| //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements patterns/pass to remove usage of unit-extent dimensions |
| // to specify broadcasting in favor of more canonical representation of the |
| // computation |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Passes.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/Transforms/Transforms.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/Transforms/FoldUtils.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "llvm/Support/Debug.h" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMSPASS |
| #include "mlir/Dialect/Linalg/Passes.h.inc" |
| } // namespace mlir |
| |
| #define DEBUG_TYPE "linalg-drop-unit-dims" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| namespace { |
| /// Pattern to move init operands to ins when all the loops are parallel and |
| /// blockArgument corresponding to init is used in the region. This is a fix-up |
| /// when unit reduction dimensions are all folded away. In this context, it |
| /// becomes a elementwise generic op. E.g., it converts |
| /// |
| /// %0 = tensor.empty() : tensor<1x1xf32> |
| /// %1 = linalg.fill |
| /// ins(%cst : f32) |
| /// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32> |
| /// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>, |
| /// affine_map<(d0) -> (0, d0)>], |
| /// iterator_types = ["parallel"]} |
| /// ins(%arg0 : tensor<1x?x1x1xf32>) |
| /// outs(%1 : tensor<1x1xf32>) { |
| /// ^bb0(%in: f32, %out: f32): |
| /// %3 = arith.addf %in, %out : f32 |
| /// linalg.yield %3 : f32 |
| /// } -> tensor<1x1xf32> |
| /// |
| /// into |
| /// |
| /// %0 = tensor.empty() : tensor<1x1xf32> |
| /// %1 = linalg.fill |
| /// ins(%cst : f32) |
| /// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32> |
| /// %2 = tensor.empty() : tensor<1x1xf32> |
| /// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>, |
| /// affine_map<(d0) -> (0, d0)>, |
| /// affine_map<(d0) -> (0, d0)>], |
| /// iterator_types = ["parallel"]} |
| /// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>) |
| /// outs(%2 : tensor<1x1xf32>) { |
| /// ^bb0(%in: f32, %in_0: f32, %out: f32): |
| /// %4 = arith.addf %in, %in_0 : f32 |
| /// linalg.yield %4 : f32 |
| /// } -> tensor<1x1xf32> |
| struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> { |
| using OpRewritePattern<GenericOp>::OpRewritePattern; |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| if (!genericOp.hasPureTensorSemantics()) |
| return failure(); |
| if (genericOp.getNumParallelLoops() != genericOp.getNumLoops()) |
| return failure(); |
| |
| auto outputOperands = genericOp.getDpsInitsMutable(); |
| SetVector<OpOperand *> candidates; |
| for (OpOperand &op : outputOperands) { |
| if (genericOp.getMatchingBlockArgument(&op).use_empty()) |
| continue; |
| candidates.insert(&op); |
| } |
| |
| if (candidates.empty()) |
| return failure(); |
| |
| // Compute the modified indexing maps. |
| int64_t origNumInput = genericOp.getNumDpsInputs(); |
| SmallVector<Value> newInputOperands = genericOp.getDpsInputs(); |
| SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray(); |
| SmallVector<AffineMap> newIndexingMaps; |
| newIndexingMaps.append(indexingMaps.begin(), |
| std::next(indexingMaps.begin(), origNumInput)); |
| for (OpOperand *op : candidates) { |
| newInputOperands.push_back(op->get()); |
| newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op)); |
| } |
| newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput), |
| indexingMaps.end()); |
| |
| Location loc = genericOp.getLoc(); |
| SmallVector<Value> newOutputOperands = |
| llvm::to_vector(genericOp.getDpsInits()); |
| for (OpOperand *op : candidates) { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointAfterValue(op->get()); |
| auto elemType = cast<ShapedType>(op->get().getType()).getElementType(); |
| auto empty = tensor::EmptyOp::create( |
| rewriter, loc, tensor::getMixedSizes(rewriter, loc, op->get()), |
| elemType); |
| |
| unsigned start = genericOp.getDpsInits().getBeginOperandIndex(); |
| newOutputOperands[op->getOperandNumber() - start] = empty.getResult(); |
| } |
| |
| auto newOp = GenericOp::create( |
| rewriter, loc, genericOp.getResultTypes(), newInputOperands, |
| newOutputOperands, newIndexingMaps, genericOp.getIteratorTypesArray(), |
| /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp)); |
| |
| OpBuilder::InsertionGuard guard(rewriter); |
| Region ®ion = newOp.getRegion(); |
| Block *block = rewriter.createBlock(®ion); |
| IRMapping mapper; |
| for (auto bbarg : genericOp.getRegionInputArgs()) |
| mapper.map(bbarg, block->addArgument(bbarg.getType(), loc)); |
| |
| for (OpOperand *op : candidates) { |
| BlockArgument bbarg = genericOp.getMatchingBlockArgument(op); |
| mapper.map(bbarg, block->addArgument(bbarg.getType(), loc)); |
| } |
| |
| for (OpOperand &op : outputOperands) { |
| BlockArgument bbarg = genericOp.getMatchingBlockArgument(&op); |
| if (candidates.count(&op)) |
| block->addArgument(bbarg.getType(), loc); |
| else |
| mapper.map(bbarg, block->addArgument(bbarg.getType(), loc)); |
| } |
| |
| for (auto &op : genericOp.getBody()->getOperations()) { |
| rewriter.clone(op, mapper); |
| } |
| rewriter.replaceOp(genericOp, newOp.getResults()); |
| |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Drop loops that are unit-extents within Linalg operations. |
| //===---------------------------------------------------------------------===// |
| |
| /// Implements a pass that canonicalizes the uses of unit-extent dimensions for |
| /// broadcasting. For example, |
| /// |
| /// ```mlir |
| /// #accesses = [ |
| /// affine_map<(d0, d1) -> (0, d1)>, |
| /// affine_map<(d0, d1) -> (d0, 0)>, |
| /// affine_map<(d0, d1) -> (d0, d1)> |
| /// ] |
| /// |
| /// #trait = { |
| /// indexing_maps = #accesses, |
| /// iterator_types = ["parallel", "parallel"], |
| /// library_call = "some_external_fn" |
| /// } |
| /// |
| /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> |
| /// tensor<5x5xf32> |
| /// { |
| /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : |
| /// tensor<5xf32> into tensor<1x5xf32> |
| /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : |
| /// tensor<5xf32> into tensor<5x1xf32> |
| /// %2 = linalg.generic #trait %0, %1 { |
| /// ^bb0(%arg2: f32, %arg3: f32): |
| /// %3 = arith.addf %arg2, %arg3 : f32 |
| /// linalg.yield %3 : f32 |
| /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> |
| /// return %2 : tensor<5x5xf32> |
| /// } |
| /// |
| /// would canonicalize to |
| /// |
| /// ```mlir |
| /// #accesses = [ |
| /// affine_map<(d0, d1) -> (d1)>, |
| /// affine_map<(d0, d1) -> (d0)>, |
| /// affine_map<(d0, d1) -> (d0, d1)> |
| /// ] |
| /// |
| /// #trait = { |
| /// indexing_maps = #accesses, |
| /// iterator_types = ["parallel", "parallel"], |
| /// library_call = "some_external_fn" |
| /// } |
| /// |
| /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> |
| /// tensor<5x5xf32> |
| /// { |
| /// %0 = linalg.generic #trait %arg0, %arg1 { |
| /// ^bb0(%arg2: f32, %arg3: f32): |
| /// %3 = arith.addf %arg2, %arg3 : f32 |
| /// linalg.yield %3 : f32 |
| /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> |
| /// return %0 : tensor<5x5xf32> |
| /// } |
| |
| /// Update the index accesses of linalg operations having index semantics. |
| static void |
| replaceUnitDimIndexOps(GenericOp genericOp, |
| const llvm::SmallDenseSet<unsigned> &unitDims, |
| RewriterBase &rewriter) { |
| for (IndexOp indexOp : |
| llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPoint(indexOp); |
| if (unitDims.count(indexOp.getDim()) != 0) { |
| rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0); |
| } else { |
| // Update the dimension of the index operation if needed. |
| unsigned droppedDims = llvm::count_if( |
| unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); }); |
| if (droppedDims != 0) |
| rewriter.replaceOpWithNewOp<IndexOp>(indexOp, |
| indexOp.getDim() - droppedDims); |
| } |
| } |
| } |
| |
| /// Expand the given `value` so that the type matches the type of `origDest`. |
| /// The `reassociation` is used when `rankReductionStrategy` is set to |
| /// `RankReductionStrategy::ReassociativeReshape`. |
| static Value |
| expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest, |
| ArrayRef<ReassociationIndices> reassociation, |
| ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) { |
| // There are no results for memref outputs. |
| auto origResultType = cast<RankedTensorType>(origDest.getType()); |
| if (rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) { |
| unsigned rank = origResultType.getRank(); |
| SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); |
| SmallVector<OpFoldResult> sizes = |
| tensor::getMixedSizes(rewriter, loc, origDest); |
| SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); |
| return rewriter.createOrFold<tensor::InsertSliceOp>( |
| loc, result, origDest, offsets, sizes, strides); |
| } |
| |
| assert(rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape && |
| "unknown rank reduction strategy"); |
| return tensor::ExpandShapeOp::create(rewriter, loc, origResultType, result, |
| reassociation) |
| .getResult(); |
| } |
| |
| /// Collapse the given `value` so that the type matches the type of |
| /// `origOutput`. The `reassociation` is used when `rankReductionStrategy` is |
| /// set to `RankReductionStrategy::ReassociativeReshape`. |
| static Value collapseValue( |
| RewriterBase &rewriter, Location loc, Value operand, |
| ArrayRef<int64_t> targetShape, ArrayRef<ReassociationIndices> reassociation, |
| ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) { |
| if (auto memrefType = dyn_cast<MemRefType>(operand.getType())) { |
| if (rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) { |
| FailureOr<Value> rankReducingExtract = |
| memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand, |
| targetShape); |
| assert(succeeded(rankReducingExtract) && "not a unit-extent collapse"); |
| return *rankReducingExtract; |
| } |
| |
| assert( |
| rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape && |
| "unknown rank reduction strategy"); |
| MemRefLayoutAttrInterface layout; |
| auto targetType = MemRefType::get(targetShape, memrefType.getElementType(), |
| layout, memrefType.getMemorySpace()); |
| return memref::CollapseShapeOp::create(rewriter, loc, targetType, operand, |
| reassociation); |
| } |
| if (auto tensorType = dyn_cast<RankedTensorType>(operand.getType())) { |
| if (rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) { |
| FailureOr<Value> rankReducingExtract = |
| tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand, |
| targetShape); |
| assert(succeeded(rankReducingExtract) && "not a unit-extent collapse"); |
| return *rankReducingExtract; |
| } |
| |
| assert( |
| rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape && |
| "unknown rank reduction strategy"); |
| auto targetType = |
| RankedTensorType::get(targetShape, tensorType.getElementType()); |
| return tensor::CollapseShapeOp::create(rewriter, loc, targetType, operand, |
| reassociation); |
| } |
| llvm_unreachable("unsupported operand type"); |
| } |
| |
| /// Compute the modified metadata for an operands of operation |
| /// whose unit dims are being dropped. Return the new indexing map |
| /// to use, the shape of the operand in the replacement op |
| /// and the `reassocation` to use to go from original operand shape |
| /// to modified operand shape. |
| struct UnitExtentReplacementInfo { |
| AffineMap indexMap; |
| SmallVector<ReassociationIndices> reassociation; |
| SmallVector<int64_t> targetShape; |
| }; |
| static UnitExtentReplacementInfo dropUnitExtentFromOperandMetadata( |
| MLIRContext *context, IndexingMapOpInterface op, OpOperand *opOperand, |
| llvm::SmallDenseMap<unsigned, unsigned> &oldDimsToNewDimsMap, |
| ArrayRef<AffineExpr> dimReplacements) { |
| UnitExtentReplacementInfo info; |
| ReassociationIndices reassociationGroup; |
| SmallVector<AffineExpr> newIndexExprs; |
| AffineMap indexingMap = op.getMatchingIndexingMap(opOperand); |
| SmallVector<int64_t> operandShape = op.getStaticOperandShape(opOperand); |
| ArrayRef<AffineExpr> exprs = indexingMap.getResults(); |
| |
| auto isUnitDim = [&](unsigned dim) { |
| if (auto dimExpr = dyn_cast<AffineDimExpr>(exprs[dim])) { |
| unsigned oldPosition = dimExpr.getPosition(); |
| return !oldDimsToNewDimsMap.count(oldPosition) && |
| (operandShape[dim] == 1); |
| } |
| // Handle the other case where the shape is 1, and is accessed using a |
| // constant 0. |
| if (operandShape[dim] == 1) { |
| auto constAffineExpr = dyn_cast<AffineConstantExpr>(exprs[dim]); |
| return constAffineExpr && constAffineExpr.getValue() == 0; |
| } |
| return false; |
| }; |
| |
| unsigned dim = 0; |
| while (dim < operandShape.size() && isUnitDim(dim)) |
| reassociationGroup.push_back(dim++); |
| while (dim < operandShape.size()) { |
| assert(!isUnitDim(dim) && "expected non unit-extent"); |
| reassociationGroup.push_back(dim); |
| AffineExpr newExpr = exprs[dim].replaceDims(dimReplacements); |
| newIndexExprs.push_back(newExpr); |
| info.targetShape.push_back(operandShape[dim]); |
| ++dim; |
| // Fold all following dimensions that are unit-extent. |
| while (dim < operandShape.size() && isUnitDim(dim)) { |
| reassociationGroup.push_back(dim++); |
| } |
| info.reassociation.push_back(reassociationGroup); |
| reassociationGroup.clear(); |
| } |
| info.indexMap = |
| AffineMap::get(oldDimsToNewDimsMap.size(), indexingMap.getNumSymbols(), |
| newIndexExprs, context); |
| return info; |
| } |
| |
| FailureOr<DropUnitDimsResult> |
| linalg::dropUnitDims(RewriterBase &rewriter, IndexingMapOpInterface op, |
| const DroppedUnitDimsBuilder &droppedUnitDimsBuilder, |
| const ControlDropUnitDims &options) { |
| auto dpsOp = dyn_cast<DestinationStyleOpInterface>(op.getOperation()); |
| if (!dpsOp) { |
| return rewriter.notifyMatchFailure( |
| op, "op should implement DestinationStyleOpInterface"); |
| } |
| |
| SmallVector<AffineMap> indexingMaps = op.getIndexingMapsArray(); |
| if (indexingMaps.empty()) |
| return failure(); |
| |
| // 1. Check if any of the iteration dimensions are unit-trip count. They will |
| // end up being unit-trip count if they are used to index into a unit-dim |
| // tensor/memref. |
| AffineMap invertedMap = |
| inversePermutation(concatAffineMaps(indexingMaps, rewriter.getContext())); |
| if (!invertedMap) { |
| return rewriter.notifyMatchFailure(op, |
| "invalid indexing maps for operation"); |
| } |
| |
| SmallVector<int64_t> allShapesSizes; |
| for (OpOperand &opOperand : op->getOpOperands()) |
| llvm::append_range(allShapesSizes, op.getStaticOperandShape(&opOperand)); |
| |
| // 1a. Get the allowed list of dimensions to drop from the `options`. |
| SmallVector<unsigned> allowedUnitDims = options.controlFn(op); |
| if (allowedUnitDims.empty()) { |
| return rewriter.notifyMatchFailure( |
| op, "control function returns no allowed unit dims to prune"); |
| } |
| llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(), |
| allowedUnitDims.end()); |
| llvm::SmallDenseSet<unsigned> unitDims; |
| for (const auto &expr : enumerate(invertedMap.getResults())) { |
| if (AffineDimExpr dimExpr = dyn_cast<AffineDimExpr>(expr.value())) { |
| if (allShapesSizes[dimExpr.getPosition()] == 1 && |
| unitDimsFilter.count(expr.index())) |
| unitDims.insert(expr.index()); |
| } |
| } |
| |
| // 2. Compute the new loops of the modified op by dropping the one-trip |
| // count loops. |
| llvm::SmallDenseMap<unsigned, unsigned> oldDimToNewDimMap; |
| SmallVector<AffineExpr> dimReplacements; |
| unsigned newDims = 0; |
| for (auto index : llvm::seq<int64_t>(op.getStaticLoopRanges().size())) { |
| if (unitDims.count(index)) { |
| dimReplacements.push_back( |
| getAffineConstantExpr(0, rewriter.getContext())); |
| } else { |
| oldDimToNewDimMap[index] = newDims; |
| dimReplacements.push_back( |
| getAffineDimExpr(newDims, rewriter.getContext())); |
| newDims++; |
| } |
| } |
| |
| // 3. For each of the operands, find the |
| // - modified affine map to use. |
| // - shape of the operands after the unit-dims are dropped. |
| // - the reassociation indices used to convert from the original |
| // operand type to modified operand (needed only when using reshapes |
| // for rank reduction strategy) |
| // Note that the indexing maps might need changing even if there are no |
| // unit dimensions that are dropped to handle cases where `0` is used to |
| // access a unit-extent tensor. Consider moving this out of this specific |
| // transformation as a stand-alone transformation. Kept here right now due |
| // to legacy. |
| SmallVector<AffineMap> newIndexingMaps; |
| SmallVector<SmallVector<ReassociationIndices>> reassociations; |
| SmallVector<SmallVector<int64_t>> targetShapes; |
| SmallVector<bool> collapsed; |
| auto hasCollapsibleType = [](OpOperand &operand) { |
| Type operandType = operand.get().getType(); |
| if (auto memrefOperandType = dyn_cast_or_null<MemRefType>(operandType)) { |
| return memrefOperandType.getLayout().isIdentity(); |
| } |
| if (auto tensorOperandType = dyn_cast<RankedTensorType>(operandType)) { |
| return tensorOperandType.getEncoding() == nullptr; |
| } |
| return false; |
| }; |
| for (OpOperand &opOperand : op->getOpOperands()) { |
| auto indexingMap = op.getMatchingIndexingMap(&opOperand); |
| SmallVector<int64_t> shape = op.getStaticOperandShape(&opOperand); |
| if (!hasCollapsibleType(opOperand)) { |
| AffineMap newIndexingMap = indexingMap.replaceDimsAndSymbols( |
| dimReplacements, ArrayRef<AffineExpr>{}, oldDimToNewDimMap.size(), 0); |
| newIndexingMaps.push_back(newIndexingMap); |
| targetShapes.push_back(llvm::to_vector(shape)); |
| collapsed.push_back(false); |
| reassociations.push_back({}); |
| continue; |
| } |
| auto replacementInfo = |
| dropUnitExtentFromOperandMetadata(rewriter.getContext(), op, &opOperand, |
| oldDimToNewDimMap, dimReplacements); |
| reassociations.push_back(replacementInfo.reassociation); |
| newIndexingMaps.push_back(replacementInfo.indexMap); |
| targetShapes.push_back(replacementInfo.targetShape); |
| collapsed.push_back(!(replacementInfo.indexMap.getNumResults() == |
| indexingMap.getNumResults())); |
| } |
| |
| // Abort if the indexing maps of the result operation are not invertible |
| // (i.e. not legal) or if no dimension was reduced. |
| if (newIndexingMaps == indexingMaps || |
| !inversePermutation( |
| concatAffineMaps(newIndexingMaps, rewriter.getContext()))) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| // 4. For each of the operands, collapse the operand to convert |
| // from original shape to shape in the modified operation if needed, |
| // either through use of reshapes or rank-reducing slices as |
| // specified in `options`. |
| SmallVector<Value> newOperands; |
| for (OpOperand &opOperand : op->getOpOperands()) { |
| int64_t idx = opOperand.getOperandNumber(); |
| if (!collapsed[idx]) { |
| newOperands.push_back(opOperand.get()); |
| continue; |
| } |
| newOperands.push_back(collapseValue(rewriter, loc, opOperand.get(), |
| targetShapes[idx], reassociations[idx], |
| options.rankReductionStrategy)); |
| } |
| |
| IndexingMapOpInterface replacementOp = droppedUnitDimsBuilder( |
| loc, rewriter, op, newOperands, newIndexingMaps, unitDims); |
| |
| // 6. If any result type changes, insert a reshape/slice to convert from the |
| // original type to the new type. |
| SmallVector<Value> resultReplacements; |
| for (auto [index, result] : llvm::enumerate(replacementOp->getResults())) { |
| unsigned opOperandIndex = index + dpsOp.getNumDpsInputs(); |
| Value origDest = dpsOp.getDpsInitOperand(index)->get(); |
| if (!collapsed[opOperandIndex]) { |
| resultReplacements.push_back(result); |
| continue; |
| } |
| Value expandedValue = expandValue(rewriter, loc, result, origDest, |
| reassociations[opOperandIndex], |
| options.rankReductionStrategy); |
| resultReplacements.push_back(expandedValue); |
| } |
| |
| return DropUnitDimsResult{replacementOp, resultReplacements}; |
| } |
| |
| FailureOr<DropUnitDimsResult> |
| linalg::dropUnitDims(RewriterBase &rewriter, GenericOp genericOp, |
| const ControlDropUnitDims &options) { |
| |
| DroppedUnitDimsBuilder build = |
| [](Location loc, OpBuilder &b, IndexingMapOpInterface op, |
| ArrayRef<Value> newOperands, ArrayRef<AffineMap> newIndexingMaps, |
| const llvm::SmallDenseSet<unsigned> &droppedDims) |
| -> IndexingMapOpInterface { |
| auto genericOp = cast<GenericOp>(op); |
| // Compute the iterator types of the modified op by dropping the one-trip |
| // count loops. |
| SmallVector<utils::IteratorType> newIteratorTypes; |
| for (auto [index, attr] : |
| llvm::enumerate(genericOp.getIteratorTypesArray())) { |
| if (!droppedDims.count(index)) |
| newIteratorTypes.push_back(attr); |
| } |
| |
| // Create the `linalg.generic` operation with the new operands, |
| // indexing maps, iterator types and result types. |
| ArrayRef<Value> newInputs = |
| ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs()); |
| ArrayRef<Value> newOutputs = |
| ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits()); |
| SmallVector<Type> resultTypes; |
| resultTypes.reserve(genericOp.getNumResults()); |
| for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults())) |
| resultTypes.push_back(newOutputs[i].getType()); |
| GenericOp replacementOp = |
| GenericOp::create(b, loc, resultTypes, newInputs, newOutputs, |
| newIndexingMaps, newIteratorTypes); |
| b.cloneRegionBefore(genericOp.getRegion(), replacementOp.getRegion(), |
| replacementOp.getRegion().begin()); |
| // 5a. Replace `linalg.index` operations that refer to the dropped unit |
| // dimensions. |
| IRRewriter rewriter(b); |
| replaceUnitDimIndexOps(replacementOp, droppedDims, rewriter); |
| |
| return replacementOp; |
| }; |
| |
| return dropUnitDims(rewriter, genericOp, build, options); |
| } |
| |
| namespace { |
| struct DropUnitDims : public OpRewritePattern<GenericOp> { |
| DropUnitDims(MLIRContext *context, ControlDropUnitDims options = {}, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern(context, benefit), options(std::move(options)) {} |
| |
| LogicalResult matchAndRewrite(GenericOp genericOp, |
| PatternRewriter &rewriter) const override { |
| FailureOr<DropUnitDimsResult> result = |
| dropUnitDims(rewriter, genericOp, options); |
| if (failed(result)) { |
| return failure(); |
| } |
| rewriter.replaceOp(genericOp, result->replacements); |
| return success(); |
| } |
| |
| private: |
| ControlDropUnitDims options; |
| }; |
| } // namespace |
| |
| //===---------------------------------------------------------------------===// |
| // Drop dimensions that are unit-extents within tensor operations. |
| //===---------------------------------------------------------------------===// |
| |
| namespace { |
| struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> { |
| DropPadUnitDims(MLIRContext *context, ControlDropUnitDims options = {}, |
| PatternBenefit benefit = 1) |
| : OpRewritePattern(context, benefit), options(std::move(options)) {} |
| |
| LogicalResult matchAndRewrite(tensor::PadOp padOp, |
| PatternRewriter &rewriter) const override { |
| // 1a. Get the allowed list of dimensions to drop from the `options`. |
| SmallVector<unsigned> allowedUnitDims = options.controlFn(padOp); |
| if (allowedUnitDims.empty()) { |
| return rewriter.notifyMatchFailure( |
| padOp, "control function returns no allowed unit dims to prune"); |
| } |
| |
| if (padOp.getSourceType().getEncoding()) { |
| return rewriter.notifyMatchFailure( |
| padOp, "cannot collapse dims of tensor with encoding"); |
| } |
| |
| // Fail for non-constant padding values. The body of the pad could |
| // depend on the padding indices and/or properties of the padded |
| // tensor so for now we fail. |
| // TODO: Support non-constant padding values. |
| Value paddingVal = padOp.getConstantPaddingValue(); |
| if (!paddingVal) { |
| return rewriter.notifyMatchFailure( |
| padOp, "unimplemented: non-constant padding value"); |
| } |
| |
| ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape(); |
| ArrayRef<int64_t> resultShape = padOp.getResultType().getShape(); |
| int64_t padRank = sourceShape.size(); |
| |
| auto isStaticZero = [](OpFoldResult f) { |
| return getConstantIntValue(f) == 0; |
| }; |
| |
| llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(), |
| allowedUnitDims.end()); |
| llvm::SmallDenseSet<unsigned> unitDims; |
| SmallVector<int64_t> newShape; |
| SmallVector<int64_t> newResultShape; |
| SmallVector<OpFoldResult> newLowPad; |
| SmallVector<OpFoldResult> newHighPad; |
| for (const auto [dim, size, outSize, low, high] : zip_equal( |
| llvm::seq(static_cast<int64_t>(0), padRank), sourceShape, |
| resultShape, padOp.getMixedLowPad(), padOp.getMixedHighPad())) { |
| if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) && |
| isStaticZero(high)) { |
| unitDims.insert(dim); |
| } else { |
| newShape.push_back(size); |
| newResultShape.push_back(outSize); |
| newLowPad.push_back(low); |
| newHighPad.push_back(high); |
| } |
| } |
| |
| if (unitDims.empty()) { |
| return rewriter.notifyMatchFailure(padOp, "no unit dims to collapse"); |
| } |
| |
| ReassociationIndices reassociationGroup; |
| SmallVector<ReassociationIndices> reassociationMap; |
| int64_t dim = 0; |
| while (dim < padRank && unitDims.contains(dim)) |
| reassociationGroup.push_back(dim++); |
| while (dim < padRank) { |
| assert(!unitDims.contains(dim) && "expected non unit-extent"); |
| reassociationGroup.push_back(dim); |
| dim++; |
| // Fold all following dimensions that are unit-extent. |
| while (dim < padRank && unitDims.contains(dim)) |
| reassociationGroup.push_back(dim++); |
| reassociationMap.push_back(reassociationGroup); |
| reassociationGroup.clear(); |
| } |
| |
| Value collapsedSource = |
| collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape, |
| reassociationMap, options.rankReductionStrategy); |
| |
| auto newResultType = RankedTensorType::get( |
| newResultShape, padOp.getResultType().getElementType()); |
| auto newPadOp = tensor::PadOp::create( |
| rewriter, padOp.getLoc(), /*result=*/newResultType, collapsedSource, |
| newLowPad, newHighPad, paddingVal, padOp.getNofold()); |
| |
| Value dest = padOp.getResult(); |
| if (options.rankReductionStrategy == |
| ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) { |
| SmallVector<OpFoldResult> expandedSizes; |
| int64_t numUnitDims = 0; |
| for (auto dim : llvm::seq(static_cast<int64_t>(0), padRank)) { |
| if (unitDims.contains(dim)) { |
| expandedSizes.push_back(rewriter.getIndexAttr(1)); |
| numUnitDims++; |
| continue; |
| } |
| expandedSizes.push_back(tensor::getMixedSize( |
| rewriter, padOp.getLoc(), newPadOp, dim - numUnitDims)); |
| } |
| dest = tensor::EmptyOp::create(rewriter, padOp.getLoc(), expandedSizes, |
| padOp.getResultType().getElementType()); |
| } |
| |
| Value expandedValue = |
| expandValue(rewriter, padOp.getLoc(), newPadOp.getResult(), dest, |
| reassociationMap, options.rankReductionStrategy); |
| rewriter.replaceOp(padOp, expandedValue); |
| return success(); |
| } |
| |
| private: |
| ControlDropUnitDims options; |
| }; |
| } // namespace |
| |
| namespace { |
| /// Convert `extract_slice` operations to rank-reduced versions. |
| struct RankReducedExtractSliceOp |
| : public OpRewritePattern<tensor::ExtractSliceOp> { |
| using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp, |
| PatternRewriter &rewriter) const override { |
| RankedTensorType resultType = sliceOp.getType(); |
| SmallVector<OpFoldResult> targetShape; |
| for (auto size : resultType.getShape()) |
| targetShape.push_back(rewriter.getIndexAttr(size)); |
| auto reassociation = getReassociationMapForFoldingUnitDims(targetShape); |
| if (!reassociation || |
| reassociation->size() == static_cast<size_t>(resultType.getRank())) |
| return failure(); |
| |
| SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets(); |
| SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides(); |
| SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes(); |
| auto rankReducedType = cast<RankedTensorType>( |
| tensor::ExtractSliceOp::inferCanonicalRankReducedResultType( |
| reassociation->size(), sliceOp.getSourceType(), offsets, sizes, |
| strides)); |
| |
| Location loc = sliceOp.getLoc(); |
| Value newSlice = tensor::ExtractSliceOp::create( |
| rewriter, loc, rankReducedType, sliceOp.getSource(), offsets, sizes, |
| strides); |
| rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>( |
| sliceOp, resultType, newSlice, *reassociation); |
| return success(); |
| } |
| }; |
| |
| /// Convert `insert_slice` operations to rank-reduced versions. |
| /// This patterns works with both InsertSliceOp and ParallelInsertSliceOp. |
| template <typename InsertOpTy> |
| struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> { |
| using OpRewritePattern<InsertOpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(InsertOpTy insertSliceOp, |
| PatternRewriter &rewriter) const override { |
| RankedTensorType sourceType = insertSliceOp.getSourceType(); |
| SmallVector<OpFoldResult> targetShape; |
| for (auto size : sourceType.getShape()) |
| targetShape.push_back(rewriter.getIndexAttr(size)); |
| auto reassociation = getReassociationMapForFoldingUnitDims(targetShape); |
| if (!reassociation || |
| reassociation->size() == static_cast<size_t>(sourceType.getRank())) |
| return failure(); |
| |
| Location loc = insertSliceOp.getLoc(); |
| tensor::CollapseShapeOp reshapedSource; |
| { |
| OpBuilder::InsertionGuard g(rewriter); |
| // The only difference between InsertSliceOp and ParallelInsertSliceOp |
| // is the insertion point is just before the ParallelCombiningOp in the |
| // parallel case. |
| if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value) |
| rewriter.setInsertionPoint(insertSliceOp->getParentOp()); |
| reshapedSource = tensor::CollapseShapeOp::create( |
| rewriter, loc, insertSliceOp.getSource(), *reassociation); |
| } |
| rewriter.replaceOpWithNewOp<InsertOpTy>( |
| insertSliceOp, reshapedSource, insertSliceOp.getDest(), |
| insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), |
| insertSliceOp.getMixedStrides()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| /// Patterns that are used to canonicalize the use of unit-extent dims for |
| /// broadcasting. |
| static void |
| populateFoldUnitExtentDimsViaReshapesPatterns(RewritePatternSet &patterns, |
| ControlDropUnitDims &options) { |
| auto *context = patterns.getContext(); |
| patterns.add<DropUnitDims>(context, options); |
| patterns.add<DropPadUnitDims>(context, options); |
| // TODO: Patterns unrelated to unit dim folding should be factored out. |
| patterns.add<RankReducedExtractSliceOp, |
| RankReducedInsertSliceOp<tensor::InsertSliceOp>, |
| RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>( |
| context); |
| linalg::FillOp::getCanonicalizationPatterns(patterns, context); |
| tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context); |
| tensor::EmptyOp::getCanonicalizationPatterns(patterns, context); |
| tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context); |
| tensor::populateFoldTensorEmptyPatterns(patterns); |
| memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns); |
| memref::populateResolveShapedTypeResultDimsPatterns(patterns); |
| } |
| |
| static void |
| populateFoldUnitExtentDimsViaSlicesPatterns(RewritePatternSet &patterns, |
| ControlDropUnitDims &options) { |
| auto *context = patterns.getContext(); |
| patterns.add<DropUnitDims>(context, options); |
| patterns.add<DropPadUnitDims>(context, options); |
| // TODO: Patterns unrelated to unit dim folding should be factored out. |
| linalg::FillOp::getCanonicalizationPatterns(patterns, context); |
| tensor::EmptyOp::getCanonicalizationPatterns(patterns, context); |
| tensor::populateFoldTensorEmptyPatterns(patterns); |
| memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns); |
| memref::populateResolveShapedTypeResultDimsPatterns(patterns); |
| } |
| |
| void mlir::linalg::populateFoldUnitExtentDimsPatterns( |
| RewritePatternSet &patterns, linalg::ControlDropUnitDims &options) { |
| if (options.rankReductionStrategy == |
| linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) { |
| populateFoldUnitExtentDimsViaSlicesPatterns(patterns, options); |
| } else if (options.rankReductionStrategy == |
| linalg::ControlDropUnitDims::RankReductionStrategy:: |
| ReassociativeReshape) { |
| populateFoldUnitExtentDimsViaReshapesPatterns(patterns, options); |
| } |
| } |
| |
| void mlir::linalg::populateMoveInitOperandsToInputPattern( |
| RewritePatternSet &patterns) { |
| patterns.add<MoveInitOperandsToInput>(patterns.getContext()); |
| } |
| |
| namespace { |
| /// Pass that removes unit-extent dims within generic ops. |
| struct LinalgFoldUnitExtentDimsPass |
| : public impl::LinalgFoldUnitExtentDimsPassBase< |
| LinalgFoldUnitExtentDimsPass> { |
| using impl::LinalgFoldUnitExtentDimsPassBase< |
| LinalgFoldUnitExtentDimsPass>::LinalgFoldUnitExtentDimsPassBase; |
| void runOnOperation() override { |
| Operation *op = getOperation(); |
| MLIRContext *context = op->getContext(); |
| RewritePatternSet patterns(context); |
| ControlDropUnitDims options; |
| if (useRankReducingSlices) { |
| options.rankReductionStrategy = linalg::ControlDropUnitDims:: |
| RankReductionStrategy::ExtractInsertSlice; |
| } |
| linalg::populateFoldUnitExtentDimsPatterns(patterns, options); |
| populateMoveInitOperandsToInputPattern(patterns); |
| (void)applyPatternsGreedily(op, std::move(patterns)); |
| } |
| }; |
| |
| } // namespace |
| |
| namespace { |
| |
| /// Returns reassociation indices for collapsing/expanding a |
| /// tensor of rank `rank` at position `pos`. |
| static SmallVector<ReassociationIndices> |
| getReassociationForReshapeAtDim(int64_t rank, int64_t pos) { |
| SmallVector<ReassociationIndices> reassociation(rank - 1, {0, 1}); |
| bool lastDim = pos == rank - 1; |
| if (rank > 2) { |
| for (int64_t i = 0; i < rank - 1; i++) { |
| if (i == pos || (lastDim && i == pos - 1)) |
| reassociation[i] = ReassociationIndices{i, i + 1}; |
| else if (i < pos) |
| reassociation[i] = ReassociationIndices{i}; |
| else |
| reassociation[i] = ReassociationIndices{i + 1}; |
| } |
| } |
| return reassociation; |
| } |
| |
| /// Returns a collapsed `val` where the collapsing occurs at dim `pos`. |
| /// If `pos < 0`, then don't collapse. |
| static Value collapseSingletonDimAt(PatternRewriter &rewriter, Value val, |
| int64_t pos) { |
| if (pos < 0) |
| return val; |
| auto valType = cast<ShapedType>(val.getType()); |
| SmallVector<int64_t> collapsedShape(valType.getShape()); |
| collapsedShape.erase(collapsedShape.begin() + pos); |
| return collapseValue( |
| rewriter, val.getLoc(), val, collapsedShape, |
| getReassociationForReshapeAtDim(valType.getRank(), pos), |
| ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape); |
| } |
| |
| /// Base class for all rank reduction patterns for contraction ops |
| /// with unit dimensions. All patterns should convert one named op |
| /// to another named op. Intended to reduce only one iteration space dim |
| /// at a time. |
| /// Reducing multiple dims will happen with recusive application of |
| /// pattern rewrites. |
| template <typename FromOpTy, typename ToOpTy> |
| struct RankReduceContractionOps : OpRewritePattern<FromOpTy> { |
| using OpRewritePattern<FromOpTy>::OpRewritePattern; |
| |
| /// Collapse all collapsable operands. |
| SmallVector<Value> |
| collapseOperands(PatternRewriter &rewriter, ArrayRef<Value> operands, |
| ArrayRef<int64_t> operandCollapseDims) const { |
| assert(operandCollapseDims.size() == 3 && operands.size() == 3 && |
| "expected 3 operands and dims"); |
| return llvm::map_to_vector( |
| llvm::zip(operands, operandCollapseDims), [&](auto pair) { |
| return collapseSingletonDimAt(rewriter, std::get<0>(pair), |
| std::get<1>(pair)); |
| }); |
| } |
| |
| /// Expand result tensor. |
| Value expandResult(PatternRewriter &rewriter, Value result, |
| RankedTensorType expandedType, int64_t dim) const { |
| return tensor::ExpandShapeOp::create( |
| rewriter, result.getLoc(), expandedType, result, |
| getReassociationForReshapeAtDim(expandedType.getRank(), dim)); |
| } |
| |
| LogicalResult matchAndRewrite(FromOpTy contractionOp, |
| PatternRewriter &rewriter) const override { |
| if (contractionOp.hasUserDefinedMaps()) { |
| return rewriter.notifyMatchFailure( |
| contractionOp, "ops with user-defined maps are not supported"); |
| } |
| |
| auto loc = contractionOp.getLoc(); |
| auto inputs = contractionOp.getDpsInputs(); |
| auto inits = contractionOp.getDpsInits(); |
| if (inputs.size() != 2 || inits.size() != 1) |
| return rewriter.notifyMatchFailure(contractionOp, |
| "expected 2 inputs and 1 init"); |
| auto lhs = inputs[0]; |
| auto rhs = inputs[1]; |
| auto init = inits[0]; |
| SmallVector<Value> operands{lhs, rhs, init}; |
| |
| SmallVector<int64_t> operandUnitDims; |
| if (failed(getOperandUnitDims(contractionOp, operandUnitDims))) |
| return rewriter.notifyMatchFailure(contractionOp, |
| "no reducable dims found"); |
| |
| SmallVector<Value> collapsedOperands = |
| collapseOperands(rewriter, operands, operandUnitDims); |
| Value collapsedLhs = collapsedOperands[0]; |
| Value collapsedRhs = collapsedOperands[1]; |
| Value collapsedInit = collapsedOperands[2]; |
| SmallVector<Type, 1> collapsedResultTy; |
| if (isa<RankedTensorType>(collapsedInit.getType())) |
| collapsedResultTy.push_back(collapsedInit.getType()); |
| auto collapsedOp = ToOpTy::create(rewriter, loc, collapsedResultTy, |
| ValueRange{collapsedLhs, collapsedRhs}, |
| ValueRange{collapsedInit}); |
| for (auto attr : contractionOp->getAttrs()) { |
| if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName || |
| attr.getName() == "indexing_maps") |
| continue; |
| collapsedOp->setAttr(attr.getName(), attr.getValue()); |
| } |
| |
| auto results = contractionOp.getResults(); |
| assert(results.size() < 2 && "expected at most one result"); |
| if (results.empty()) { |
| rewriter.replaceOp(contractionOp, collapsedOp); |
| } else { |
| rewriter.replaceOp( |
| contractionOp, |
| expandResult(rewriter, collapsedOp.getResultTensors()[0], |
| cast<RankedTensorType>(results[0].getType()), |
| operandUnitDims[2])); |
| } |
| |
| return success(); |
| } |
| |
| /// Populate `operandUnitDims` with 3 indices indicating the unit dim |
| /// for each operand that should be collapsed in this pattern. If an |
| /// operand shouldn't be collapsed, the index should be negative. |
| virtual LogicalResult |
| getOperandUnitDims(LinalgOp op, |
| SmallVectorImpl<int64_t> &operandUnitDims) const = 0; |
| }; |
| |
| /// Patterns for unbatching batched contraction ops |
| template <typename FromOpTy, typename ToOpTy> |
| struct RankReduceToUnBatched : RankReduceContractionOps<FromOpTy, ToOpTy> { |
| using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps; |
| |
| /// Look for unit batch dims to collapse. |
| LogicalResult |
| getOperandUnitDims(LinalgOp op, |
| SmallVectorImpl<int64_t> &operandUnitDims) const override { |
| FailureOr<ContractionDimensions> maybeContractionDims = |
| inferContractionDims(op); |
| if (failed(maybeContractionDims)) { |
| LLVM_DEBUG(llvm::dbgs() << "could not infer contraction dims"); |
| return failure(); |
| } |
| ContractionDimensions contractionDims = maybeContractionDims.value(); |
| |
| if (contractionDims.batch.size() != 1) |
| return failure(); |
| auto batchDim = contractionDims.batch[0]; |
| SmallVector<std::pair<Value, unsigned>, 3> bOperands; |
| op.mapIterationSpaceDimToAllOperandDims(batchDim, bOperands); |
| if (bOperands.size() != 3 || llvm::any_of(bOperands, [](auto pair) { |
| return cast<ShapedType>(std::get<0>(pair).getType()) |
| .getShape()[std::get<1>(pair)] != 1; |
| })) { |
| LLVM_DEBUG(llvm::dbgs() << "specified unit dims not found"); |
| return failure(); |
| } |
| |
| operandUnitDims = SmallVector<int64_t>{std::get<1>(bOperands[0]), |
| std::get<1>(bOperands[1]), |
| std::get<1>(bOperands[2])}; |
| return success(); |
| } |
| }; |
| |
| /// Patterns for reducing non-batch dimensions |
| template <typename FromOpTy, typename ToOpTy> |
| struct RankReduceMatmul : RankReduceContractionOps<FromOpTy, ToOpTy> { |
| using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps; |
| |
| /// Helper for determining whether the lhs/init or rhs/init are reduced. |
| static bool constexpr reduceLeft = |
| (std::is_same_v<FromOpTy, BatchMatmulOp> && |
| std::is_same_v<ToOpTy, BatchVecmatOp>) || |
| (std::is_same_v<FromOpTy, MatmulOp> && |
| std::is_same_v<ToOpTy, VecmatOp>) || |
| (std::is_same_v<FromOpTy, MatvecOp> && std::is_same_v<ToOpTy, DotOp>); |
| |
| /// Look for non-batch spatial dims to collapse. |
| LogicalResult |
| getOperandUnitDims(LinalgOp op, |
| SmallVectorImpl<int64_t> &operandUnitDims) const override { |
| FailureOr<ContractionDimensions> maybeContractionDims = |
| inferContractionDims(op); |
| if (failed(maybeContractionDims)) { |
| LLVM_DEBUG(llvm::dbgs() << "could not infer contraction dims"); |
| return failure(); |
| } |
| ContractionDimensions contractionDims = maybeContractionDims.value(); |
| |
| if constexpr (reduceLeft) { |
| auto m = contractionDims.m[0]; |
| SmallVector<std::pair<Value, unsigned>, 2> mOperands; |
| op.mapIterationSpaceDimToAllOperandDims(m, mOperands); |
| if (mOperands.size() != 2) |
| return failure(); |
| if (llvm::all_of(mOperands, [](auto pair) { |
| return cast<ShapedType>(std::get<0>(pair).getType()) |
| .getShape()[std::get<1>(pair)] == 1; |
| })) { |
| operandUnitDims = SmallVector<int64_t>{std::get<1>(mOperands[0]), -1, |
| std::get<1>(mOperands[1])}; |
| return success(); |
| } |
| } else { |
| auto n = contractionDims.n[0]; |
| SmallVector<std::pair<Value, unsigned>, 2> nOperands; |
| op.mapIterationSpaceDimToAllOperandDims(n, nOperands); |
| if (nOperands.size() != 2) |
| return failure(); |
| if (llvm::all_of(nOperands, [](auto pair) { |
| return cast<ShapedType>(std::get<0>(pair).getType()) |
| .getShape()[std::get<1>(pair)] == 1; |
| })) { |
| operandUnitDims = SmallVector<int64_t>{-1, std::get<1>(nOperands[0]), |
| std::get<1>(nOperands[1])}; |
| return success(); |
| } |
| } |
| LLVM_DEBUG(llvm::dbgs() << "specified unit dims not found"); |
| return failure(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::linalg::populateContractionOpRankReducingPatterns( |
| RewritePatternSet &patterns) { |
| MLIRContext *context = patterns.getContext(); |
| // Unbatching patterns for unit batch size |
| patterns.add<RankReduceToUnBatched<BatchMatmulOp, MatmulOp>>(context); |
| patterns.add<RankReduceToUnBatched<BatchMatvecOp, MatvecOp>>(context); |
| patterns.add<RankReduceToUnBatched<BatchVecmatOp, VecmatOp>>(context); |
| |
| // Non-batch rank 1 reducing patterns |
| patterns.add<RankReduceMatmul<MatmulOp, VecmatOp>>(context); |
| patterns.add<RankReduceMatmul<MatmulOp, MatvecOp>>(context); |
| // Batch rank 1 reducing patterns |
| patterns.add<RankReduceMatmul<BatchMatmulOp, BatchVecmatOp>>(context); |
| patterns.add<RankReduceMatmul<BatchMatmulOp, BatchMatvecOp>>(context); |
| |
| // Non-batch rank 0 reducing patterns |
| patterns.add<RankReduceMatmul<MatvecOp, DotOp>>(context); |
| patterns.add<RankReduceMatmul<VecmatOp, DotOp>>(context); |
| } |