableWithReshapeByDimExpansion(LinalgOp linalgOp, |
| OpOperand *fusableOpOperand) { |
| // Is fusable only if: |
| // - All the indexing maps for operands and results are projected |
| // permutations. |
| // - The fused tensor is not a scalar. |
| SmallVector<utils::IteratorType> iteratorTypes = |
| linalgOp.getIteratorTypesArray(); |
| AffineMap operandMap = linalgOp.getMatchingIndexingMap(fusableOpOperand); |
| return linalgOp.hasPureTensorSemantics() && |
| llvm::all_of(linalgOp.getIndexingMaps().getValue(), |
| [](Attribute attr) { |
| return cast<AffineMapAttr>(attr) |
| .getValue() |
| .isProjectedPermutation(); |
| }) && |
| operandMap.getNumResults() > 0; |
| } |
| |
| namespace { |
| /// Information needed to expand a generic operation to fold the reshape with |
| /// it. |
| class ExpansionInfo { |
| public: |
| // Computes the mapping from original dimensions of the op to the dimensions |
| // of the expanded op given the `indexingMap` of the fused operand/result of |
| // the generic op, the `reassocationMaps` of the reshape op and the shape of |
| // the expanded op. |
| LogicalResult compute(LinalgOp linalgOp, OpOperand *fusableOpOperand, |
| ArrayRef<AffineMap> reassociationMaps, |
| ArrayRef<OpFoldResult> expandedShape, |
| PatternRewriter &rewriter); |
| unsigned getOrigOpNumDims() const { return reassociation.size(); } |
| unsigned getExpandedOpNumDims() const { return expandedOpNumDims; } |
| ReassociationIndicesRef getExpandedDims(unsigned i) const { |
| return reassociation[i]; |
| } |
| ArrayRef<OpFoldResult> getExpandedShapeOfDim(unsigned i) const { |
| return expandedShapeMap[i]; |
| } |
| ArrayRef<OpFoldResult> getOriginalShape() const { return originalLoopExtent; } |
| |
| private: |
| /// Reassociation from the dimensions in the original operation to the |
| /// dimension of the expanded operation. |
| SmallVector<ReassociationIndices> reassociation; |
| /// Mapping from extent of loops in the original operation, to the extent of |
| /// loops in the expanded operation. |
| SmallVector<SmallVector<OpFoldResult>> expandedShapeMap; |
| /// Extent of the loop in the original operation. |
| SmallVector<OpFoldResult> originalLoopExtent; |
| unsigned expandedOpNumDims; |
| }; |
| } // namespace |
| |
| LogicalResult ExpansionInfo::compute(LinalgOp linalgOp, |
| OpOperand *fusableOpOperand, |
| ArrayRef<AffineMap> reassociationMaps, |
| ArrayRef<OpFoldResult> expandedShape, |
| PatternRewriter &rewriter) { |
| if (reassociationMaps.empty()) |
| return failure(); |
| AffineMap fusedIndexMap = linalgOp.getMatchingIndexingMap(fusableOpOperand); |
| |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(linalgOp); |
| originalLoopExtent = llvm::map_to_vector( |
| linalgOp.createLoopRanges(rewriter, linalgOp->getLoc()), |
| [](Range r) { return r.size; }); |
| |
| reassociation.clear(); |
| expandedShapeMap.clear(); |
| // Compute the number of dimension in the expanded op that correspond to each |
| // dimension of the original op. |
| SmallVector<unsigned> numExpandedDims(fusedIndexMap.getNumDims(), 1); |
| expandedShapeMap.resize(fusedIndexMap.getNumDims()); |
| for (const auto &resultExpr : llvm::enumerate(fusedIndexMap.getResults())) { |
| unsigned pos = cast<AffineDimExpr>(resultExpr.value()).getPosition(); |
| AffineMap foldedDims = reassociationMaps[resultExpr.index()]; |
| numExpandedDims[pos] = foldedDims.getNumResults(); |
| ArrayRef<OpFoldResult> shape = |
| expandedShape.slice(foldedDims.getDimPosition(0), numExpandedDims[pos]); |
| expandedShapeMap[pos].assign(shape.begin(), shape.end()); |
| } |
| // The remaining dimensions remain the same. |
| for (unsigned i : llvm::seq<unsigned>(0, fusedIndexMap.getNumDims())) |
| if (expandedShapeMap[i].empty()) |
| expandedShapeMap[i] = {originalLoopExtent[i]}; |
| |
| // Compute reassociation map from the original op to the expanded op. |
| unsigned sum = 0; |
| reassociation.reserve(fusedIndexMap.getNumDims()); |
| for (const auto &numFoldedDim : llvm::enumerate(numExpandedDims)) { |
| auto seq = llvm::seq<int64_t>(sum, sum + numFoldedDim.value()); |
| reassociation.emplace_back(seq.begin(), seq.end()); |
| sum += numFoldedDim.value(); |
| } |
| expandedOpNumDims = sum; |
| return success(); |
| } |
| |
| /// Return the indexing map to use in the expanded op for a given the |
| /// `indexingMap` of the original operation. |
| static AffineMap |
| getIndexingMapInExpandedOp(OpBuilder &builder, AffineMap indexingMap, |
| const ExpansionInfo &expansionInfo) { |
| SmallVector<AffineExpr> newExprs; |
| for (AffineExpr expr : indexingMap.getResults()) { |
| unsigned pos = cast<AffineDimExpr>(expr).getPosition(); |
| SmallVector<AffineExpr, 4> expandedExprs = llvm::to_vector<4>( |
| llvm::map_range(expansionInfo.getExpandedDims(pos), [&](int64_t v) { |
| return builder.getAffineDimExpr(static_cast<unsigned>(v)); |
| })); |
| newExprs.append(expandedExprs.begin(), expandedExprs.end()); |
| } |
| return AffineMap::get(expansionInfo.getExpandedOpNumDims(), |
| indexingMap.getNumSymbols(), newExprs, |
| builder.getContext()); |
| } |
| |
| /// Return the shape and type of the operand/result to use in the expanded op |
| /// given the type in the original op. |
| static std::tuple<SmallVector<OpFoldResult>, RankedTensorType> |
| getExpandedShapeAndType(RankedTensorType originalType, AffineMap indexingMap, |
| const ExpansionInfo &expansionInfo) { |
| SmallVector<OpFoldResult> expandedShape; |
| for (AffineExpr expr : indexingMap.getResults()) { |
| unsigned dim = cast<AffineDimExpr>(expr).getPosition(); |
| ArrayRef<OpFoldResult> dimExpansion = |
| expansionInfo.getExpandedShapeOfDim(dim); |
| expandedShape.append(dimExpansion.begin(), dimExpansion.end()); |
| } |
| SmallVector<int64_t> expandedStaticShape; |
| std::tie(expandedStaticShape, std::ignore) = |
| decomposeMixedValues(expandedShape); |
| return {expandedShape, RankedTensorType::get(expandedStaticShape, |
| originalType.getElementType())}; |
| } |
| |
| /// Returns the reassociation maps to use in the `tensor.expand_shape` |
| /// operation to convert the operands of the original operation to operands of |
| /// the expanded operation. The same method is used to compute the |
| /// `tensor.collapse_shape` used to collapse the result of the expanded |
| /// op to get the value that can replace all uses of the results of the original |
| /// op. |
| static SmallVector<ReassociationIndices> |
| getReassociationForExpansion(AffineMap indexingMap, |
| const ExpansionInfo &expansionInfo) { |
| SmallVector<ReassociationIndices> reassociation; |
| unsigned numReshapeDims = 0; |
| for (AffineExpr expr : indexingMap.getResults()) { |
| unsigned dim = cast<AffineDimExpr>(expr).getPosition(); |
| auto numExpandedDims = expansionInfo.getExpandedDims(dim).size(); |
| SmallVector<int64_t, 2> indices = llvm::to_vector<2>( |
| llvm::seq<int64_t>(numReshapeDims, numReshapeDims + numExpandedDims)); |
| reassociation.emplace_back(std::move(indices)); |
| numReshapeDims += numExpandedDims; |
| } |
| return reassociation; |
| } |
| |
| /// Update the body of an expanded linalg operation having index semantics. The |
| /// indices of the original operation need to be recovered by linearizing the |
| /// indices of the correspoding dimensions of the expanded operation. For now it |
| /// is assumed that the shapes of the expanded operation needed for |
| /// linearization are static. |
| static void updateExpandedGenericOpRegion(PatternRewriter &rewriter, |
| Location loc, Region &fusedRegion, |
| const ExpansionInfo &expansionInfo) { |
| // Replace the original indices by the linearization of the expanded indices. |
| for (IndexOp indexOp : |
| llvm::make_early_inc_range(fusedRegion.front().getOps<IndexOp>())) { |
| ArrayRef<int64_t> expandedDims = |
| expansionInfo.getExpandedDims(indexOp.getDim()); |
| assert(!expandedDims.empty() && "expected valid expansion info"); |
| |
| // Skip index operations that are not affected by the expansion. |
| if (expandedDims.size() == 1 && |
| expandedDims.front() == (int64_t)indexOp.getDim()) |
| continue; |
| |
| // Linearize the expanded indices of the original index dimension. |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointAfter(indexOp); |
| ArrayRef<OpFoldResult> expandedDimsShape = |
| expansionInfo.getExpandedShapeOfDim(indexOp.getDim()).drop_front(); |
| SmallVector<Value> expandedIndices; |
| expandedIndices.reserve(expandedDims.size() - 1); |
| llvm::transform( |
| expandedDims.drop_front(), std::back_inserter(expandedIndices), |
| [&](int64_t dim) { return IndexOp::create(rewriter, loc, dim); }); |
| OpFoldResult newIndex = |
| IndexOp::create(rewriter, loc, expandedDims.front()).getResult(); |
| for (auto [expandedShape, expandedIndex] : |
| llvm::zip(expandedDimsShape, expandedIndices)) { |
| AffineExpr idx, acc, shape; |
| bindDims(rewriter.getContext(), idx, acc); |
| bindSymbols(rewriter.getContext(), shape); |
| newIndex = affine::makeComposedFoldedAffineApply( |
| rewriter, indexOp.getLoc(), idx + acc * shape, |
| ArrayRef<OpFoldResult>{expandedIndex, newIndex, expandedShape}); |
| } |
| Value newIndexVal = |
| getValueOrCreateConstantIndexOp(rewriter, indexOp.getLoc(), newIndex); |
| rewriter.replaceOp(indexOp, newIndexVal); |
| } |
| } |
| |
| // Create an expanded transpose op. |
| // the reassociation map is already permuted hence we inverse permute and then |
| // flatten it. Then we inverse permute it again to get the final expanded |
| // transpose permutation. For example, |
| // |
| // permutation = [2, 0, 1] |
| // reassociation_map for expansion = [[0, 1], [2], [3, 4, 5]] |
| // |
| // inverse permutation = [1, 2, 0] |
| // applied to reassocation_map and then flattened becomes |
| // flatened permutation = [2, 3, 4, 5, 0, 1] |
| // final permuation is the inverse of the flattened permutation. |
| // |
| // Becomes |
| // |
| // permutation=[4, 5, 0, 1, 2, 3] |
| |
| static Operation *createExpandedTransposeOp(PatternRewriter &rewriter, |
| TransposeOp transposeOp, |
| Value expandedInput, Value output, |
| ExpansionInfo &expansionInfo) { |
| SmallVector<int64_t> newPerm; |
| for (int64_t perm : invertPermutationVector(transposeOp.getPermutation())) { |
| auto reassoc = expansionInfo.getExpandedDims(perm); |
| for (int64_t dim : reassoc) { |
| newPerm.push_back(dim); |
| } |
| } |
| return TransposeOp::create(rewriter, transposeOp.getLoc(), expandedInput, |
| output, invertPermutationVector(newPerm)); |
| } |
| |
| // Create an expanded generic op. |
| static Operation *createExpandedGenericOp( |
| PatternRewriter &rewriter, LinalgOp linalgOp, TypeRange resultTypes, |
| ArrayRef<Value> &expandedOpOperands, ArrayRef<Value> outputs, |
| ExpansionInfo &expansionInfo, ArrayRef<AffineMap> expandedOpIndexingMaps) { |
| // The iterator types of the expanded op are all parallel. |
| SmallVector<utils::IteratorType> iteratorTypes( |
| expansionInfo.getExpandedOpNumDims(), utils::IteratorType::parallel); |
| |
| for (auto [i, type] : llvm::enumerate(linalgOp.getIteratorTypesArray())) |
| for (auto j : expansionInfo.getExpandedDims(i)) |
| iteratorTypes[j] = type; |
| |
| Operation *fused = GenericOp::create(rewriter, linalgOp.getLoc(), resultTypes, |
| expandedOpOperands, outputs, |
| expandedOpIndexingMaps, iteratorTypes); |
| |
| Region &fusedRegion = fused->getRegion(0); |
| Region &originalRegion = linalgOp->getRegion(0); |
| rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.begin()); |
| |
| // Update the index accesses after the expansion. |
| updateExpandedGenericOpRegion(rewriter, linalgOp.getLoc(), fusedRegion, |
| expansionInfo); |
| |
| return fused; |
| } |
| |
| // Create an expanded fused op that retains the name for certain ops |
| // such as fill, copy and transpose and produce a generic op for |
| // rest of linalg ops. |
| static Operation *createExpandedOp(PatternRewriter &rewriter, LinalgOp linalgOp, |
| TypeRange resultTypes, |
| ArrayRef<Value> expandedOpOperands, |
| ArrayRef<Value> outputs, |
| ArrayRef<AffineMap> expandedOpIndexingMaps, |
| ExpansionInfo &expansionInfo) { |
| |
| return TypeSwitch<Operation *, Operation *>(linalgOp.getOperation()) |
| .Case<TransposeOp>([&](TransposeOp transposeOp) { |
| return createExpandedTransposeOp(rewriter, transposeOp, |
| expandedOpOperands[0], outputs[0], |
| expansionInfo); |
| }) |
| .Case<FillOp, CopyOp>([&](Operation *op) { |
| return clone(rewriter, linalgOp, resultTypes, |
| llvm::to_vector(llvm::concat<Value>( |
| llvm::to_vector(expandedOpOperands), |
| llvm::to_vector(outputs)))); |
| }) |
| .Default([&](Operation *op) { |
| return createExpandedGenericOp(rewriter, linalgOp, resultTypes, |
| expandedOpOperands, outputs, |
| expansionInfo, expandedOpIndexingMaps); |
| }); |
| } |
| |
| /// Implements the fusion of a tensor.collapse_shape or a tensor.expand_shape op |
| /// and a generic op as explained in `isFusableWithReshapeByExpansion`. Assumes |
| /// that those conditions have been satisfied. |
| static std::optional<SmallVector<Value>> |
| fuseWithReshapeByExpansion(LinalgOp linalgOp, Operation *reshapeOp, |
| OpOperand *fusableOpOperand, |
| PatternRewriter &rewriter) { |
| assert(isFusableWithReshapeByDimExpansion(linalgOp, fusableOpOperand) && |
| "preconditions for fuse operation failed"); |
| |
| Location loc = linalgOp.getLoc(); |
| SmallVector<OpFoldResult> expandedShape; |
| SmallVector<AffineMap, 4> reassociationIndices; |
| Value src; |
| if (auto expandingReshapeOp = dyn_cast<tensor::ExpandShapeOp>(reshapeOp)) { |
| // Try to move the dynamic dimensions in output shape before the `linalgOp` |
| // to maintain SSA validity |
| if (failed(moveValueDefinitions( |
| rewriter, expandingReshapeOp.getOutputShape(), linalgOp))) |
| return std::nullopt; |
| |
| expandedShape = expandingReshapeOp.getMixedOutputShape(); |
| reassociationIndices = expandingReshapeOp.getReassociationMaps(); |
| src = expandingReshapeOp.getSrc(); |
| } else { |
| auto collapsingReshapeOp = dyn_cast<tensor::CollapseShapeOp>(reshapeOp); |
| if (!collapsingReshapeOp) |
| return std::nullopt; |
| |
| expandedShape = tensor::getMixedSizes( |
| rewriter, collapsingReshapeOp->getLoc(), collapsingReshapeOp.getSrc()); |
| reassociationIndices = collapsingReshapeOp.getReassociationMaps(); |
| src = collapsingReshapeOp.getSrc(); |
| } |
| |
| ExpansionInfo expansionInfo; |
| if (failed(expansionInfo.compute(linalgOp, fusableOpOperand, |
| reassociationIndices, expandedShape, |
| rewriter))) |
| return std::nullopt; |
| |
| SmallVector<AffineMap, 4> expandedOpIndexingMaps = llvm::to_vector<4>( |
| llvm::map_range(linalgOp.getIndexingMapsArray(), [&](AffineMap m) { |
| return getIndexingMapInExpandedOp(rewriter, m, expansionInfo); |
| })); |
| |
| // Set insertion point to the generic op. |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(linalgOp); |
| |
| SmallVector<Value> expandedOpOperands; |
| expandedOpOperands.reserve(linalgOp.getNumDpsInputs()); |
| for (OpOperand *opOperand : linalgOp.getDpsInputOperands()) { |
| if (opOperand == fusableOpOperand) { |
| expandedOpOperands.push_back(src); |
| continue; |
| } |
| if (auto opOperandType = |
| dyn_cast<RankedTensorType>(opOperand->get().getType())) { |
| AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); |
| SmallVector<OpFoldResult> expandedOperandShape; |
| RankedTensorType expandedOperandType; |
| std::tie(expandedOperandShape, expandedOperandType) = |
| getExpandedShapeAndType(opOperandType, indexingMap, expansionInfo); |
| if (expandedOperandType != opOperand->get().getType()) { |
| // Reshape the operand to get the right type. |
| SmallVector<ReassociationIndices> reassociation = |
| getReassociationForExpansion(indexingMap, expansionInfo); |
| if (failed(reshapeLikeShapesAreCompatible( |
| [&](const Twine &msg) { |
| return rewriter.notifyMatchFailure(linalgOp, msg); |
| }, |
| opOperandType.getShape(), expandedOperandType.getShape(), |
| reassociation, |
| /*isExpandingReshape=*/true))) |
| return std::nullopt; |
| expandedOpOperands.push_back(tensor::ExpandShapeOp::create( |
| rewriter, loc, expandedOperandType, opOperand->get(), reassociation, |
| expandedOperandShape)); |
| continue; |
| } |
| } |
| expandedOpOperands.push_back(opOperand->get()); |
| } |
| |
| SmallVector<Value> outputs; |
| for (OpOperand &opOperand : linalgOp.getDpsInitsMutable()) { |
| AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand); |
| auto opOperandType = cast<RankedTensorType>(opOperand.get().getType()); |
| SmallVector<OpFoldResult> expandedOutputShape; |
| RankedTensorType expandedOutputType; |
| std::tie(expandedOutputShape, expandedOutputType) = |
| getExpandedShapeAndType(opOperandType, indexingMap, expansionInfo); |
| if (expandedOutputType != opOperand.get().getType()) { |
| SmallVector<ReassociationIndices> reassociation = |
| getReassociationForExpansion(indexingMap, expansionInfo); |
| if (failed(reshapeLikeShapesAreCompatible( |
| [&](const Twine &msg) { |
| return rewriter.notifyMatchFailure(linalgOp, msg); |
| }, |
| opOperandType.getShape(), expandedOutputType.getShape(), |
| reassociation, |
| /*isExpandingReshape=*/true))) |
| return std::nullopt; |
| outputs.push_back(tensor::ExpandShapeOp::create( |
| rewriter, loc, expandedOutputType, opOperand.get(), reassociation, |
| expandedOutputShape)); |
| } else { |
| outputs.push_back(opOperand.get()); |
| } |
| } |
| |
| TypeRange resultTypes = ValueRange(outputs).getTypes(); |
| Operation *fusedOp = |
| createExpandedOp(rewriter, linalgOp, resultTypes, expandedOpOperands, |
| outputs, expandedOpIndexingMaps, expansionInfo); |
| // Reshape the result values to their original shape if this is a collapsing |
| // reshape folded into its consumer. |
| SmallVector<Value> resultVals; |
| for (OpResult opResult : linalgOp->getOpResults()) { |
| int64_t resultNumber = opResult.getResultNumber(); |
| if (resultTypes[resultNumber] != opResult.getType()) { |
| SmallVector<ReassociationIndices> reassociation = |
| getReassociationForExpansion( |
| linalgOp.getMatchingIndexingMap( |
| linalgOp.getDpsInitOperand(resultNumber)), |
| expansionInfo); |
| resultVals.push_back(tensor::CollapseShapeOp::create( |
| rewriter, linalgOp.getLoc(), opResult.getType(), |
| fusedOp->getResult(resultNumber), reassociation)); |
| } else { |
| resultVals.push_back(fusedOp->getResult(resultNumber)); |
| } |
| } |
| // Assuming a single result. |
| return resultVals; |
| } |
| |
| namespace { |
| |
| /// Pattern to fuse a tensor.collapse_shape op with its consumer structured op, |
| /// when the reshape op is collapsing dimensions. The dimensionality of the loop |
| /// in the consumer is expanded. |
| class FoldWithProducerReshapeOpByExpansion |
| : public OpInterfaceRewritePattern<LinalgOp> { |
| public: |
| FoldWithProducerReshapeOpByExpansion(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpInterfaceRewritePattern<LinalgOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(LinalgOp linalgOp, |
| PatternRewriter &rewriter) const override { |
| for (OpOperand *opOperand : linalgOp.getDpsInputOperands()) { |
| tensor::CollapseShapeOp reshapeOp = |
| opOperand->get().getDefiningOp<tensor::CollapseShapeOp>(); |
| if (!reshapeOp) |
| continue; |
| // Fold only if |
| // - The tensor reshape op is folding. |
| // - All constraints of fusing with reshape by expansion are met. |
| if (!isFusableWithReshapeByDimExpansion(linalgOp, opOperand) || |
| (!controlFoldingReshapes(opOperand))) |
| continue; |
| |
| std::optional<SmallVector<Value>> replacementValues = |
| fuseWithReshapeByExpansion(linalgOp, reshapeOp, opOperand, rewriter); |
| if (!replacementValues) |
| return failure(); |
| rewriter.replaceOp(linalgOp, *replacementValues); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| |
| class FoldPadWithProducerReshapeOpByExpansion |
| : public OpRewritePattern<tensor::PadOp> { |
| public: |
| FoldPadWithProducerReshapeOpByExpansion(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<tensor::PadOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| PatternRewriter &rewriter) const override { |
| tensor::CollapseShapeOp reshapeOp = |
| padOp.getSource().getDefiningOp<tensor::CollapseShapeOp>(); |
| if (!reshapeOp) |
| return failure(); |
| if (!reshapeOp->hasOneUse()) |
| return failure(); |
| |
| if (!controlFoldingReshapes(&padOp.getSourceMutable())) { |
| return rewriter.notifyMatchFailure(padOp, |
| "fusion blocked by control function"); |
| } |
| |
| ArrayRef<int64_t> low = padOp.getStaticLow(); |
| ArrayRef<int64_t> high = padOp.getStaticHigh(); |
| SmallVector<ReassociationIndices> reassociations = |
| reshapeOp.getReassociationIndices(); |
| |
| for (auto [reInd, l, h] : llvm::zip_equal(reassociations, low, high)) { |
| if (reInd.size() != 1 && (l != 0 || h != 0)) |
| return failure(); |
| } |
| |
| SmallVector<OpFoldResult> newLow, newHigh; |
| RankedTensorType expandedType = reshapeOp.getSrcType(); |
| RankedTensorType paddedType = padOp.getResultType(); |
| SmallVector<int64_t> expandedPaddedShape(expandedType.getShape()); |
| for (auto [idx, reInd] : llvm::enumerate(reassociations)) { |
| if (reInd.size() == 1) { |
| expandedPaddedShape[reInd[0]] = paddedType.getShape()[idx]; |
| } |
| for (size_t i = 0; i < reInd.size(); ++i) { |
| newLow.push_back(padOp.getMixedLowPad()[idx]); |
| newHigh.push_back(padOp.getMixedHighPad()[idx]); |
| } |
| } |
| |
| Location loc = padOp->getLoc(); |
| RankedTensorType expandedPaddedType = paddedType.clone(expandedPaddedShape); |
| auto newPadOp = tensor::PadOp::create( |
| rewriter, loc, expandedPaddedType, reshapeOp.getSrc(), newLow, newHigh, |
| padOp.getConstantPaddingValue(), padOp.getNofold()); |
| |
| rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>( |
| padOp, padOp.getResultType(), newPadOp.getResult(), reassociations); |
| |
| return success(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| |
| /// Pattern to fold a tensor.expand_shape op with its producer generic op |
| /// by expanding the dimensionality of the loop in the producer op. |
| struct FoldReshapeWithGenericOpByExpansion |
| : public OpRewritePattern<tensor::ExpandShapeOp> { |
| |
| FoldReshapeWithGenericOpByExpansion(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<tensor::ExpandShapeOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(tensor::ExpandShapeOp reshapeOp, |
| PatternRewriter &rewriter) const override { |
| // Fold only if all constraints of fusing with reshape by expansion are met. |
| auto producerResult = dyn_cast<OpResult>(reshapeOp.getSrc()); |
| if (!producerResult) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "source not produced by an operation"); |
| } |
| |
| auto producer = dyn_cast<LinalgOp>(producerResult.getOwner()); |
| if (!producer) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "producer not a generic op"); |
| } |
| |
| if (!isFusableWithReshapeByDimExpansion( |
| producer, |
| producer.getDpsInitOperand(producerResult.getResultNumber()))) { |
| return rewriter.notifyMatchFailure( |
| reshapeOp, "failed preconditions of fusion with producer generic op"); |
| } |
| |
| if (!controlFoldingReshapes(&reshapeOp.getSrcMutable())) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "fusion blocked by control function"); |
| } |
| |
| std::optional<SmallVector<Value>> replacementValues = |
| fuseWithReshapeByExpansion( |
| producer, reshapeOp, |
| producer.getDpsInitOperand(producerResult.getResultNumber()), |
| rewriter); |
| if (!replacementValues) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "fusion by expansion failed"); |
| } |
| |
| // Find the replacement for the reshape op. Since the replacements have the |
| // same type as the returns of the original generic op, the consumer reshape |
| // op can be replaced by the source of the collapse_shape op that defines |
| // the replacement. |
| Value reshapeReplacement = |
| (*replacementValues)[cast<OpResult>(reshapeOp.getSrc()) |
| .getResultNumber()]; |
| if (auto collapseOp = |
| reshapeReplacement.getDefiningOp<tensor::CollapseShapeOp>()) { |
| reshapeReplacement = collapseOp.getSrc(); |
| } |
| rewriter.replaceOp(reshapeOp, reshapeReplacement); |
| rewriter.replaceOp(producer, *replacementValues); |
| return success(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Methods and patterns to fuse reshape with linalg.generic operations by |
| // contraction of dimensions. |
| //===---------------------------------------------------------------------===// |
| |
| /// For a given list of indices in the range of the `indexingMap` that are |
| /// folded, return the indices of the corresponding domain. Return |
| /// `std::nullopt` on failure. Ensures that all the elements of the returned |
| /// reassociation are distinct. |
| static ReassociationIndices |
| getDomainReassociation(AffineMap indexingMap, |
| ReassociationIndicesRef rangeReassociation) { |
| assert(indexingMap.isProjectedPermutation() && |
| "expected projected permutation"); |
| |
| ReassociationIndices domainReassociation = llvm::to_vector<4>( |
| llvm::map_range(rangeReassociation, [&](int64_t pos) -> int64_t { |
| return cast<AffineDimExpr>(indexingMap.getResults()[pos]).getPosition(); |
| })); |
| // The projected permutation semantics ensures that there is no repetition of |
| // the domain indices. |
| return domainReassociation; |
| } |
| |
| /// For a given `dimSequence`, check if the sequence is conserved in the |
| /// `indexingMap`. `indexingMap` is expected to be a projected permutation. |
| /// Non-existence of the sequence returns true as well. |
| bool mlir::linalg::isDimSequencePreserved(AffineMap indexingMap, |
| ReassociationIndicesRef dimSequence) { |
| assert(!dimSequence.empty() && |
| "expected non-empty list for dimension sequence"); |
| assert(indexingMap.isProjectedPermutation() && |
| "expected indexing map to be projected permutation"); |
| |
| llvm::SmallDenseSet<unsigned, 4> sequenceElements; |
| sequenceElements.insert_range(dimSequence); |
| |
| unsigned dimSequenceStart = dimSequence[0]; |
| for (const auto &expr : enumerate(indexingMap.getResults())) { |
| unsigned dimInMapStart = cast<AffineDimExpr>(expr.value()).getPosition(); |
| // 1. Check if this start of the sequence. |
| if (dimInMapStart == dimSequenceStart) { |
| if (expr.index() + dimSequence.size() > indexingMap.getNumResults()) |
| return false; |
| // 1a. Check if sequence is preserved. |
| for (const auto &dimInSequence : enumerate(dimSequence)) { |
| unsigned dimInMap = |
| cast<AffineDimExpr>( |
| indexingMap.getResult(expr.index() + dimInSequence.index())) |
| .getPosition(); |
| if (dimInMap != dimInSequence.value()) |
| return false; |
| } |
| // Found the sequence. Projected permutation |
| // enforces that all AffineDimExprs in the result are unique, so no |
| // further checks are needed. |
| return true; |
| } |
| // 2. If position in the expr (which is of type AffineDimExpr) is part |
| // of sequence, return false here. This implies the entire sequence does not |
| // exist in the indexing map. |
| if (sequenceElements.count(dimInMapStart)) |
| return false; |
| } |
| // 3. No element of sequence found. Return true. |
| return true; |
| } |
| |
| bool mlir::linalg::areDimSequencesPreserved( |
| ArrayRef<AffineMap> maps, ArrayRef<ReassociationIndices> dimSequences) { |
| return llvm::all_of(maps, [&](AffineMap map) { |
| return llvm::all_of(dimSequences, [&](ReassociationIndicesRef dimSequence) { |
| return isDimSequencePreserved(map, dimSequence); |
| }); |
| }); |
| } |
| |
| // Return the list of dimensions of the iteration domain that can be |
| // collapsed to allow for fusion with the a producer that is an expand_shape |
| // operation. If all dimensions created by expansion can be collapsed in the |
| // iteration space then the reshape is defunct. |
| // |
| // Example: |
| // |
| // ```mlir |
| // #map = affine_map<(d0, d1) -> (d0, d1)> |
| // %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| // %2 = tensor.empty [..] : tensor<?x4xf32> |
| // %3 = linalg.generic { |
| // indexing_maps = [#map, #map], |
| // iterator_types = ["parallel" ,"parallel"]} |
| // ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<?x4xf32>) {.. } |
| // ``` |
| // |
| // can be fused by collapsing the dimensions of the iteration space. |
| // |
| // ```mlir |
| // #map = affine_map<(d0) -> (d0)> |
| // %2 = tensor.empty [..] : tensor<?xf32> |
| // %3 = linalg.generic { |
| // indexing_maps = [#map, #map], |
| // iterator_types = ["parallel"]} |
| // ins(%1 : tensor<?xf32>) outs(%2 : tensor<?xf32>) {.. } |
| // %4 = tensor.expand_shape %3 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| // ``` |
| // |
| // In the following example, |
| // |
| // ```mlir |
| // #map0 = affine_map<(d0, d1) -> (d0, d1)> |
| // #map1 = affine_map<(d0, d1) -> (d1, d0)> |
| // %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32> |
| // %2 = tensor.empty [..] : tensor<4x?xf32> |
| // %2 = linalg.generic { |
| // indexing_maps = [#map0, #map1], |
| // iterator_types = ["parallel" ,"parallel"]} |
| // ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<4x?xf32>) {.. } |
| // ``` |
| // |
| // the reshape cannot be fused with the generic op by collapsing the op |
| // dimensions since the indexing maps will have to contain mods and divs |
| // to preserve the accesses pattern. When no dimensions of the iteration |
| // space are collapsable and empty vector is returned. |
| static SmallVector<ReassociationIndices> |
| getCollapsableIterationSpaceDims(GenericOp genericOp, OpOperand *fusableOperand, |
| ArrayRef<ReassociationIndices> reassociation) { |
| // Some basic checks for this fusion to be valid. |
| if (!genericOp.hasPureTensorSemantics()) |
| return {}; |
| |
| if (!llvm::all_of(genericOp.getIndexingMapsArray(), [](AffineMap map) { |
| return map.isProjectedPermutation(); |
| })) { |
| return {}; |
| } |
| |
| // Compute all the loops with the reduction iterator types. |
| SmallVector<unsigned> reductionDims; |
| genericOp.getReductionDims(reductionDims); |
| |
| llvm::SmallDenseSet<unsigned, 4> processedIterationDims; |
| AffineMap indexingMap = genericOp.getMatchingIndexingMap(fusableOperand); |
| auto iteratorTypes = genericOp.getIteratorTypesArray(); |
| SmallVector<ReassociationIndices> iterationSpaceReassociation; |
| for (ReassociationIndicesRef foldedRangeDims : reassociation) { |
| assert(!foldedRangeDims.empty() && "unexpected empty reassociation"); |
| |
| // Ignore dims that are not folded. |
| if (foldedRangeDims.size() == 1) |
| continue; |
| |
| ReassociationIndices foldedIterationSpaceDims = |
| getDomainReassociation(indexingMap, foldedRangeDims); |
| |
| // Check that the folded iteration dims do not contain already processed |
| // dims. |
| if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) { |
| return processedIterationDims.count(dim); |
| })) |
| continue; |
| |
| // Check that all folded iterator types are all parallel or all reductions. |
| utils::IteratorType startIteratorType = |
| iteratorTypes[foldedIterationSpaceDims[0]]; |
| if (!isParallelIterator(startIteratorType) && |
| !isReductionIterator(startIteratorType)) |
| continue; |
| if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) { |
| return iteratorTypes[dim] != startIteratorType; |
| })) |
| continue; |
| |
| // If the folded dimensions correspond to a "reduction" iterator type, |
| // the folded dimensions need to be "in-order". Strictly speaking this is |
| // not necessary, for reductions that are associative and commutative, but |
| // using a more strict definition of reduction for now. |
| if (isReductionIterator(startIteratorType)) { |
| bool isContiguous = false; |
| for (const auto &startDim : llvm::enumerate(reductionDims)) { |
| // Move window in `reductionDims` to start of the folded iteration dims. |
| if (startDim.value() != foldedIterationSpaceDims[0]) |
| continue; |
| // If sizes doesnt match, trivial not contiguous. This condition should |
| // not be hit. |
| if (startDim.index() + foldedIterationSpaceDims.size() > |
| reductionDims.size()) |
| break; |
| // Check that the contiguity is maintained. |
| isContiguous = true; |
| for (const auto &foldedDim : |
| llvm::enumerate(foldedIterationSpaceDims)) { |
| if (reductionDims[foldedDim.index() + startDim.index()] != |
| foldedDim.value()) { |
| isContiguous = false; |
| break; |
| } |
| } |
| break; |
| } |
| if (!isContiguous) |
| continue; |
| } |
| |
| // Check that the sequence is preserved in all indexing maps. |
| if (llvm::any_of(genericOp.getIndexingMapsArray(), |
| [&](AffineMap indexingMap) { |
| return !isDimSequencePreserved(indexingMap, |
| foldedIterationSpaceDims); |
| })) |
| continue; |
| |
| processedIterationDims.insert_range(foldedIterationSpaceDims); |
| iterationSpaceReassociation.emplace_back( |
| std::move(foldedIterationSpaceDims)); |
| } |
| |
| return iterationSpaceReassociation; |
| } |
| |
| /// Helper class to carry state while collapsing the `linalg.generic` op. |
| namespace { |
| class CollapsingInfo { |
| public: |
| LogicalResult initialize(unsigned origNumLoops, |
| ArrayRef<ReassociationIndices> foldedIterationDims) { |
| llvm::SmallDenseSet<int64_t, 4> processedDims; |
| // Find all the dims that are folded. |
| for (ReassociationIndicesRef foldedIterationDim : foldedIterationDims) { |
| if (foldedIterationDim.empty()) |
| continue; |
| // If the folded dims contain dims already folded, that's illegal |
| // specification. Repetition within a list is also illegal. |
| for (auto dim : foldedIterationDim) { |
| if (dim >= origNumLoops) |
| return failure(); |
| if (processedDims.count(dim)) |
| return failure(); |
| processedDims.insert(dim); |
| } |
| collapsedOpToOrigOpIterationDim.emplace_back(foldedIterationDim.begin(), |
| foldedIterationDim.end()); |
| } |
| if (processedDims.size() > origNumLoops) |
| return failure(); |
| |
| // Add all the preserved dims of the original op as single |
| // elements to `collapsedOpToOrigOpIterationDim`. |
| for (auto dim : llvm::seq<int64_t>(0, origNumLoops)) { |
| if (processedDims.count(dim)) |
| continue; |
| collapsedOpToOrigOpIterationDim.emplace_back(ReassociationIndices{dim}); |
| } |
| |
| llvm::sort(collapsedOpToOrigOpIterationDim, |
| [&](ReassociationIndicesRef lhs, ReassociationIndicesRef rhs) { |
| return lhs[0] < rhs[0]; |
| }); |
| origOpToCollapsedOpIterationDim.resize(origNumLoops); |
| for (const auto &foldedDims : |
| llvm::enumerate(collapsedOpToOrigOpIterationDim)) { |
| for (const auto &dim : enumerate(foldedDims.value())) |
| origOpToCollapsedOpIterationDim[dim.value()] = |
| std::make_pair<int64_t, unsigned>(foldedDims.index(), dim.index()); |
| } |
| return success(); |
| } |
| |
| /// Return mapping from collapsed loop domain to original loop domain. |
| ArrayRef<ReassociationIndices> getCollapsedOpToOrigOpMapping() const { |
| return collapsedOpToOrigOpIterationDim; |
| } |
| |
| /// Return mapping from original loop domain to collapsed loop domain. The |
| /// mapping is a pair. First value is the dimension in the collapsed loop that |
| /// the original loop is mapped to. Second is the relative position in folded |
| /// list of this domain. For example if the original loop domain is 3D, and |
| /// the collapsed loop domain is folding all of it, i.e. |
| /// |
| /// ``` |
| /// collapsedOpToOrigOpMapping = [[0, 1, 2] [3, 4]]` |
| /// ``` |
| /// |
| /// then |
| /// |
| /// ``` |
| /// origOpToCollapsedOpMapping[0] = {0, 0}; |
| /// origOpToCollapsedOpMapping[1] = {0, 1}; |
| /// origOpToCollapsedOpMapping[2] = {0, 2}; |
| /// origOpToCollapsedOpMapping[3] = {1, 0}; |
| /// origOpToCollapsedOpMapping[4] = {1, 1}; |
| /// ``` |
| /// |
| ArrayRef<std::pair<int64_t, unsigned>> getOrigOpToCollapsedOpMapping() const { |
| return origOpToCollapsedOpIterationDim; |
| } |
| |
| /// Return the collapsed op iteration domain rank. |
| unsigned getCollapsedOpIterationRank() const { |
| return collapsedOpToOrigOpIterationDim.size(); |
| } |
| |
| private: |
| /// Map from the iteration domain index in collapsed op to the iteration |
| /// domain indices in the original op. |
| SmallVector<ReassociationIndices> collapsedOpToOrigOpIterationDim; |
| |
| /// Map from iteration domain index in the original op to the iteration domain |
| /// index in the collapsed op. |
| SmallVector<std::pair<int64_t, unsigned>> origOpToCollapsedOpIterationDim; |
| }; |
| } // namespace |
| |
| /// Get the iterator types for the collapsed operation given the original |
| /// iterator types and collapsed dimensions. |
| static SmallVector<utils::IteratorType> |
| getCollapsedOpIteratorTypes(ArrayRef<utils::IteratorType> iteratorTypes, |
| const CollapsingInfo &collapsingInfo) { |
| SmallVector<utils::IteratorType> collapsedIteratorTypes; |
| for (ReassociationIndicesRef foldedIterDims : |
| collapsingInfo.getCollapsedOpToOrigOpMapping()) { |
| assert(!foldedIterDims.empty() && |
| "reassociation indices expected to have non-empty sets"); |
| // Just pick the iterator type of the first folded dim. Pre-condition checks |
| // expected to have checked that iterator types of all folded dimensions are |
| // the same. |
| collapsedIteratorTypes.push_back(iteratorTypes[foldedIterDims[0]]); |
| } |
| return collapsedIteratorTypes; |
| } |
| |
| /// Compute the indexing map in the collapsed op that corresponds to the given |
| /// `indexingMap` of the original operation. |
| static AffineMap |
| getCollapsedOpIndexingMap(AffineMap indexingMap, |
| const CollapsingInfo &collapsingInfo) { |
| MLIRContext *context = indexingMap.getContext(); |
| assert(indexingMap.isProjectedPermutation() && |
| "expected indexing map to be projected permutation"); |
| SmallVector<AffineExpr> resultExprs; |
| auto origOpToCollapsedOpMapping = |
| collapsingInfo.getOrigOpToCollapsedOpMapping(); |
| for (auto expr : indexingMap.getResults()) { |
| unsigned dim = cast<AffineDimExpr>(expr).getPosition(); |
| // If the dim is not the first of the collapsed dim, do nothing. |
| if (origOpToCollapsedOpMapping[dim].second != 0) |
| continue; |
| // The next n-dims are guaranteed to be collapsed. So just use the |
| // iteration dimension of the collapsed op. |
| resultExprs.push_back( |
| getAffineDimExpr(origOpToCollapsedOpMapping[dim].first, context)); |
| } |
| return AffineMap::get(collapsingInfo.getCollapsedOpIterationRank(), 0, |
| resultExprs, context); |
| } |
| |
| /// Return the `reassociation` indices to use to collapse the operand when the |
| /// iteration space of a generic op is collapsed. |
| static SmallVector<ReassociationIndices> |
| getOperandReassociation(AffineMap indexingMap, |
| const CollapsingInfo &collapsingInfo) { |
| unsigned counter = 0; |
| SmallVector<ReassociationIndices> operandReassociation; |
| auto origOpToCollapsedOpMapping = |
| collapsingInfo.getOrigOpToCollapsedOpMapping(); |
| auto collapsedOpToOrigOpMapping = |
| collapsingInfo.getCollapsedOpToOrigOpMapping(); |
| while (counter < indexingMap.getNumResults()) { |
| unsigned dim = |
| cast<AffineDimExpr>(indexingMap.getResult(counter)).getPosition(); |
| // This is the start of a collapsed dimensions of the iteration that |
| // is gauranteed to be preserved in the indexing map. The number of folded |
| // dims is obtained from the collapsed op to original op mapping. |
| unsigned numFoldedDims = |
| collapsedOpToOrigOpMapping[origOpToCollapsedOpMapping[dim].first] |
| .size(); |
| if (origOpToCollapsedOpMapping[dim].second == 0) { |
| auto range = llvm::seq<unsigned>(counter, counter + numFoldedDims); |
| operandReassociation.emplace_back(range.begin(), range.end()); |
| } |
| counter += numFoldedDims; |
| } |
| return operandReassociation; |
| } |
| |
| /// Get the new value to use for a given `OpOperand` in the collapsed operation. |
| static Value getCollapsedOpOperand(Location loc, LinalgOp op, |
| OpOperand *opOperand, |
| const CollapsingInfo &collapsingInfo, |
| OpBuilder &builder) { |
| AffineMap indexingMap = op.getMatchingIndexingMap(opOperand); |
| SmallVector<ReassociationIndices> operandReassociation = |
| getOperandReassociation(indexingMap, collapsingInfo); |
| |
| // If the number of entries in the reassociation for the operand is same as |
| // the number of results of the indexing map, then nothing to do for this |
| // operand. |
| Value operand = opOperand->get(); |
| if (operandReassociation.size() == indexingMap.getNumResults()) |
| return operand; |
| |
| // Insert a reshape to collapse the dimensions. |
| if (isa<MemRefType>(operand.getType())) { |
| return memref::CollapseShapeOp::create(builder, loc, operand, |
| operandReassociation) |
| .getResult(); |
| } |
| return tensor::CollapseShapeOp::create(builder, loc, operand, |
| operandReassociation) |
| .getResult(); |
| } |
| |
| /// Modify the `linalg.index` operations in the original generic op, to its |
| /// value in the collapsed operation. |
| static void generateCollapsedIndexingRegion( |
| Location loc, Block *block, const CollapsingInfo &collapsingInfo, |
| ArrayRef<OpFoldResult> loopRange, RewriterBase &rewriter) { |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPointToStart(block); |
| |
| // Collect all the original index ops. |
| auto indexOps = llvm::to_vector(block->getOps<linalg::IndexOp>()); |
| |
| // For each folded dimension list resolve the original induction variable |
| // values in terms of the folded dimension induction variable. |
| // i_{folded} = (i_0 * d1 + i1) * d2 + i2. |
| // can be inverted to |
| // i2 = i_{folded} % d2 |
| // i1 = (i_{folded} / d2) % d1 |
| // i0 = i_{folded} / (d1 * d2) |
| llvm::DenseMap<unsigned, Value> indexReplacementVals; |
| for (auto foldedDims : |
| enumerate(collapsingInfo.getCollapsedOpToOrigOpMapping())) { |
| ReassociationIndicesRef foldedDimsRef(foldedDims.value()); |
| Value newIndexVal = |
| linalg::IndexOp::create(rewriter, loc, foldedDims.index()); |
| for (auto dim : llvm::reverse(foldedDimsRef.drop_front())) { |
| Value loopDim = |
| getValueOrCreateConstantIndexOp(rewriter, loc, loopRange[dim]); |
| indexReplacementVals[dim] = |
| rewriter.createOrFold<arith::RemSIOp>(loc, newIndexVal, loopDim); |
| newIndexVal = |
| rewriter.createOrFold<arith::DivSIOp>(loc, newIndexVal, loopDim); |
| } |
| indexReplacementVals[foldedDims.value().front()] = newIndexVal; |
| } |
| |
| for (auto indexOp : indexOps) { |
| auto dim = indexOp.getDim(); |
| rewriter.replaceOp(indexOp, indexReplacementVals[dim]); |
| } |
| } |
| |
| void collapseOperandsAndResults(LinalgOp op, |
| const CollapsingInfo &collapsingInfo, |
| RewriterBase &rewriter, |
| SmallVectorImpl<Value> &inputOperands, |
| SmallVectorImpl<Value> &outputOperands, |
| SmallVectorImpl<Type> &resultTypes) { |
| Location loc = op->getLoc(); |
| inputOperands = |
| llvm::map_to_vector(op.getDpsInputOperands(), [&](OpOperand *opOperand) { |
| return getCollapsedOpOperand(loc, op, opOperand, collapsingInfo, |
| rewriter); |
| }); |
| |
| // Get the output operands and result types. |
| resultTypes.reserve(op.getNumDpsInits()); |
| outputOperands.reserve(op.getNumDpsInits()); |
| for (OpOperand &output : op.getDpsInitsMutable()) { |
| Value newOutput = |
| getCollapsedOpOperand(loc, op, &output, collapsingInfo, rewriter); |
| outputOperands.push_back(newOutput); |
| // If the op has "buffer semantics", then the init operands are ranked |
| // memrefs and the op has no results. |
| if (!op.hasPureBufferSemantics()) |
| resultTypes.push_back(newOutput.getType()); |
| } |
| } |
| |
| /// Clone a `LinalgOp` to a collapsed version of same name |
| template <typename OpTy> |
| OpTy cloneToCollapsedOp(RewriterBase &rewriter, OpTy origOp, |
| const CollapsingInfo &collapsingInfo) { |
| return nullptr; |
| } |
| |
| /// Collapse any `LinalgOp` that does not require any specialization such as |
| /// indexing_maps, iterator_types, etc. |
| template <> |
| LinalgOp cloneToCollapsedOp<LinalgOp>(RewriterBase &rewriter, LinalgOp origOp, |
| const CollapsingInfo &collapsingInfo) { |
| SmallVector<Value> inputOperands, outputOperands; |
| SmallVector<Type> resultTypes; |
| collapseOperandsAndResults(origOp, collapsingInfo, rewriter, inputOperands, |
| outputOperands, resultTypes); |
| |
| return clone( |
| rewriter, origOp, resultTypes, |
| llvm::to_vector(llvm::concat<Value>(inputOperands, outputOperands))); |
| } |
| |
| /// Collapse a `GenericOp` |
| template <> |
| GenericOp cloneToCollapsedOp<GenericOp>(RewriterBase &rewriter, |
| GenericOp origOp, |
| const CollapsingInfo &collapsingInfo) { |
| SmallVector<Value> inputOperands, outputOperands; |
| SmallVector<Type> resultTypes; |
| collapseOperandsAndResults(origOp, collapsingInfo, rewriter, inputOperands, |
| outputOperands, resultTypes); |
| SmallVector<AffineMap> indexingMaps( |
| llvm::map_range(origOp.getIndexingMapsArray(), [&](AffineMap map) { |
| return getCollapsedOpIndexingMap(map, collapsingInfo); |
| })); |
| |
| SmallVector<utils::IteratorType> iteratorTypes(getCollapsedOpIteratorTypes( |
| origOp.getIteratorTypesArray(), collapsingInfo)); |
| |
| GenericOp collapsedOp = linalg::GenericOp::create( |
| rewriter, origOp.getLoc(), resultTypes, inputOperands, outputOperands, |
| indexingMaps, iteratorTypes, |
| [](OpBuilder &builder, Location loc, ValueRange args) {}); |
| Block *origOpBlock = &origOp->getRegion(0).front(); |
| Block *collapsedOpBlock = &collapsedOp->getRegion(0).front(); |
| rewriter.mergeBlocks(origOpBlock, collapsedOpBlock, |
| collapsedOpBlock->getArguments()); |
| return collapsedOp; |
| } |
| |
| LinalgOp createCollapsedOp(LinalgOp op, const CollapsingInfo &collapsingInfo, |
| RewriterBase &rewriter) { |
| if (GenericOp genericOp = dyn_cast<GenericOp>(op.getOperation())) { |
| return cloneToCollapsedOp(rewriter, genericOp, collapsingInfo); |
| } else { |
| return cloneToCollapsedOp(rewriter, op, collapsingInfo); |
| } |
| } |
| |
| /// Implementation of fusion with reshape operation by collapsing dimensions. |
| FailureOr<CollapseResult> mlir::linalg::collapseOpIterationDims( |
| LinalgOp op, ArrayRef<ReassociationIndices> foldedIterationDims, |
| RewriterBase &rewriter) { |
| // Bail on trivial no-op cases. |
| if (op.getNumLoops() <= 1 || foldedIterationDims.empty() || |
| llvm::all_of(foldedIterationDims, [](ReassociationIndicesRef foldedDims) { |
| return foldedDims.size() <= 1; |
| })) |
| return failure(); |
| |
| CollapsingInfo collapsingInfo; |
| if (failed( |
| collapsingInfo.initialize(op.getNumLoops(), foldedIterationDims))) { |
| return rewriter.notifyMatchFailure( |
| op, "illegal to collapse specified dimensions"); |
| } |
| |
| bool hasPureBufferSemantics = op.hasPureBufferSemantics(); |
| if (hasPureBufferSemantics && |
| !llvm::all_of(op->getOpOperands(), [&](OpOperand &opOperand) -> bool { |
| MemRefType memRefToCollapse = |
| dyn_cast<MemRefType>(opOperand.get().getType()); |
| if (!memRefToCollapse) |
| return true; |
| |
| AffineMap indexingMap = op.getMatchingIndexingMap(&opOperand); |
| SmallVector<ReassociationIndices> operandReassociation = |
| getOperandReassociation(indexingMap, collapsingInfo); |
| return memref::CollapseShapeOp::isGuaranteedCollapsible( |
| memRefToCollapse, operandReassociation); |
| })) |
| return rewriter.notifyMatchFailure(op, |
| "memref is not guaranteed collapsible"); |
| |
| // Bail on non-canonical ranges. |
| SmallVector<Range> loopRanges = op.createLoopRanges(rewriter, op.getLoc()); |
| auto opFoldIsConstantValue = [](OpFoldResult ofr, int64_t value) { |
| if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr)) |
| return cast<IntegerAttr>(attr).getInt() == value; |
| llvm::APInt actual; |
| return matchPattern(cast<Value>(ofr), m_ConstantInt(&actual)) && |
| actual.getSExtValue() == value; |
| }; |
| if (!llvm::all_of(loopRanges, [&](Range range) { |
| return opFoldIsConstantValue(range.offset, 0) && |
| opFoldIsConstantValue(range.stride, 1); |
| })) { |
| return rewriter.notifyMatchFailure( |
| op, "expected all loop ranges to have zero start and unit stride"); |
| } |
| |
| LinalgOp collapsedOp = createCollapsedOp(op, collapsingInfo, rewriter); |
| |
| Location loc = op->getLoc(); |
| SmallVector<OpFoldResult> loopBound = |
| llvm::map_to_vector(loopRanges, [](Range range) { return range.size; }); |
| |
| if (collapsedOp.hasIndexSemantics()) { |
| // Collect the loop range of the generic op. |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(collapsedOp); |
| generateCollapsedIndexingRegion(loc, &collapsedOp->getRegion(0).front(), |
| collapsingInfo, loopBound, rewriter); |
| } |
| |
| // Insert expanding reshape for the result to get back the original result |
| // type. |
| SmallVector<Value> results; |
| for (const auto &originalResult : llvm::enumerate(op->getResults())) { |
| Value collapsedOpResult = collapsedOp->getResult(originalResult.index()); |
| auto originalResultType = |
| cast<ShapedType>(originalResult.value().getType()); |
| auto collapsedOpResultType = cast<ShapedType>(collapsedOpResult.getType()); |
| if (collapsedOpResultType.getRank() != originalResultType.getRank()) { |
| AffineMap indexingMap = |
| op.getIndexingMapMatchingResult(originalResult.value()); |
| SmallVector<ReassociationIndices> reassociation = |
| getOperandReassociation(indexingMap, collapsingInfo); |
| assert( |
| indexingMap.isProjectedPermutation() && |
| "Expected indexing map to be a projected permutation for collapsing"); |
| SmallVector<OpFoldResult> resultShape = |
| applyPermutationMap(indexingMap, ArrayRef(loopBound)); |
| Value result; |
| if (isa<MemRefType>(collapsedOpResult.getType())) { |
| MemRefType expandShapeResultType = MemRefType::get( |
| originalResultType.getShape(), originalResultType.getElementType()); |
| result = memref::ExpandShapeOp::create( |
| rewriter, loc, expandShapeResultType, collapsedOpResult, |
| reassociation, resultShape); |
| } else { |
| result = tensor::ExpandShapeOp::create( |
| rewriter, loc, originalResultType, collapsedOpResult, reassociation, |
| resultShape); |
| } |
| results.push_back(result); |
| } else { |
| results.push_back(collapsedOpResult); |
| } |
| } |
| return CollapseResult{results, collapsedOp}; |
| } |
| |
| namespace { |
| |
| /// Pattern to fuse a tensor.expand_shape op with its consumer generic op by |
| /// contracting dimensions of the loop. |
| class FoldWithProducerReshapeOpByCollapsing |
| : public OpRewritePattern<GenericOp> { |
| public: |
| // TODO : support fusion with all linalg ops, not just generic. |
| FoldWithProducerReshapeOpByCollapsing(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<GenericOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| for (OpOperand &opOperand : genericOp->getOpOperands()) { |
| tensor::ExpandShapeOp reshapeOp = |
| opOperand.get().getDefiningOp<tensor::ExpandShapeOp>(); |
| if (!reshapeOp) |
| continue; |
| |
| SmallVector<ReassociationIndices> collapsableIterationDims = |
| getCollapsableIterationSpaceDims(genericOp, &opOperand, |
| reshapeOp.getReassociationIndices()); |
| if (collapsableIterationDims.empty() || |
| !controlFoldingReshapes(&opOperand)) { |
| continue; |
| } |
| |
| std::optional<CollapseResult> collapseResult = collapseOpIterationDims( |
| genericOp, collapsableIterationDims, rewriter); |
| if (!collapseResult) { |
| return rewriter.notifyMatchFailure( |
| genericOp, "failed to do the fusion by collapsing transformation"); |
| } |
| |
| rewriter.replaceOp(genericOp, collapseResult->results); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| |
| /// Pattern to fold a tensor.collapse_shape op with its producer generic op |
| /// by expanding the dimensionality of the loop in the producer op. |
| struct FoldReshapeWithGenericOpByCollapsing |
| : public OpRewritePattern<tensor::CollapseShapeOp> { |
| |
| FoldReshapeWithGenericOpByCollapsing(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<tensor::CollapseShapeOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(tensor::CollapseShapeOp reshapeOp, |
| PatternRewriter &rewriter) const override { |
| // Fold only if all constraints of fusing with reshape by collapsing are |
| // met. |
| auto producerResult = dyn_cast<OpResult>(reshapeOp.getSrc()); |
| if (!producerResult) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "source not produced by an operation"); |
| } |
| |
| // TODO : support fusion with all linalg producers, not just generic. |
| auto producer = dyn_cast<GenericOp>(producerResult.getOwner()); |
| if (!producer) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "producer not a generic op"); |
| } |
| |
| SmallVector<ReassociationIndices> collapsableIterationDims = |
| getCollapsableIterationSpaceDims( |
| producer, |
| producer.getDpsInitOperand(producerResult.getResultNumber()), |
| reshapeOp.getReassociationIndices()); |
| if (collapsableIterationDims.empty()) { |
| return rewriter.notifyMatchFailure( |
| reshapeOp, "failed preconditions of fusion with producer generic op"); |
| } |
| |
| if (!controlFoldingReshapes(&reshapeOp.getSrcMutable())) { |
| return rewriter.notifyMatchFailure(reshapeOp, |
| "fusion blocked by control function"); |
| } |
| |
| // Set the insertion point after `producer` because there could be uses |
| // of `producer` between it and the `tensor.collapse_shape` op. |
| rewriter.setInsertionPointAfter(producer); |
| std::optional<CollapseResult> collapseResult = |
| collapseOpIterationDims(producer, collapsableIterationDims, rewriter); |
| if (!collapseResult) { |
| return rewriter.notifyMatchFailure( |
| producer, "failed to do the fusion by collapsing transformation"); |
| } |
| |
| rewriter.replaceOp(producer, collapseResult->results); |
| return success(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| |
| class FoldPadWithProducerReshapeOpByCollapsing |
| : public OpRewritePattern<tensor::PadOp> { |
| public: |
| FoldPadWithProducerReshapeOpByCollapsing(MLIRContext *context, |
| ControlFusionFn foldReshapes, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<tensor::PadOp>(context, benefit), |
| controlFoldingReshapes(std::move(foldReshapes)) {} |
| |
| LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| PatternRewriter &rewriter) const override { |
| tensor::ExpandShapeOp reshapeOp = |
| padOp.getSource().getDefiningOp<tensor::ExpandShapeOp>(); |
| if (!reshapeOp) |
| return failure(); |
| if (!reshapeOp->hasOneUse()) |
| return failure(); |
| |
| if (!controlFoldingReshapes(&padOp.getSourceMutable())) { |
| return rewriter.notifyMatchFailure(padOp, |
| "fusion blocked by control function"); |
| } |
| |
| ArrayRef<int64_t> low = padOp.getStaticLow(); |
| ArrayRef<int64_t> high = padOp.getStaticHigh(); |
| SmallVector<ReassociationIndices> reassociations = |
| reshapeOp.getReassociationIndices(); |
| |
| for (auto reInd : reassociations) { |
| if (reInd.size() == 1) |
| continue; |
| if (llvm::any_of(reInd, [&](int64_t ind) { |
| return low[ind] != 0 || high[ind] != 0; |
| })) { |
| return failure(); |
| } |
| } |
| |
| SmallVector<OpFoldResult> newLow, newHigh; |
| RankedTensorType collapsedType = reshapeOp.getSrcType(); |
| RankedTensorType paddedType = padOp.getResultType(); |
| SmallVector<int64_t> collapsedPaddedShape(collapsedType.getShape()); |
| SmallVector<OpFoldResult> expandedPaddedSizes( |
| getMixedValues(reshapeOp.getStaticOutputShape(), |
| reshapeOp.getOutputShape(), rewriter)); |
| AffineExpr d0, d1, d2; |
| bindDims(rewriter.getContext(), d0, d1, d2); |
| auto addMap = AffineMap::get(3, 0, {d0 + d1 + d2}); |
| Location loc = reshapeOp->getLoc(); |
| for (auto [idx, reInd] : llvm::enumerate(reassociations)) { |
| OpFoldResult l = padOp.getMixedLowPad()[reInd[0]]; |
| OpFoldResult h = padOp.getMixedHighPad()[reInd[0]]; |
| if (reInd.size() == 1) { |
| collapsedPaddedShape[idx] = paddedType.getShape()[reInd[0]]; |
| OpFoldResult paddedSize = affine::makeComposedFoldedAffineApply( |
| rewriter, loc, addMap, {l, h, expandedPaddedSizes[reInd[0]]}); |
| expandedPaddedSizes[reInd[0]] = paddedSize; |
| } |
| newLow.push_back(l); |
| newHigh.push_back(h); |
| } |
| |
| RankedTensorType collapsedPaddedType = |
| paddedType.clone(collapsedPaddedShape); |
| auto newPadOp = tensor::PadOp::create( |
| rewriter, loc, collapsedPaddedType, reshapeOp.getSrc(), newLow, newHigh, |
| padOp.getConstantPaddingValue(), padOp.getNofold()); |
| |
| rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
| padOp, padOp.getResultType(), newPadOp.getResult(), reassociations, |
| expandedPaddedSizes); |
| |
| return success(); |
| } |
| |
| private: |
| ControlFusionFn controlFoldingReshapes; |
| }; |
| |
| /// Pattern to collapse dimensions. |
| template <typename LinalgType> |
| class CollapseLinalgDimensions : public OpRewritePattern<LinalgType> { |
| public: |
| CollapseLinalgDimensions(MLIRContext *context, |
| GetCollapsableDimensionsFn collapseDimensions, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern<LinalgType>(context, benefit), |
| controlCollapseDimension(std::move(collapseDimensions)) {} |
| |
| LogicalResult matchAndRewrite(LinalgType op, |
| PatternRewriter &rewriter) const override { |
| SmallVector<ReassociationIndices> collapsableIterationDims = |
| controlCollapseDimension(op); |
| if (collapsableIterationDims.empty()) |
| return failure(); |
| |
| // Check if the specified list of dimensions to collapse is a valid list. |
| if (!areDimSequencesPreserved(op.getIndexingMapsArray(), |
| collapsableIterationDims)) { |
| return rewriter.notifyMatchFailure( |
| op, "specified dimensions cannot be collapsed"); |
| } |
| |
| std::optional<CollapseResult> collapseResult = |
| collapseOpIterationDims(op, collapsableIterationDims, rewriter); |
| if (!collapseResult) { |
| return rewriter.notifyMatchFailure(op, "failed to collapse dimensions"); |
| } |
| rewriter.replaceOp(op, collapseResult->results); |
| return success(); |
| } |
| |
| private: |
| GetCollapsableDimensionsFn controlCollapseDimension; |
| }; |
| |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Methods and patterns that fuse constants with linalg.generic operations. |
| //===---------------------------------------------------------------------===// |
| |
| namespace { |
| /// Pattern to fold a generic op with a splat constant/scalar constant. Does not |
| /// handle cases where the constant is not single-valued. |
| class FoldScalarOrSplatConstant : public OpRewritePattern<GenericOp> { |
| public: |
| FoldScalarOrSplatConstant(MLIRContext *context, PatternBenefit benefit = 1) |
| : OpRewritePattern<GenericOp>(context, benefit) {} |
| |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| if (!genericOp.hasPureTensorSemantics()) |
| return failure(); |
| for (OpOperand *opOperand : genericOp.getDpsInputOperands()) { |
| Operation *def = opOperand->get().getDefiningOp(); |
| TypedAttr constantAttr; |
| auto isScalarOrSplatConstantOp = [&constantAttr](Operation *def) -> bool { |
| { |
| DenseElementsAttr splatAttr; |
| if (matchPattern(def, m_Constant<DenseElementsAttr>(&splatAttr)) && |
| splatAttr.isSplat() && |
| splatAttr.getType().getElementType().isIntOrFloat()) { |
| constantAttr = splatAttr.getSplatValue<TypedAttr>(); |
| return true; |
| } |
| } |
| { |
| IntegerAttr intAttr; |
| if (matchPattern(def, m_Constant<IntegerAttr>(&intAttr))) { |
| constantAttr = intAttr; |
| return true; |
| } |
| } |
| { |
| FloatAttr floatAttr; |
| if (matchPattern(def, m_Constant<FloatAttr>(&floatAttr))) { |
| constantAttr = floatAttr; |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| auto resultValue = dyn_cast<OpResult>(opOperand->get()); |
| if (!def || !resultValue || !isScalarOrSplatConstantOp(def)) |
| continue; |
| |
| // The operands and the indexing_maps of the fused operation the same as |
| // the operands and indexing_maps of the generic operations with the |
| // values at the constant index dropped. |
| SmallVector<AffineMap> fusedIndexMaps; |
| SmallVector<Value> fusedOperands; |
| SmallVector<Location> fusedLocs{genericOp.getLoc()}; |
| fusedIndexMaps.reserve(genericOp->getNumOperands()); |
| fusedOperands.reserve(genericOp.getNumDpsInputs()); |
| fusedLocs.reserve(fusedLocs.size() + genericOp.getNumDpsInputs()); |
| for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) { |
| if (inputOperand == opOperand) |
| continue; |
| Value inputValue = inputOperand->get(); |
| fusedIndexMaps.push_back( |
| genericOp.getMatchingIndexingMap(inputOperand)); |
| fusedOperands.push_back(inputValue); |
| fusedLocs.push_back(inputValue.getLoc()); |
| } |
| for (OpOperand &outputOperand : genericOp.getDpsInitsMutable()) |
| fusedIndexMaps.push_back( |
| genericOp.getMatchingIndexingMap(&outputOperand)); |
| |
| // Check if the operation shapes to loops map is computable. |
| if (!inversePermutation( |
| concatAffineMaps(fusedIndexMaps, rewriter.getContext()))) { |
| return rewriter.notifyMatchFailure( |
| genericOp, "fused op loop bound computation failed"); |
| } |
| |
| // Create a constant scalar value from the splat constant. |
| Value scalarConstant = |
| arith::ConstantOp::create(rewriter, def->getLoc(), constantAttr); |
| |
| SmallVector<Value> outputOperands = genericOp.getOutputs(); |
| auto fusedOp = |
| GenericOp::create(rewriter, rewriter.getFusedLoc(fusedLocs), |
| genericOp->getResultTypes(), |
| /*inputs=*/fusedOperands, |
| /*outputs=*/outputOperands, |
| rewriter.getAffineMapArrayAttr(fusedIndexMaps), |
| genericOp.getIteratorTypes(), |
| /*doc=*/nullptr, |
| /*library_call=*/nullptr); |
| |
| // Map the block argument corresponding to the replaced argument with the |
| // scalar constant. |
| Region ®ion = genericOp->getRegion(0); |
| Block &entryBlock = *region.begin(); |
| IRMapping mapping; |
| mapping.map(entryBlock.getArgument(opOperand->getOperandNumber()), |
| scalarConstant); |
| Region &fusedRegion = fusedOp->getRegion(0); |
| rewriter.cloneRegionBefore(region, fusedRegion, fusedRegion.begin(), |
| mapping); |
| rewriter.replaceOp(genericOp, fusedOp->getResults()); |
| return success(); |
| } |
| return failure(); |
| } |
| }; |
| |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Miscellaneous patterns that help fusion. |
| //===---------------------------------------------------------------------===// |
| |
| namespace { |
| /// Forces `outs` operands of linalg operations to use `tensor.empty` if the |
| /// value of the `outs` operand is not used within the op. This is only |
| /// implemented for `linalg.generic` operations for now, but should hold for all |
| /// linalg structured ops. |
| struct RemoveOutsDependency : public OpRewritePattern<GenericOp> { |
| using OpRewritePattern<GenericOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(GenericOp op, |
| PatternRewriter &rewriter) const override { |
| rewriter.startOpModification(op); |
| bool modifiedOutput = false; |
| Location loc = op.getLoc(); |
| for (OpOperand &opOperand : op.getDpsInitsMutable()) { |
| if (!op.payloadUsesValueFromOperand(&opOperand)) { |
| Value operandVal = opOperand.get(); |
| auto operandType = dyn_cast<RankedTensorType>(operandVal.getType()); |
| if (!operandType) |
| continue; |
| |
| // If outs is sparse, leave it to the sparsifier. |
| if (sparse_tensor::getSparseTensorEncoding(operandVal.getType())) |
| continue; |
| |
| // If outs is already an `empty` operation, nothing to do. |
| auto definingOp = operandVal.getDefiningOp<tensor::EmptyOp>(); |
| if (definingOp) |
| continue; |
| modifiedOutput = true; |
| SmallVector<OpFoldResult> mixedSizes = |
| tensor::getMixedSizes(rewriter, loc, operandVal); |
| Value emptyTensor = tensor::EmptyOp::create( |
| rewriter, loc, mixedSizes, operandType.getElementType()); |
| op->setOperand(opOperand.getOperandNumber(), emptyTensor); |
| } |
| } |
| if (!modifiedOutput) { |
| rewriter.cancelOpModification(op); |
| return failure(); |
| } |
| rewriter.finalizeOpModification(op); |
| return success(); |
| } |
| }; |
| |
| /// Fold linalg.fill into linalg.generic |
| struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> { |
| using OpRewritePattern<GenericOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| if (!genericOp.hasPureTensorSemantics()) |
| return failure(); |
| bool fillFound = false; |
| Block &payload = genericOp.getRegion().front(); |
| for (OpOperand *opOperand : genericOp.getDpsInputOperands()) { |
| if (!genericOp.payloadUsesValueFromOperand(opOperand)) |
| continue; |
| FillOp fillOp = opOperand->get().getDefiningOp<FillOp>(); |
| if (!fillOp) |
| continue; |
| fillFound = true; |
| Value fillVal = fillOp.value(); |
| auto resultType = |
| cast<RankedTensorType>(fillOp.result().getType()).getElementType(); |
| Value convertedVal = |
| convertScalarToDtype(rewriter, fillOp.getLoc(), fillVal, resultType, |
| /*isUnsignedCast =*/false); |
| rewriter.replaceAllUsesWith( |
| payload.getArgument(opOperand->getOperandNumber()), convertedVal); |
| } |
| return success(fillFound); |
| } |
| }; |
| } // namespace |
| |
| void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns( |
| RewritePatternSet &patterns, |
| const ControlFusionFn &controlFoldingReshapes) { |
| patterns.add<FoldReshapeWithGenericOpByExpansion>(patterns.getContext(), |
| controlFoldingReshapes); |
| patterns.add<FoldPadWithProducerReshapeOpByExpansion>(patterns.getContext(), |
| controlFoldingReshapes); |
| patterns.add<FoldWithProducerReshapeOpByExpansion>(patterns.getContext(), |
| controlFoldingReshapes); |
| } |
| |
| void mlir::linalg::populateFoldReshapeOpsByCollapsingPatterns( |
| RewritePatternSet &patterns, |
| const ControlFusionFn &controlFoldingReshapes) { |
| patterns.add<FoldWithProducerReshapeOpByCollapsing>(patterns.getContext(), |
| controlFoldingReshapes); |
| patterns.add<FoldPadWithProducerReshapeOpByCollapsing>( |
| patterns.getContext(), controlFoldingReshapes); |
| patterns.add<FoldReshapeWithGenericOpByCollapsing>(patterns.getContext(), |
| controlFoldingReshapes); |
| } |
| |
| void mlir::linalg::populateElementwiseOpsFusionPatterns( |
| RewritePatternSet &patterns, |
| const ControlFusionFn &controlElementwiseOpsFusion) { |
| auto *context = patterns.getContext(); |
| patterns.add<FuseElementwiseOps>(context, controlElementwiseOpsFusion); |
| patterns.add<FoldFillWithGenericOp, FoldScalarOrSplatConstant, |
| RemoveOutsDependency>(context); |
| // Add the patterns that clean up dead operands and results. |
| populateEraseUnusedOperandsAndResultsPatterns(patterns); |
| } |
| |
| void mlir::linalg::populateCollapseDimensions( |
| RewritePatternSet &patterns, |
| const GetCollapsableDimensionsFn &controlCollapseDimensions) { |
| patterns.add<CollapseLinalgDimensions<linalg::GenericOp>, |
| CollapseLinalgDimensions<linalg::CopyOp>>( |
| patterns.getContext(), controlCollapseDimensions); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Passes |
| //===---------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Pass that fuses generic ops on tensors. Used only for testing. |
| // TODO(ravishankarm): This pass is to be deprecated. The efficacy of the |
| // patterns added here heavily depends on the cost function used. Having an |
| // opinionated pass of this form is not recommended. Deprecate this pass in |
| // favor of test passes that check the functionality of each of the patterns |
| // added here individually. |
| struct LinalgElementwiseOpFusionPass |
| : public impl::LinalgElementwiseOpFusionPassBase< |
| LinalgElementwiseOpFusionPass> { |
| using impl::LinalgElementwiseOpFusionPassBase< |
| LinalgElementwiseOpFusionPass>::LinalgElementwiseOpFusionPassBase; |
| void runOnOperation() override { |
| Operation *op = getOperation(); |
| MLIRContext *context = op->getContext(); |
| RewritePatternSet patterns(context); |
| |
| // Add folding with reshape by expansion patterns. |
| ControlFusionFn defaultControlFn = [](OpOperand *fusedOperand) { |
| Operation *producer = fusedOperand->get().getDefiningOp(); |
| return producer && producer->hasOneUse(); |
| }; |
| |
| // Add elementwise op fusion patterns. |
| populateElementwiseOpsFusionPatterns(patterns, defaultControlFn); |
| populateFoldReshapeOpsByExpansionPatterns(patterns, defaultControlFn); |
| tensor::populateBubbleUpExpandShapePatterns(patterns); |
| |
| // General canonicalization patterns. |
| affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context); |
| GenericOp::getCanonicalizationPatterns(patterns, context); |
| tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context); |
| tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context); |
| context->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns( |
| patterns); |
| |
| // Add constant folding patterns. |
| populateConstantFoldLinalgOperations(patterns, defaultControlFn); |
| |
| // Use TopDownTraversal for compile time reasons. |
| (void)applyPatternsGreedily(op, std::move(patterns), |
| GreedyRewriteConfig().setUseTopDownTraversal()); |
| } |
| }; |
| |
| } // namespace |